Publications

2021

Anchoring single platinum atoms onto nickel nanoparticles affords highly selective catalysts for lignin conversion

L. Chen; L. Pan; A. P. van Muyden; L. Bai; J. Li et al. 

Cell Reports Physical Science. 2021-09-22. Vol. 2, num. 9, p. 100567. DOI : 10.1016/j.xcrp.2021.100567.

Methylammonium Triiodide for Defect Engineering of High-Efficiency Perovskite Solar Cells

E. A. Alharbi; A. Krishna; T. P. Baumeler; M. Dankl; G. C. Fish et al. 

ACS Energy Letters. 2021-09-22. Vol. 6, p. 3650-3660. DOI : 10.1021/acsenergylett.1c01754.

Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics

A. Krishna; H. Zhang; Z. Zhou; T. Gallet; M. Dankl et al. 

Energy & Environmental Science. 2021-09-16. DOI : 10.1039/d1ee02454j.

Reinforced polypyrrole with 2D graphene flakes decorated with interconnected nickel-tungsten metal oxide complex toward superiorly stable supercapacitor

S. A. Hashemi; S. M. Mousavi; H. R. Naderi; S. Bahrani; M. Arjmand et al. 

Chemical Engineering Journal. 2021-08-15. Vol. 418, p. 129396. DOI : 10.1016/j.cej.2021.129396.

Perovskitoid-Templated Formation of a [email protected] Perovskite Structure toward Highly Efficient and Stable Perovskite Solar Cells

T. Kong; H. Xie; Y. Zhang; J. Song; Y. Li et al. 

Advanced Energy Materials. 2021-07-26.  p. 2101018. DOI : 10.1002/aenm.202101018.

Decorated graphene oxide flakes with integrated complex of 8-hydroxyquinoline/NiO toward accurate detection of glucose at physiological conditions

S. A. Hashemi; S. M. Mousavi; S. Bahrani; N. Omidifar; M. Arjmand et al. 

Journal Of Electroanalytical Chemistry. 2021-07-15. Vol. 893, p. 115303. DOI : 10.1016/j.jelechem.2021.115303.

Surface Reconstruction Engineering with Synergistic Effect of Mixed‐Salt Passivation Treatment toward Efficient and Stable Perovskite Solar Cells

J. Suo; B. Yang; E. Mosconi; H. Choi; Y. Kim et al. 

Advanced Functional Materials. 2021-06-17.  p. 2102902. DOI : 10.1002/adfm.202102902.

Copolymer-Templated Nickel Oxide for High-Efficiency Mesoscopic Perovskite Solar Cells in Inverted Architecture

F. Sadegh; S. Akin; M. Moghadam; R. Keshavarzi; V. Mirkhani et al. 

Advanced Functional Materials. 2021-06-10.  p. 2102237. DOI : 10.1002/adfm.202102237.

Supramolecular Co-adsorption on TiO2 to enhance the efficiency of dye-sensitized solar cells

J. An; Z. Tian; L. Zhang; X. Yang; B. Cai et al. 

Journal Of Materials Chemistry A. 2021-06-07. DOI : 10.1039/d1ta00807b.

Multimodal host–guest complexation for efficient and stable perovskite photovoltaics

H. Zhang; F. T. Eickemeyer; Z. Zhou; M. Mladenović; F. Jahanbakhshi et al. 

Nature Communications. 2021-06-07. Vol. 12, num. 1, p. 3383. DOI : 10.1038/s41467-021-23566-2.

When photoluminescence, electroluminescence, and open-circuit voltage diverge – light soaking and halide segregation in perovskite solar cells

F. Ebadi; B. Yang; Y. Kim; R. Mohammadpour; N. Taghavinia et al. 

Journal Of Materials Chemistry A. 2021-06-04. DOI : 10.1039/d1ta02878b.

Hydrophobic Organic Ammonium Halide Modification toward Highly Efficient and Stable CsPbI(2.25)Br(0.75 )Solar Cell

L. Duan; Z. Wang; Y. Li; L. Tan; Z. Zhang et al. 

Solar Rrl. 2021-06-02.  p. 2100178. DOI : 10.1002/solr.202100178.

An experimental and theoretical exploration of the role of tri-element metal-nonmetal nanohybrids in photovoltaics

L. Li; J. Shi; L. Zhang; K. Zhao; X. Li et al. 

Chemical Engineering Journal. 2021-06-01. Vol. 413, p. 127491. DOI : 10.1016/j.cej.2020.127491.

