Recherche

La recherche joue un rôle majeur dans le domaine du Machine Learning. Avec des publications de premier ordre chaque année, l’EPFL jouit d’une excellente réputation.

2023

Visual question answering from another perspective: CLEVR mental rotation tests *

C. Beckham; M. Weiss; F. Golemo; S. Honari; D. Nowrouzezahrai et al. 

Pattern Recognition. 2023-04-01. Vol. 136, p. 109209. DOI : 10.1016/j.patcog.2022.109209.

Trusting the Explainers: Teacher Validation of Explainable Artificial Intelligence for Course Design

V. Swamy; S. Du; M. Marras; T. Käser 

2023-03-13. LAK 2023: The 13th International Learning Analytics and Knowledge Conference, Arlington, Texas, USA, March 13-17, 2023. DOI : 10.1145/3576050.3576147.

End-to-end learned early classification of time series for in-season crop type mapping

M. Rußwurm; N. Courty; R. Emonet; S. Lefèvre; D. Tuia et al. 

ISPRS Journal of Photogrammetry and Remote Sensing. 2023-01-25. Vol. 196, p. 445-456. DOI : 10.1016/j.isprsjprs.2022.12.016.

Predicting the liveability of Dutch cities with aerial images and semantic intermediate concepts

A. Levering; D. Marcos; J. van Vliet; D. Tuia 

Remote Sensing of Environment. 2023-01-25. Vol. 287, p. 113454. DOI : 10.1016/j.rse.2023.113454.

Single-Molecule Peptide Identification Using Fluorescence Blinking Fingerprints

S. Puntener; P. Rivera-Fuentes 

Journal Of The American Chemical Society. 2023-01-05. DOI : 10.1021/jacs.2c12561.

Deep Learning for Localized-Haptic Feedback in Tactile Surfaces

C. Hernandez Mejia / Y. Perriard (Dir.)  

Lausanne, EPFL, 2023. 

Sparse Autoencoders for Speech Modeling and Recognition

S. H. Kabil / H. Bourlard (Dir.)  

Lausanne, EPFL, 2023. 

De novo designed proteins: a study in engineering novel folds and functions

A. K. Van Hall-Beauvais / B. E. Ferreira De Sousa Correia (Dir.)  

Lausanne, EPFL, 2023. 

Solving Non-linear Kolmogorov Equations in Large Dimensions by Using Deep Learning: A Numerical Comparison of Discretization Schemes

R. Marino; N. Macris 

Journal Of Scientific Computing. 2023-01-01. Vol. 94, num. 1, p. 8. DOI : 10.1007/s10915-022-02044-x.

Brain microstructural and functional MRI: developments and application to a rat model of Alzheimer’s disease

Y. Diao / R. Gruetter; I. O. Jelescu (Dir.)  

Lausanne, EPFL, 2023. 

cgNA+: A sequence-dependent coarse-grain model of double-stranded nucleic acids

R. Sharma / J. Maddocks (Dir.)  

Lausanne, EPFL, 2023. 

Gradient-Based Quantification of Epistemic Uncertainty for Deep Object Detectors

T. Riedlinger; M. Rottmann; M. Schubert; H. Gottschalk 

2023. IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, Hawaii, USA, January 3-7, 2023.

Automated Detection of Label Errors in Semantic Segmentation Datasets via Deep Learning and Uncertainty Quantification

M. Rottmann; M. Reese 

2023. IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, Hawaii, USA, January 3-7, 2023.

2022

RayTran: 3D Pose Estimation and Shape Reconstruction of Multiple Objects from Videos with Ray-Traced Transformers

M. J. Tyszkiewicz; K-K. Maninis; S. Popov; V. Ferrari 

2022-12-12. European Conference on Computer Vision, Tel-Aviv, Israel, October 23-27, 2022. p. 211-228. DOI : 10.1007/978-3-031-20080-9_13.

ALPINE: Analog In-Memory Acceleration with Tight Processor Integration for Deep Learning

J. A. H. Klein; I. Boybat; Y. M. Qureshi; M. Dazzi; A. S. J. Levisse et al. 

IEEE Transactions on Computers (TC). 2022-12-09. DOI : 10.1109/TC.2022.3230285.

Time-encoded multiplication-free spiking neural networks: application to data classification tasks

A. Stanojevic; G. Cherubini; S. Wozniak; E. Eleftheriou 

Neural Computing & Applications. 2022-12-05. DOI : 10.1007/s00521-022-07910-1.

Fine-grained population mapping from coarse census counts and open geodata

N. Metzger; J. E. Vargas-Muñoz; R. C. Daudt; B. Kellenberger; T. T-T. Whelan et al. 

Scientific Reports. 2022-12-01. Vol. 12, num. 1. DOI : 10.1038/s41598-022-24495-w.

