Research

Research is a major part in the Machine Learning field. With multiple publications each year, we are standing within the best.

2024

Energy-Efficient Frequency Selection Method for Bio-Signal Acquisition in AI/ML Wearables

H. Taji; J. A. Miranda Calero; M. Peon Quiros; D. Atienza Alonso 

2024-07-04. ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED ’24), Newport Beach, CA, USA, August 5–7, 2024. DOI : 10.1145/3665314.3670815.

Learning to Remove Cuts in Integer Linear Programming

P. Puigdemont; E. P. Skoulakis; G. Chrysos; V. Cevher 

2024. 41st International Conference on Machine Learning (ICML 2024), Vienna, Austria, July 21-27, 2024.

Improving SAM Requires Rethinking its Optimization Formulation

W. Xie; F. Latorre; K. Antonakopoulos; T. M. Pethick; V. Cevher 

2024. 41st International Conference on Machine Learning (ICML 2024), Vienna, Austria, July 21-27, 2024.

Robust NAS under adversarial training: benchmark, theory, and beyond

Y. Wu; F. Liu; C-J. Simon-Gabriel; G. Chrysos; V. Cevher 

2024. 12th International Conference on Learning Representations (ICLR 2024), Vienna, Austria, May 7-11, 2024.

High-Dimensional Kernel Methods under Covariate Shift: Data-Dependent Implicit Regularization

Y. Chen; F. Liu; T. Suzuki; V. Cevher 

2024. 12th International Conference on Learning Representations (ICLR 2024), Vienna, Austria, May 7-11, 2024.

Generalization of Scaled Deep ResNets in the Mean-Field Regime

Y. Chen; F. Liu; Y. Lu; G. Chrysos; V. Cevher 

2024. 12th International Conference on Learning Representations (ICLR 2024), Vienna, Austria, May 7-11, 2024.

Efficient Continual Finite-Sum Minimization

I. Mavrothalassitis; E. P. Skoulakis; L. T. Dadi; V. Cevher 

2024. 12th International Conference on Learning Representations (ICLR 2024), Vienna, Austria, May 7-11, 2024.

Revisiting Character-level Adversarial Attacks for Language Models

E. Abad Rocamora; Y. Wu; F. Liu; G. Chrysos; V. Cevher 

2024. 41st International Conference on Machine Learning (ICML 2024), Vienna, Austria, July 21-27, 2024.

Efficient local linearity regularization to overcome catastrophic overfitting

E. Abad Rocamora; F. Liu; G. Chrysos; P. M. Olmos; V. Cevher 

2024. 12th International Conference on Learning Representations (ICLR 2024), Vienna, Austria, May 7-11, 2024.

Imitation Learning in Discounted Linear MDPs without exploration assumptions

L. Viano; E. P. Skoulakis; V. Cevher 

2024. 41st International Conference on Machine Learning (ICML 2024), Vienna, Austria, July 21-27, 2024.

Few-shot Learning for Efficient and Effective Machine Learning Model Adaptation

A. J. J. Devos / J-M. Sallese (Dir.)  

Lausanne, EPFL, 2024. 

2023

Review on Uric Acid Recognition by MOFs with a Future in Machine Learning

P. Hazra; S. Vadnere; S. Mishra; S. Halder; S. Mandal et al. 

Acs Applied Materials & Interfaces. 2023-10-31. Vol. 15, num. 45, p. 52065-52082. DOI : 10.1021/acsami.3c11210.

Critical analysis of decision variables for high-throughput experimentation (HTE) with perovskite solar cells

N. Bhati; M. K. Nazeeruddin; F. Marechal 

Solar Energy. 2023-09-15. Vol. 262, p. 111810. DOI : 10.1016/j.solener.2023.111810.

A Multimodal Dataset for Automatic Edge-AI Cough Detection

L. Orlandic; J. P. R. Thevenot; T. Teijeiro; D. Atienza Alonso 

2023-07-24. 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Sydney Australia, July 24-27, 2023. DOI : 10.1109/EMBC40787.2023.10340413.

Trusting the Explainers: Teacher Validation of Explainable Artificial Intelligence for Course Design

V. Swamy; S. Du; M. Marras; T. Käser 

2023-03-13. LAK 2023: The 13th International Learning Analytics and Knowledge Conference, Arlington, Texas, USA, March 13-17, 2023. DOI : 10.1145/3576050.3576147.