Thiophene-fused carbazole derivative dyes for high-performance dye-sensitized solar cells

J. An; X. Yang; Z. Tian; B. Cai; L. Zhang et al. 

Tetrahedron. 2021-05-21. Vol. 88, p. 132124. DOI : 10.1016/j.tet.2021.132124.

Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells

H. Xie; Z. Wang; Z. Chen; C. Pereyra; M. Pols et al. 

Joule. 2021-05-19. Vol. 5, num. 5, p. 1246-1266. DOI : 10.1016/j.joule.2021.04.003.

Benzylammonium‐Mediated Formamidinium Lead Iodide Perovskite Phase Stabilization for Photovoltaics

A. Q. Alanazi; M. H. Almalki; A. Mishra; D. J. Kubicki; Z. Wang et al. 

Advanced Functional Materials. 2021-05-19.  p. 2101163. DOI : 10.1002/adfm.202101163.

Water Stable Haloplumbate Modulation for Efficient and Stable Hybrid Perovskite Photovoltaics

H. Wang; Z. Zhang; J. V. Milic; L. Tan; Z. Wang et al. 

Advanced Energy Materials. 2021-05-16.  p. 2101082. DOI : 10.1002/aenm.202101082.

Interfacial versus Bulk Properties of Hole-Transporting Materials for Perovskite Solar Cells: Isomeric Triphenylamine-Based Enamines versus Spiro-OMeTAD

J. Simokaitiene; M. Cekaviciute; K. Baucyte; D. Volyniuk; R. Durgaryan et al. 

Acs Applied Materials & Interfaces. 2021-05-12. Vol. 13, num. 18, p. 21320-21330. DOI : 10.1021/acsami.1c03000.

A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure α-FAPbI3

P. Ahlawat; A. Hinderhofer; E. A. R. Alharbi; H. Lu; A. Ummadisingu et al. 

Science Advances. 2021-04-23. Vol. 7, num. 17, p. eabe3326. DOI : 10.1126/sciadv.abe3326.

Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2

Y. Yang; H. Lu; S. Feng; L. Yang; H. Dong et al. 

Energy & Environmental Science. 2021-04-20. DOI : 10.1039/d1ee00056j.

Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells

J. Jeong; M. Kim; J. Seo; H. Lu; P. Ahlawat et al. 

Nature. 2021-04-05. Vol. 592, num. 7854, p. 381-385. DOI : 10.1038/s41586-021-03406-5.

A molecular photosensitizer achieves a Voc of 1.24 V enabling highly efficient and stable dye-sensitized solar cells with copper(II/I)-based electrolyte

D. Zhang; M. Stojanovic; Y. Ren; Y. Cao; F. T. Eickemeyer et al. 

Nature Communications. 2021-03-19. Vol. 12, num. 1, p. 1777 (1-10). DOI : 10.1038/s41467-021-21945-3.

Xanthan-Based Hydrogel for Stable and Efficient Quasi-Solid Truly Aqueous Dye-Sensitized Solar Cell with Cobalt Mediator

S. Galliano; F. Bella; M. Bonomo; F. Giordano; M. Gratzel et al. 

Solar Rrl. 2021-03-17.  p. 2000823. DOI : 10.1002/solr.202000823.

Stable Layered 2D Perovskite Solar Cells with an Efficiency of over 19% via Multifunctional Interfacial Engineering

Y. Huang; Y. Li; E. L. Lim; T. Kong; Y. Zhang et al. 

Journal Of The American Chemical Society. 2021-03-17. Vol. 143, num. 10, p. 3911-3917. DOI : 10.1021/jacs.0c13087.

Formation of High-Performance Multi-Cation Halide Perovskites Photovoltaics by delta-CsPbI3/delta-RbPbI3 Seed-Assisted Heterogeneous Nucleation

E. A. Alharbi; T. P. Baumeler; A. Krishna; A. Y. Alyamani; F. T. Eickemeyer et al. 

Advanced Energy Materials. 2021-03-15.  p. 2003785. DOI : 10.1002/aenm.202003785.

Synergistic Effect of Fluorinated Passivator and Hole Transport Dopant Enables Stable Perovskite Solar Cells with an Efficiency Near 24%

H. Zhu; Y. Ren; L. Pan; O. Ouellette; F. T. Eickemeyer et al. 

Journal Of The American Chemical Society. 2021-03-03. Vol. 143, num. 8, p. 3231-3237. DOI : 10.1021/jacs.0c12802.

Flash Infrared Annealing for Perovskite Solar Cell Processing

P. S. V. Ling; A. Hagfeldt; S. Sanchez 

Jove-Journal Of Visualized Experiments. 2021-02-01. num. 168, p. e61730. DOI : 10.3791/61730.

New approaches in component design for dye-sensitized solar cells

N. Vlachopoulos; A. Hagfeldt; I. Benesperi; G. Hashmi; G. Jia et al. 

Sustainable Energy & Fuels. 2021-01-21. Vol. 5, num. 2, p. 367-383. DOI : 10.1039/d0se00596g.

Nanoscale Phase Segregation in Supramolecular π-Templating for Hybrid Perovskite Photovoltaics from NMR Crystallography

M. A. Hope; T. Nakamura; P. Ahlawat; A. Mishra; M. Cordova et al. 

Journal of the American Chemical Society. 2021-01-14. Vol. 143, num. 3, p. 1529-1538. DOI : 10.1021/jacs.0c11563.

Low-Cost Dopant Additive-Free Hole-Transporting Material for a Robust Perovskite Solar Cell with Efficiency Exceeding 21%

H. Zhu; Z. Shen; L. Pan; J. Han; F. T. Eickemeyer et al. 

Acs Energy Letters. 2021-01-08. Vol. 6, num. 1, p. 208-215. DOI : 10.1021/acsenergylett.0c02210.

2020

Polymeric room-temperature molten salt as a multifunctional additive toward highly efficient and stable inverted planar perovskite solar cells

S. Wang; B. Yang; J. Han; Z. He; T. Li et al. 

Energy & Environmental Science. 2020-12-01. Vol. 13, num. 12, p. 5068-5079. DOI : 10.1039/d0ee02043e.

Crown Ether Modulation Enables over 23% Efficient Formamidinium-Based Perovskite Solar Cells

T-S. Su; F. T. Eickemeyer; M. A. Hope; F. Jahanbakhshi; M. Mladenovic et al. 

Journal Of The American Chemical Society. 2020-11-25. Vol. 142, num. 47, p. 19980-19991. DOI : 10.1021/jacs.0c08592.

Dopant-Free Hole-Transport Materials with Germanium Compounds Bearing Pseudohalide and Chalcogenide Moieties for Perovskite Solar Cells

T. Soto-Montero; N. Flores-Diaz; D. Molina; A. Soto-Navarro; A. Lizano-Villalobos et al. 

Inorganic Chemistry. 2020-10-19. Vol. 59, num. 20, p. 15154-15166. DOI : 10.1021/acs.inorgchem.0c02120.

Revealing the Perovskite Film Formation Using the Gas Quenching Method by In Situ GIWAXS: Morphology, Properties, and Device Performance

R. Szostak; S. Sanchez; P. E. Marchezi; A. S. Marques; J. C. Silva et al. 

Advanced Functional Materials. 2020-10-19.  p. 2007473. DOI : 10.1002/adfm.202007473.

Fine-Tuning by Triple Bond of Carbazole Derivative Dyes to Obtain High Efficiency for Dye-Sensitized Solar Cells with Copper Electrolyte

J. An; X. Yang; B. Cai; L. Zhang; K. Yang et al. 

Acs Applied Materials & Interfaces. 2020-10-14. Vol. 12, num. 41, p. 46397-46405. DOI : 10.1021/acsami.0c14952.

Outstanding Passivation Effect by a Mixed-Salt Interlayer with Internal Interactions in Perovskite Solar Cells

B. Yang; J. Suo; E. Mosconi; D. Ricciarelli; W. Tress et al. 

Acs Energy Letters. 2020-10-09. Vol. 5, num. 10, p. 3159-3167. DOI : 10.1021/acsenergylett.0c01664.

Vapor-assisted deposition of highly efficient, stable black-phase FAPbI(3) perovskite solar cells

H. Lu; Y. Liu; P. Ahlawat; A. Mishra; W. R. Tress et al. 

Science. 2020-10-02. Vol. 370, num. 6512, p. eabb898574-+. DOI : 10.1126/science.abb8985.

Unveiling the light soaking effects of the CsPbI3 perovskite solar cells

B. Cai; X. Yang; Z. Yu; Y. Liang; Y. Shan et al. 

Journal Of Power Sources. 2020-10-01. Vol. 472, p. 228506. DOI : 10.1016/j.jpowsour.2020.228506.