Efficient Online Clustering with Moving Costs

D. Christou; E. P. Skoulakis; V. Cevher 

2023. 37th Conference on Neural Information Processing Systems (NeurIPS 2023), New Orlean, USA, December 10-16. 2023.

Maximum Independent Set: Self-Training through Dynamic Programming

L. Brusca; L. C. Quaedvlieg; E. P. Skoulakis; G. Chrysos; V. Cevher 

2023. 37th Conference on Neural Information Processing Systems (NeurIPS 2023)., New Orlean, USA, December 10-16. 2023.

Alternation makes the adversary weaker in two-player games

V. Cevher; A. Cutkosky; A. Kavis; G. Piliouras; E. P. Skoulakis et al. 

2023.  37th Conference on Neural Information Processing Systems (NeurIPS 2023), New Orlean, USA, December 10-16. 2023.

Initialization Matters: Privacy-Utility Analysis of Overparameterized Neural Networks

J. Ye†; Z. Zhu; F. Liu; R. Shokri; V. Cevher 

2023. 37th Annual Conference on Neural Information Processing Systems, New Orleans, USA, December 10-16. 2023.

Sample Complexity Bounds for Score-Matching: Causal Discovery and Generative Modeling

Z. Zhu; F. Locatello; V. Cevher 

2023. 37th Annual Conference on Neural Information Processing Systems, New Orleans, USA, December 10-16. 2023.

On the Convergence of Encoder-only Shallow Transformers

Y. Wu; F. Liu; G. Chrysos; V. Cevher 

2023. 37th Annual Conference on Neural Information Processing Systems, New Orleans, USA, December 10-16. 2023.

Towards more Practical Threat Models in Artificial Intelligence Security

K. Grosse; L. Bieringer; T. R. Besold; A. Alahi 

2023

Semi Bandit Dynamics in Congestion Games: Convergence to Nash Equilibrium and No-Regret Guarantees.

I. Panageas; E. P. Skoulakis; L. Viano; X. Wang; V. Cevher 

2023. 40th International Conference on Machine Learning (ICML), Honolulu, Hawaii, USA, July, 23-29, 2023.

Benign Overfitting in Deep Neural Networks under Lazy Training

Z. Zhu; F. Liu; G. Chrysos; F. Locatello; V. Cevher 

2023. 40th International Conference on Machine Learning (ICML), Honolulu, Hawaii, USA, July, 23-29, 2023.

What can online reinforcement learning with function approximation benefitfrom general coverage conditions

F. Liu; L. Viano; V. Cevher 

2023. 40th International Conference on Machine Learning (ICML), Honolulu, Hawaii, USA, July, 23-29, 2023.

Out of their minds? Externalist challenges for using AI in forensic psychiatry

G. Starke; A. D’Imperio; M. Ienca 

Frontiers In Psychiatry. 2023-08-24. Vol. 14, p. 1209862. DOI : 10.3389/fpsyt.2023.1209862.

Advancing Computational Chemistry with Stochastic and Artificial Intelligence Approaches

J. Villard / U. Röthlisberger (Dir.)  

Lausanne, EPFL, 2023. 

When do Minimax-fair Learning and Empirical Risk Minimization Coincide?

H. Singh; M. Kleindessner; V. Cevher; R. Chunara; C. Russell 

2023. 40th International Conference on Machine Learning (ICML), Honolulu, Hawaii, USA, July 23-29, 2023.

Federated Learning under Covariate Shifts with Generalization Guarantees

A. Ramezani-Kebrya; F. Liu; T. M. Pethick; G. Chrysos; V. Cevher 

Transactions on Machine Learning Research. 2023. num. 06.

A Multimodal Dataset for Automatic Edge-AI Cough Detection

L. Orlandic; J. P. R. Thevenot; T. Teijeiro; D. Atienza Alonso 

2023.

Regularization of polynomial networks for image recognition

G. Chrysos; B. Wang; J. Deng; V. Cevher 

2023. Computer Vision and Pattern Recognition Conference (CVPR), Vancouver, Canada, 18-22 June, 2023.

Domain Imaging and Switching Dynamics in BaTiO3-Based Photonic Integrated Devices

J. Geler Kremer / P. Hoffmann; S. Abel (Dir.)  

Lausanne, EPFL, 2023. 