Unravelling the structural complexity and photophysical properties of adamantyl-based layered hybrid perovskites

F. Jahanbakhshi; M. Mladenovic; E. Kneschaurek; L. Merten; M. C. Gelvez-Rueda et al. 

Journal Of Materials Chemistry A. 2020-09-14. Vol. 8, num. 34, p. 17732-17740. DOI : 10.1039/d0ta05022a.

Blue Photosensitizer with Copper(II/I) Redox Mediator for Efficient and Stable Dye‐Sensitized Solar Cells

Y. Ren; N. Flores‐Díaz; D. Zhang; Y. Cao; J. Decoppet et al. 

Advanced Functional Materials. 2020-09-13. Vol. 30, num. 50, p. 2004804. DOI : 10.1002/adfm.202004804.

Effect of TiO2 Photoanodes Morphology and Dye Structure on Dye-Regeneration Kinetics Investigated by Scanning Electrochemical Microscopy

S. Scarabino; K. Nonomura; N. Vlachopoulos; A. Hagfeldt; G. Wittstock 

Electrochem. 2020-09-01. Vol. 1, num. 3, p. 329-343. DOI : 10.3390/electrochem1030021.

Highly efficient, stable and hysteresis-less planar perovskite solar cell based on chemical bath treated Zn2SnO4 electron transport layer

F. Sadegh; S. Akin; M. Moghadam; V. Mirkhani; M. A. Ruiz-Preciado et al. 

Nano Energy. 2020-09-01. Vol. 75, p. 105038. DOI : 10.1016/j.nanoen.2020.105038.

Postpassivation of Multication Perovskite with Rubidium Butyrate

J. C. Germino; R. Szostak; S. G. Motti; R. F. Moral; P. E. Marchezi et al. 

Acs Photonics. 2020-08-19. Vol. 7, num. 8, p. 2282-2291. DOI : 10.1021/acsphotonics.0c00878.

Quasi-Heteroface Perovskite Solar Cells

N. Ren; B. Chen; B. Shi; P. Wang; Q. Xu et al. 

Small. 2020-07-22.  p. 2002887. DOI : 10.1002/smll.202002887.

Side-chain engineering of PEDOT derivatives as dopant-free hole-transporting materials for efficient and stable n-i-p structured perovskite solar cells

S. Han; X. Jiang; Z. Yu; X. Wan; J. Zang et al. 

Journal Of Materials Chemistry C. 2020-07-21. Vol. 8, num. 27, p. 9236-9242. DOI : 10.1039/d0tc01930e.

Formamidinium-Based Dion-Jacobson Layered Hybrid Perovskites: Structural Complexity and Optoelectronic Properties

M. C. Gelvez-Rueda; P. Ahlawat; L. Merten; F. Jahanbakhshi; M. Mladenovic et al. 

Advanced Functional Materials. 2020-07-19.  p. 2003428. DOI : 10.1002/adfm.202003428.

Compositional and Interface Engineering of Organic-Inorganic Lead Halide Perovskite Solar Cells

H. Lu; A. Krishna; S. M. Zakeeruddin; M. Grätzel; A. Hagfeldt 

iScience. 2020-07-10. Vol. 23, num. 8, p. 101359. DOI : 10.1016/j.isci.2020.101359.

Understanding the Interfaces between Triple-Cation Perovskite and Electron or Hole Transporting Material

K. Pydzinska-Bialek; V. Drushliak; E. Coy; K. Zaleski; J. Flach et al. 

Acs Applied Materials & Interfaces. 2020-07-08. Vol. 12, num. 27, p. 30399-30410. DOI : 10.1021/acsami.0c07095.

Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells

F. Ansari; E. Shirzadi; M. Salavati-Niasari; T. LaGrange; K. Nonomura et al. 

Journal Of The American Chemical Society. 2020-07-01. Vol. 142, num. 26, p. 11428-11433. DOI : 10.1021/jacs.0c01704.

Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology

X. Wan; Z. Yu; W. Tian; F. Huang; S. Jin et al. 

Journal Of Energy Chemistry. 2020-07-01. Vol. 46, p. 8-15. DOI : 10.1016/j.jechem.2019.10.017.

Stabilization of Highly Efficient and Stable Phase-Pure FAPbI(3)Perovskite Solar Cells by Molecularly Tailored 2D-Overlayers

Y. Liu; S. Akin; A. Hinderhofer; F. T. Eickemeyer; H. Zhu et al. 

Angewandte Chemie-International Edition. 2020-06-22. Vol. 59, num. 36, p. 15688-15694. DOI : 10.1002/anie.202005211.

Reduced Graphene Oxide Improves Moisture and Thermal Stability of Perovskite Solar Cells

H-S. Kim; B. Yang; M. M. Stylianakis; E. Kymakis; S. M. Zakeeruddin et al. 

Cell Reports Physical Science. 2020-05-20. Vol. 1, num. 5, p. 100053. DOI : 10.1016/j.xcrp.2020.100053.

On the Mechanistic Understanding of Photovoltage Loss in Iron Pyrite Solar Cells

M. Rahman; G. Boschloo; A. Hagfeldt; T. Edvinsson 

Advanced Materials. 2020-05-19.  p. 1905653. DOI : 10.1002/adma.201905653.

Dual Passivation of CsPbI3 Perovskite Nanocrystals with Amino Acid Ligands for Efficient Quantum Dot Solar Cells

D. Jia; J. Chen; M. Yu; J. Liu; E. M. J. Johansson et al. 

Small. 2020-05-17.  p. 2001772. DOI : 10.1002/smll.202001772.

Interfacial and bulk properties of hole transporting materials in perovskite solar cells: spiro-MeTAD versus spiro-OMeTAD

X. Sallenave; M. Shasti; E. H. Anaraki; D. Volyniuk; J. V. Grazulevicius et al. 

Journal Of Materials Chemistry A. 2020-05-07. Vol. 8, num. 17, p. 8527-8539. DOI : 10.1039/d0ta00623h.

Highly efficient and rapid manufactured perovskite solar cells via Flash InfraRed Annealing

S. Sanchez; O. Jeronimo-Rendon; M. Saliba; A. Hagfeldt 

Materials Today. 2020-05-01. Vol. 35, p. 9-15. DOI : 10.1016/j.mattod.2019.11.003.

Ligand-Modulated Excess PbI2 Nanosheets for Highly Efficient and Stable Perovskite Solar Cells

H. Wang; Z. Wang; Z. Yang; Y. Xu; Y. Ding et al. 

Advanced Materials. 2020-04-13.  p. 2000865. DOI : 10.1002/adma.202000865.

Revealing the Mechanism of Doping of spiro-MeOTAD via Zn Complexation in the Absence of Oxygen and Light

Y. Saygili; H-S. Kim; B. Yang; J. Suo; A. B. Munoz-Garcia et al. 

Acs Energy Letters. 2020-04-10. Vol. 5, num. 4, p. 1271-1277. DOI : 10.1021/acsenergylett.0c00319.

A Blue Photosensitizer Realizing Efficient and Stable Green Solar Cells via Color Tuning by the Electrolyte

Y. Ren; Y. Cao; D. Zhang; S. M. Zakeeruddin; A. Hagfeldt et al. 

Advanced Materials. 2020-04-01. Vol. 32, num. 17, p. 2000193. DOI : 10.1002/adma.202000193.

Liquid State and Zombie Dye Sensitized Solar Cells with Copper Bipyridine Complexes Functionalized with Alkoxy Groups

Y. Saygili; M. Stojanovic; H-S. Kim; J. Teuscher; R. Scopelliti et al. 

The Journal of Physical Chemistry. 2020-03-09. Vol. C124, num. 13, p. 7071-7081. DOI : 10.1021/acs.jpcc.0c00671.

First Report of Chenodeoxycholic Acid-Substituted Dyes Improving the Dye Monolayer Quality in Dye-Sensitized Solar Cells

A. F. Buene; D. M. Almenningen; A. Hagfeldt; O. R. Gautun; B. H. Hoff 

Solar Rrl. 2020-02-17.  p. 1900569. DOI : 10.1002/solr.201900569.

Zinc Phthalocyanine Conjugated Dimers as Efficient Dopant-Free Hole Transporting Materials in Perovskite Solar Cells

D. Molina; M. A. Ruiz-Preciado; B. Carlsen; F. T. Eickemeyer; B. Yang et al. 

Chemphotochem. 2020-02-03. Vol. 4, num. 4, p. 307-314. DOI : 10.1002/cptc.201900245.

Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting

L. Pan; Y. Liu; L. Yao; D. Ren; K. Sivula et al. 

Nature Communications. 2020-01-16. Vol. 11, num. 1, p. 318. DOI : 10.1038/s41467-019-13987-5.

Intermediate Phase Enhances Inorganic Perovskite and Metal Oxide Interface for Efficient Photovoltaics

J. Zhang; Z. Wang; A. Mishra; M. Yu; M. Shasti et al. 

Joule. 2020-01-15. Vol. 4, num. 1, p. 222-234. DOI : 10.1016/j.joule.2019.11.007.

Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures

M. V. Khenkin; E. A. Katz; A. Abate; G. Bardizza; J. J. Berry et al. 

Nature Energy. 2020-01-01. Vol. 5, num. 1, p. 35-49. DOI : 10.1038/s41560-019-0529-5.

Guanine‐Stabilized Formamidinium Lead Iodide Perovskites

L. Hong; J. V. Milic; P. Ahlawat; M. Mladenovic; D. J. Kubicki et al. 

Angewandte Chemie. 2020. Vol. 59, num. 12, p. 4691-4697. DOI : 10.1002/anie.201912051.

Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency

H. Zhu; Y. Liu; F. T. Eickemeyer; L. Pan; D. Ren et al. 

Advanced Materials. 2020. Vol. 32, num. 12, p. 1907757. DOI : 10.1002/adma.201907757.

Molecular Engineering of Simple Metal-Free Organic Dyes Derived from Triphenylamine for Dye-Sensitized Solar Cell Applications

P. Ferdowsi; Y. Saygili; F. Jazaeri; T. Edvinsson; J. Mokhtari et al. 

Chemsuschem. 2020. Vol. 13, num. 1, p. 212-220. DOI : 10.1002/cssc.201902245.

2019

Electronic Structures and Catalytic Activities of Niobium Oxides as Electrocatalysts in Liquid-Junction Photovoltaic Devices

S. Yun; Y. Si; J. Shi; T. Zhang; Y. Hou et al. 

Solar Rrl. 2019-11-14.  p. 1900430. DOI : 10.1002/solr.201900430.

Electron-Withdrawing Anchor Group of Sensitizer for Dye-Sensitized Solar Cells, Cyanoacrylic Acid, or Benzoic Acid?

L. Zhang; X. Yang; S. Li; Z. Yu; A. Hagfeldt et al. 

Solar Rrl. 2019-11-14.  p. 1900436. DOI : 10.1002/solr.201900436.

Photoelectrochemical Cells Based on Dye Sensitization for Electricity and Fuel Production

N. Vlachopoulos; A. Hagfeldt 

Chimia. 2019-11-01. Vol. 73, num. 11, p. 894-905. DOI : 10.2533/chimia.2019.894.

Crystal Orientation and Grain Size: Do They Determine Optoelectronic Properties of MAPbI(3) Perovskite?

L. A. Muscarella; E. M. Hutter; S. Sanchez; C. D. Dieleman; T. J. Savenije et al. 

Journal of Physical Chemistry Letters. 2019-10-17. Vol. 10, num. 20, p. 6010-6018. DOI : 10.1021/acs.jpclett.9b02757.

Ba-induced phase segregation and band gap reduction in mixed-halide inorganic perovskite solar cells

W. Xiang; Z. Wang; D. J. Kubicki; X. Wang; W. Tress et al. 

Nature Communications. 2019-10-15. Vol. 10, p. 4686. DOI : 10.1038/s41467-019-12678-5.

Nanoscale mapping of chemical composition in organic-inorganic hybrid perovskite films

R. Szostak; J. C. Silva; S. -H. Turren-Cruz; M. M. Soares; R. O. Freitas et al. 

Science Advances. 2019-10-01. Vol. 5, num. 10, p. eaaw6619. DOI : 10.1126/sciadv.aaw6619.

A chain is as strong as its weakest link – Stability study of MAPbI(3) under light and temperature

P. Holzhey; P. Yadav; S-H. Turren-Cruz; A. Ummadisingu; M. Graetzel et al. 

Materials Today. 2019-10-01. Vol. 29, p. 10-19. DOI : 10.1016/j.mattod.2018.10.017.

A comprehensive experimental study of five fundamental phenothiazine geometries increasing the diversity of the phenothiazine dye class for dye-sensitized solar cells

A. F. Buene; A. Hagfeldt; B. H. Hoff 

Dyes And Pigments. 2019-10-01. Vol. 169, p. 66-72. DOI : 10.1016/j.dyepig.2019.05.007.