Analytical Engines With Context-Rich Processing: Towards Efficient Next-Generation Analytics

V. Sanca; A. Ailamaki 

2023. IEEE 39th International Conference on Data Engineering (ICDE), Anaheim, California, USA, April 3-8, 2023. DOI : 10.1109/ICDE55515.2023.00298.

Distributed Extra-Gradient With Optimal Complexity And Communication Guarantees

A. Ramezani-Kebrya; K. Antonakopoulos; I. Krawczuk; J. Deschenaux; V. Cevher 

2023. 11th International Conference on Learning Representations (ICLR), Kigali, Rwanda, May 1-5, 2023.

Finding Actual Descent Directions For Adversarial Training

F. Latorre; I. Krawczuk; L. T. Dadi; T. M. Pethick; V. Cevher 

2023. 11th International Conference on Learning Representations (ICLR), Kigali, Rwanda, May 1-5, 2023.

DiGress: Discrete Denoising diffusion for graph generation

C. Vignac; I. Krawczuk; A. Siraudin; B. Wang; V. Cevher et al. 

2023. 11th International Conference on Learning Representations (ICLR), Kigali, Rwanda, May 1-5, 2023.

Solving stochastic weak Minty variational inequalities without increasing batch size

T. M. Pethick; O. Fercoq; P. Latafat; P. Patrinos; V. Cevher 

11th International Conference on Learning Representations ICLR2023, Kigali, Rwanda, May 1-5, 2023.

Revisiting adversarial training for the worst-performing class

T. M. Pethick; G. Chrysos; V. Cevher 

Transactions on Machine Learning Research. 2023. 

Towards Robust Monitoring of the Laser Powder Bed Fusion Process based on Acoustic Emission combined with Machine Learning Solutions

R. Drissi Daoudi / R. Logé; K. T. Wasmer (Dir.)  

Lausanne, EPFL, 2023. 

2022

SELFIES and the future of molecular string representations

M. Krenn; Q. Ai; S. Barthel; N. Carson; A. Frei et al. 

Patterns. 2022-09-09. Vol. 3, num. 9, p. 100588. DOI : 10.1016/j.patter.2022.100588.

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration

M. El Helou; S. Süsstrunk 

IEEE Transactions on Image Processing. 2022-01-08. Vol. 31, p. 1-13. DOI : 10.1109/TIP.2022.3143006.

UNDERGRAD: A Universal Black-Box Optimization Method with Almost Dimension-Free Convergence Rate Guarantees

K. Antonakopoulos; D. Q. Vu; V. Cevher; K. Y. Levey 

2022. 39th International Conference on Machine Learning (ICML), Baltimore, Maryland, USA, July 17-23, 2022.

No-regret learning in games with noisy feedback: Faster rates and adaptivity via learning rate separation

Y-G. Hsieh; K. Antonakopoulos; V. Cevher; P. Mertikopoulos 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, USA, November 28 – December 9, 2022.

Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization

A. Kavis; E. P. Skoulakis; K. Antonakopoulos; L. T. Dadi; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, Louisianna, USA, November 28-December 9, 2022.

Extra Newton: A First Approach to Noise-Adaptive Accelerated Second-Order Methods

K. Antonakopoulos; A. Kavis; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, Louisianna, USA, November 28-December 9, 2022.

Beyond Time-Average Convergence: Near-Optimal Uncoupled Online Learning via Clairvoyant Multiplicative Weights Update

G. Piliouras; R. Simm; E. P. Skoulakis 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, Louisianna, USA, November 28-December 9, 2022.

Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a Polynomial Net Study

Y. Wu; Z. Zhu; F. Liu; G. Chrysos; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, USA, November 28 – December 3, 2022.

Generalization Properties of NAS under Activation and Skip Connection Search

Z. Zhu; F. Liu; G. Chrysos; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems – NeurIPS 2022, New Orleans, USA, November 28 – December 3, 2022.

Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)

Z. Zhu; F. Liu; G. Chrysos; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems – NeurIPS 2022, New Orleans, USA, November 28 – December 3, 2022.

On the Double Descent of Random Features Models Trained with SGD

F. Liu; A. J. Suykens; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, USA, November 28 – December 3, 2022.

Understanding Deep Neural Function Approximation in Reinforcement Learning via ϵ-Greedy Exploration

F. Liu; L. Viano; V. Cevher 

2022. Thirty-sixth Conference on Neural Information Processing Systems – NeurIPS 2022, New Orleans, USA, November 28 – December 3, 2022.

Proximal Point Imitation Learning

L. Viano; A. Kamoutsi; G. Neu; I. Krawczuk; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, USA, November 28 – December 3, 2022.

Identifiability and Generalizability from Multiple Experts in Inverse Reinforcement Learning

P. T. Y. Rolland; L. Viano; N. Schürhoff; B. Nikolov; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, USA, November 28 – December 3, 2022.

Sound and Complete Verification of Polynomial Networks

E. Abad Rocamora; M. F. Sahin; F. Liu; G. Chrysos; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, USA, November 28 – December 3, 2022.

Karl Jaspers and artificial neural nets: on the relation of explaining and understanding artificial intelligence in medicine

G. Starke; C. Poppe 

Ethics And Information Technology. 2022-09-01. Vol. 24, num. 3, p. 26. DOI : 10.1007/s10676-022-09650-1.

Score Matching Enables Causal Discovery of Nonlinear Additive Noise Models

P. T. Y. Rolland; V. Cevher; M. Kleindessner; C. Russel; B. Schölkopf et al. 

2022. 38th International Conference on Machine Learning (ICML), Baltimore, Maryland, USA, July 17-23, 2022.

High Probability Bounds for a Class of Nonconvex Algorithms with AdaGrad Stepsize

A. Kavis; K. Levy; V. Cevher 

2022. 10th International Conference on Learning Representations (ICLR), Virtual, April 25-29, 2022.

Controlling the Complexity and Lipschitz Constant improves Polynomial Nets

Z. Zhu; F. Latorre; G. Chrysos; V. Cevher 

2022. 10th International Conference on Learning Representations (ICLR), Virtual, April 25-29, 2022.

The spectral bias of polynomial neural networks

M. Choraria; L. T. Dadi; G. Chrysos; J. Mairal; V. Cevher 

2022. 10th International Conference on Learning Representations (ICLR), Virtual, April 25-29, 2022.

Escaping limit cycles: Global convergence for constrained nonconvex-nonconcave minimax problems

T. M. Pethick; P. Latafat; P. Patrinos; O. Fercoq; V. Cevher 

2022. 10th International Conference on Learning Representations (ICLR 2022), Virtual, April 25-29, 2022.

2021

Local plasticity rules can learn deep representations using self-supervised contrastive predictions

B. A. Illing; J. Ventura; G. Bellec; W. Gerstner 

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Online, December 6-14, 2021.

Collaborative Learning in the Jungle (Decentralized, Byzantine, Heterogeneous, Asynchronous and Nonconvex Learning)

E. M. El Mhamdi; S. Farhadkhani; R. Guerraoui; A. H. A. Guirguis; L. N. Hoang et al. 

2021-12-06. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Virtual, December 6-14, 2021.

What can linearized neural networks actually say about generalization?

G. Ortiz Jimenez; S. M. Moosavi Dezfooli; P. Frossard 

2021-12-06. Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS 2021), Virtual, December 6-14, 2021.

Machine Learning Uncovers Aerosol Size Information From Chemistry and Meteorology to Quantify Potential Cloud-Forming Particles

A. A. Nair; F. Yu; P. Campuzano-Jost; P. J. DeMott; E. J. T. Levin et al. 

Geophysical Research Letters. 2021-11-16. Vol. 48, num. 21, p. e2021GL094133. DOI : 10.1029/2021GL094133.

GARFIELD: System Support for Byzantine Machine Learning (Regular Paper)

R. Guerraoui; A. Guirguis; J. Plassmann; A. Ragot; S. Rouault 

2021-06-21. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Taipei, Taiwan, June 21-24, 2021. p. 39-51. DOI : 10.1109/DSN48987.2021.00021.

Geometry of the Loss Landscape in Overparameterized Neural Networks: Symmetries and Invariances

B. Şimşek; F. Ged; A. Jacot; F. Spadaro; C. Hongler et al. 

2021. 38 th International Conference on Machine Learning (ICML 2021), Virtual, July 18-24, 2021. p. 9722-9732.