Indeno[1,2-b]carbazole as Methoxy-Free Donor Group: Constructing Efficient and Stable Hole-Transporting Materials for Perovskite Solar Cells

J. Wang; H. Zhang; B. Wu; Z. Wang; Z. Sun et al. 

Angewandte Chemie-International Edition. 2019-09-16. Vol. 58, num. 44, p. 15721-15725. DOI : 10.1002/anie.201909117.

Atomic Layer Deposition of ZnO on CuO Enables Selective and Efficient Electroreduction of Carbon Dioxide to Liquid Fuels

D. Ren; J. Gao; L. Pan; Z. Wang; J. Luo et al. 

Angewandte Chemie-International Edition. 2019-09-10. Vol. 58, num. 42, p. 15036-15040. DOI : 10.1002/anie.201909610.

Improving energy transfer efficiency of dye-sensitized solar cell by fine tuning of dye planarity

X. Song; X. Yang; H. Wang; J. An; Z. Yu et al. 

Solar Energy. 2019-07-15. Vol. 187, p. 274-280. DOI : 10.1016/j.solener.2019.05.053.

Towards Oxide Electronics: a Roadmap

M. Coll; J. Fontcuberta; M. Althammer; M. Bibes; H. Boschker et al. 

Applied Surface Science. 2019-07-15. Vol. 482, p. 1-93. DOI : 10.1016/j.apsusc.2019.03.312.

Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions

W. Tress; K. Domanski; B. Carlsen; A. Agarwalla; E. A. Alharbi et al. 

Nature Energy. 2019-07-01. Vol. 4, num. 7, p. 568-574. DOI : 10.1038/s41560-019-0400-8.

Power output stabilizing feature in perovskite solar cells at operating condition: Selective contact-dependent charge recombination dynamics

H-S. Kim; J-Y. Seo; S. Akin; E. Simon; M. Fleischer et al. 

Nano Energy. 2019-07-01. Vol. 61, p. 126-131. DOI : 10.1016/j.nanoen.2019.04.051.

Boosting the power conversion efficiency of perovskite solar cells to 17.7% with an indolo[3,2-b]carbazole dopant-free hole transporting material by improving its spatial configuration

B. Cai; X. Yang; X. Jiang; Z. Yu; A. Hagfeldt et al. 

Journal Of Materials Chemistry A. 2019-06-28. Vol. 7, num. 24, p. 14835-14841. DOI : 10.1039/c9ta04166d.

A hybrid niobium-based oxide with bio-based porous carbon as an efficient electrocatalyst in photovoltaics: a general strategy for understanding the catalytic mechanism

C. Wang; S. Yun; Q. Fan; Z. Wang; Y. Zhang et al. 

Journal Of Materials Chemistry A. 2019-06-28. Vol. 7, num. 24, p. 14864-14875. DOI : 10.1039/c9ta03540k.

Effect of furan pi-spacer and triethylene oxide methyl ether substituents on performance of phenothiazine sensitizers in dye-sensitized solar cells

A. F. Buene; N. Boholm; A. Hagfeldt; B. H. Hoff 

New Journal Of Chemistry. 2019-06-28. Vol. 43, num. 24, p. 9403-9410. DOI : 10.1039/c9nj01720h.

Diverging surface reactions at TiO2- or ZnO-based photoanodes in dye-sensitized solar cells

R. Ruess; S. Scarabino; A. Ringleb; K. Nonomura; N. Vlachopoulos et al. 

Physical Chemistry Chemical Physics. 2019-06-28. Vol. 21, num. 24, p. 13047-13057. DOI : 10.1039/c9cp01215j.

Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%

Y. Liu; S. Akin; L. Pan; R. Uchida; N. Arora et al. 

Science Advances. 2019-06-01. Vol. 5, num. 6, p. eaaw2543. DOI : 10.1126/sciadv.aaw2543.

Fine-tuning the coordination atoms of copper redox mediators: an effective strategy for boosting the photovoltage of dye-sensitized solar cells

Y. Zhao; J. Shen; Z. Yu; M. Hu; C. Liu et al. 

Journal Of Materials Chemistry A. 2019-05-28. Vol. 7, num. 20, p. 12808-12814. DOI : 10.1039/c9ta02735a.