Fitting summary statistics of neural data with a differentiable spiking network simulator

G. Bellec; S. Wang; A. Modirshanechi; J. M. Brea; W. Gerstner 

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Online, December 6-14, 2021.

Mixed Nash Equilibria in the Adversarial Examples Game

L. Meunier; M. Scetbon; R. Pinot; J. Atif; Y. Chevaleyre 

2021. 38th International Conference on Machine Learning (ICML 2021), Online, July 18-24, 2021. p. 7677-7687.

A Plug-and-Play Deep Image Prior

Z. Sun; F. Latorre; T. Sanchez; V. Cevher 

2021. International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2021), Toronto, Canada, June 6-11, 2021. DOI : 10.1109/ICASSP39728.2021.9414879.

Sifting through the Noise: Universal First-Order Methods for Stochastic Variational Inequalities

K. Antonakopoulos; T. M. Pethick; A. Kavis; P. Mertikopoulos; V. Cevher 

2021. NeurIPS 2021 : Thirty-fifth Conference on Neural Information Processing Systems, Sydney, Australia [Virtual only], December 6-14, 2021.

Convergence of adaptive algorithms for constrained weakly convex optimization

A. Alacaoglu; Y. Malitskyi; V. Cevher 

2021. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia, December 6-14, 2021.

STORM+: Fully Adaptive SGD with Momentum for Nonconvex Optimization

K. Levy; A. Kavis; V. Cevher 

2021. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia, December 6-14, 2021.

A first-order primal-dual method with adaptivity to local smoothness

M-L. Vladarean; Y. Malitsky; V. Cevher 

2021. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia, December 6-14, 2021.

Robust Inverse Reinforcement Learning under Transition Dynamics Mismatch

L. Viano; Y-T. Huang; K. Parameswaran; A. Weller; V. Cevher 

2021. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia, December 6-14, 2021.

The Effect of the Intrinsic Dimension on the Generalization of Quadratic Classifiers

F. Latorre; L. T. Dadi; P. T. Y. Rolland; V. Cevher 

2021. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia, December 6-14, 2021.

Subquadratic Overparameterization for Shallow Neural Networks

C. Song; A. Ramezani-Kebrya; T. Pethick; A. Eftekhari; V. Cevher 

2021. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia, December 6-14, 2021.

Regret Minimization in Stochastic Non-Convex Learning via a Proximal-Gradient Approach

N. Hallak; P. Mertikopoulos; V. Cevher 

2021-01-01. International Conference on Machine Learning (ICML), ELECTR NETWORK, Jul 18-24, 2021.

Critical Parameters for Scalable Distributed Learning with Large Batches and Asynchronous Updates

S. U. Stich; A. Mohtashami; M. Jaggi 

2021. 24th International Conference on Artificial Intelligence and Statistics (AISTATS), Virtual, April 13-15, 2021.

Lifelong Machine Learning with Data Efficiency and Knowledge Retention

F. Mi / B. Faltings (Dir.)  

Lausanne, EPFL, 2021. 

The Limits of Min-Max Optimization Algorithms: Convergence to Spurious Non-Critical Sets

Y-P. Hsieh; P. Mertikopoulos; V. Cevher 

2021. 38th International Conference on Machine Learning (ICML 2021), Online, July 18-24, 2021. p. 4337-4348.

2020

FeGAN: Scaling Distributed GANs

R. Guerraoui; A. Guirguis; A-M. Kermarrec; E. L. Merrer 

2020-12-10. 21st International Middleware Conference, Delft, Netherlands, December 7-11, 2020. p. 193-206. DOI : 10.1145/3423211.3425688.

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

K. Parameswaran; Y-T. Huang; Y-P. Hsieh; P. T. Y. Rolland; C. Shi et al. 

2020-11-05

Genuinely Distributed Byzantine Machine Learning

E. M. El Mhamdi; R. Guerraoui; A. H. A. Guirguis; L. N. Hoang; S. L. A. Rouault 

2020-08-03. The ACM Symposium on Principles of Distributed Computing (PODC), Salerno, Italy, August 3–7, 2020. DOI : 10.1145/3382734.3405695.