A tandem redox system with a cobalt complex and 2-azaadamantane-N-oxyl for fast dye regeneration and open circuit voltages exceeding 1 V

N. Flores-Diaz; H-w. Bahng; N. Vlachopoulos; J-E. Moser; S. M. Zakeeruddin et al. 

Journal Of Materials Chemistry A. 2019-05-14. Vol. 7, num. 18, p. 10998-11006. DOI : 10.1039/c9ta00490d.

Low-cost high-efficiency system for solar-driven conversion of CO2 to hydrocarbons

Tran Ngoc Huan; D. A. D. Corte; S. Lamaison; D. Karapinar; L. Lutz et al. 

Proceedings of the National Academy of Sciences. 2019-05-14. Vol. 116, num. 20, p. 9735-9740. DOI : 10.1073/pnas.1815412116.

Toward an alternative approach for the preparation of low-temperature titanium dioxide blocking underlayers for perovskite solar cells

S. H. Aung; L. Zhao; K. Nonomura; T. Z. Oo; S. M. Zakeeruddin et al. 

Journal Of Materials Chemistry A. 2019-05-07. Vol. 7, num. 17, p. 10729-10738. DOI : 10.1039/c8ta04246b.

Perovskite Solar Cells Based on Oligotriarylamine Hexaarylbenzene as Hole-Transporting Materials

M. Shasti; S. F. Volker; S. Collavini; S. Valero; F. Ruiperez et al. 

Organic Letters. 2019-05-03. Vol. 21, num. 9, p. 3261-3264. DOI : 10.1021/acs.orglett.9b00988.

Blocking the Charge Recombination with Diiodide Radicals by TiO2 Compact Layer in Dye-Sensitized Solar Cells

K. Nonomura; N. Vlachopoulos; E. Unger; L. Haggman; A. Hagfeldt et al. 

Journal Of The Electrochemical Society. 2019-05-02. Vol. 166, num. 9, p. B3203-B3208. DOI : 10.1149/2.0281909jes.

Photoinduced Lattice Symmetry Enhancement in Mixed Hybrid Perovskites and Its Beneficial Effect on the Recombination Behavior

H-S. Kim; A. Hagfeldt 

Advanced Optical Materials. 2019-05-01. Vol. 7, num. 9, p. 1801512. DOI : 10.1002/adom.201801512.

SnS Quantum Dots as Hole Transporter of Perovskite Solar Cells

Y. Li; Z. Wang; D. Ren; Y. Liu; A. Zheng et al. 

Acs Applied Energy Materials. 2019-05-01. Vol. 2, num. 5, p. 3822-3829. DOI : 10.1021/acsaem.9b00510.

A Scalable Methylamine Gas Healing Strategy for High-Efficiency Inorganic Perovskite Solar Cells

Z. Shao; Z. Wang; Z. Li; Y. Fan; H. Meng et al. 

Angewandte Chemie-International Edition. 2019-04-16. Vol. 58, num. 17, p. 5587-5591. DOI : 10.1002/anie.201814024.

Triarylamine-based hydrido-carboxylate rhenium(i) complexes as photosensitizers for dye-sensitized solar cells

L. Veronese; E. Q. Procopio; T. Moehl; M. Panigati; K. Nonomura et al. 

Physical Chemistry Chemical Physics. 2019-04-14. Vol. 21, num. 14, p. 7534-7543. DOI : 10.1039/c9cp00856j.

Auxiliary donors for phenothiazine sensitizers for dye-sensitized solar cells – how important are they really?

A. F. Buene; E. E. Ose; A. G. Zakariassen; A. Hagfeldt; B. H. Hoff 

Journal Of Materials Chemistry A. 2019-04-07. Vol. 7, num. 13, p. 7581-7590. DOI : 10.1039/c9ta00472f.

Origin of apparent light-enhanced and negative capacitance in perovskite solar cells

F. Ebadi; N. Taghavinia; R. Mohammadpour; A. Hagfeldt; W. Tress 

Nature Communications. 2019-04-05. Vol. 10, p. 1574. DOI : 10.1038/s41467-019-09079-z.

Phosphonic Acid Modification of the Electron Selective Contact: Interfacial Effects in Perovskite Solar Cells

R. B. M. Hill; S-H. Turren-Cruz; F. Pulvirenti; W. R. Tress; S. Wieghold et al. 

Acs Applied Energy Materials. 2019-04-01. Vol. 2, num. 4, p. 2402-2408. DOI : 10.1021/acsaem.9b00141.