Lipschitz constant estimation for Neural Networks via sparse polynomial optimization

F. Latorre; P. T. Y. Rolland; V. Cevher 

2020-04-26. 8th International Conference on Learning Representations, Addis Ababa, ETHIOPIA, April 26-30, 2020.

On the Almost Sure Convergence of Stochastic Gradient Descent in Non-Convex Problems

P. Mertikopoulos; N. Hallak; A. Kavis; V. Cevher 

2020. 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Virtual, December 6-12, 2020.

A Linearly Convergent Algorithm for Decentralized Optimization: Sending Less Bits for Free!

D. Kovalev; A. Koloskova; M. Jaggi; P. Richtarik; U. S. Sitch 

2020. 24th International Conference on Artificial Intelligence and Statistics (AISTATS), Virtual, April 13-15, 2021.

Practical Low-Rank Communication Compression in Decentralized Deep Learning

T. Vogels; S. P. R. Karimireddy; M. Jaggi 

2020. NeurIPS 2020 – Advances in Neural Information Processing Systems, Virtual, December 6-12, 2020.

Ensemble Distillation for Robust Model Fusion in Federated Learning

T. Lin; L. Kong; S. U. Stich; M. Jaggi 

2020. NeurIPS 2020 – Advances in Neural Information Processing Systems, Virtual, April 13-15, 2021.

Model Fusion via Optimal Transport

S. P. Singh; M. Jaggi 

2020. NeurIPS 2020 – Advances in Neural Information Processing Systems, Virtual, April 13-15, 2021.

Extrapolation for Large-batch Training in Deep Learning

T. Lin; L. Kong; S. U. Stich; M. Jaggi 

2020. ICML 2020 37th International Conference on Machine Learning, Virtual, July 13-18, 2020.

A Unified Theory of Decentralized SGD with Changing Topology and Local Updates

A. Koloskova; N. Loizou; S. Boreiri; M. Jaggi; S. U. Stich 

2020. 37th International Conference on Machine Learning (ICML 2020), Virtual, July 13-18, 2020.

Detection of Similar Languages and Dialects Using Deep Supervised Autoencoders

S. Parida; E. Villatoro-Tello; S. Kumar; M. Fabien; P. Motlicek 

2020. 17th International Conference on Natural Language Processing, 1-7 December 2020. p. 362–367.

BertAA: BERT fine-tuning for Authorship Attribution

M. Fabien; E. Villatoro-Tello; P. Motlicek; S. Parida 

2020. 17th International Conference on Natural Language Processing, 1-7 December 2020. p. 127–137.

Vulnerability Analysis of Face Morphing Attacks from Landmarks and Generative Adversarial Networks

E. Sarkar; P. Korshunov; L. Colbois; S. Marcel 

2020

//www.idiap.ch/en/dataset/frgc-morphs.

//www.idiap.ch/en/dataset/frgc-morphs.

UCLID-Net: Single View Reconstruction in Object Space

B. Guillard; E. Remelli; P. Fua 

2020. 34th Conference on Neural Information Processing Systems, Virtual, December 6-12, 2020.

DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation

A. Carlier; M. Danelljan; A. Alahi; R. Timofte 

2020-09-29. NeurIPS 2020 34th Conference on Neural Information Processing Systems, Vancouver, Canada, December 6-12, 2020.

Neural Anisotropy Directions

G. Ortiz Jimenez; A. Modas; S. M. Moosavi Dezfooli; P. Frossard 

2020. NeurIPS 2020 34th Conference on Neural Information Processing Systems, Vancouver, Canada, December 6-12, 2020.

Hold me tight! Influence of discriminative features on deep network boundaries

G. Ortiz Jimenez; A. Modas; S. M. Moosavi Dezfooli; P. Frossard 

2020. Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS 2020), [Virtual only], December 6-12, 2020.

Conditional gradient methods for stochastically constrained convex minimization

M-L. Vladarean; A. Alacaoglu; Y-P. Hsieh; V. Cevher 

2020. 37th International Conference on Machine Learning (ICML), virtual, July 12-18, 2020.

Efficient Proximal Mapping of the 1-path-norm of Shallow Networks

F. Latorre; P. T. Y. Rolland; S. N. Hallak; V. Cevher 

2020. 37th International Conference on Machine Learning (ICML), Virtual, July 13-18, 2020.