Machine-learning accelerated identification of exfoliable two-dimensional materials

M. Tohidi Vahdat; K. Varoon Agrawal; G. Pizzi 

Machine Learning-Science And Technology. 2022-12-01. Vol. 3, num. 4, p. 045014. DOI : 10.1088/2632-2153/ac9bca.

Modeling Object Dissimilarity for Deep Saliency Prediction

B. Aydemir; D. Bhattacharjee; T. Zhang; S. Kim; M. Salzmann et al. 

Transactions on Machine Learning Research. 2022-11-24. 

Deep learning-based galaxy image deconvolution

U. Akhaury; J-L. Starck; P. Jablonka; F. Courbin; K. Michalewicz 

Frontiers In Astronomy And Space Sciences. 2022-11-18. Vol. 9, p. 1001043. DOI : 10.3389/fspas.2022.1001043.

Assessment of idiopathic inflammatory myopathy using a deep learning method for muscle T2 mapping segmentation

F. Wang; S. Zhou; B. Hou; F. Santini; L. Yuan et al. 

European Radiology. 2022-11-18. DOI : 10.1007/s00330-022-09254-9.

Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

J. Sauder; M. Genzel; P. Jung 

IEEE Journal on Selected Areas in Information Theory. 2022-11-11.  p. 1-1. DOI : 10.1109/JSAIT.2022.3221644.

Generalization of an Encoder-Decoder LSTM model for flood prediction in ungauged catchments

Y. Zhang; S. Ragettli; P. Molnar; O. Fink; N. Peleg 

Journal Of Hydrology. 2022-11-01. Vol. 614, p. 128577. DOI : 10.1016/j.jhydrol.2022.128577.

Locality defeats the curse of dimensionality in convolutional teacher-student scenarios*

A. Favero; F. Cagnetta; M. Wyart 

Journal Of Statistical Mechanics-Theory And Experiment. 2022-11-01. Vol. 2022, num. 11, p. 114012. DOI : 10.1088/1742-5468/ac98ab.

Relative stability toward diffeomorphisms indicates performance in deep nets

L. Petrini; A. Favero; M. Geiger; M. Wyart 

Journal Of Statistical Mechanics-Theory And Experiment. 2022-11-01. Vol. 2022, num. 11, p. 114013. DOI : 10.1088/1742-5468/ac98ac.

Artificial Intelligence Based Methods for Smart and Sustainable Urban Planning: A Systematic Survey

S. C. K. Tekouabou; E. B. Diop; R. Azmi; J. Chenal 

Archives Of Computational Methods In Engineering. 2022-11-01. DOI : 10.1007/s11831-022-09844-2.

CovNet: Covariance networks for functional data on multidimensional domains

S. Sarkar; V. M. Panaretos 

Journal Of The Royal Statistical Society Series B-Statistical Methodology. 2022-10-31. DOI : 10.1111/rssb.12551.

High Resolution Interferometric Imaging of Liquid-Solid Interfaces with HOTNNET

R. Kaviani; J. M. Kolinski 

Experimental Mechanics. 2022-10-28. DOI : 10.1007/s11340-022-00912-z.

Annotation of spatially resolved single-cell data with STELLAR

M. Brbić; K. Cao; J. W. Hickey; Y. Tan; M. P. Snyder et al. 

Nature Methods. 2022-10-24. Vol. 19, num. 11, p. 1411-1418. DOI : 10.1038/s41592-022-01651-8.

Misplaced Trust and Distrust: How Not to Engage with Medical Artificial Intelligence

G. Starke; M. Ienca 

Cambridge Quarterly Of Healthcare Ethics. 2022-10-20.  p. PII S0963180122000445. DOI : 10.1017/S0963180122000445.

On combining denoising with learning-based image decoding

L. Larigauderie; M. Testolina; T. Ebrahimi 

2022-10-03. Applications of Digital Image Processing XLV, San Diego, August, 2022. DOI : 10.1117/12.2636682.

A novel assessment framework for learning-based deepfake detectors in realistic conditions

Y. Lu; T. Ebrahimi 

2022-10-03. SPIE Optical Engineering + Applications, San Diego, California, USA, August 21-25, 2022. p. 23. DOI : 10.1117/12.2636683.

Improved spiking neural network for intershaft bearing fault diagnosis

J. Wang; T. Li; C. Sun; R. Yan; X. Chen 

Journal Of Manufacturing Systems. 2022-10-01. Vol. 65, p. 208-219. DOI : 10.1016/j.jmsy.2022.09.003.

CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion

G. Bellegarda; A. Ijspeert 

Ieee Robotics And Automation Letters. 2022-10-01. Vol. 7, num. 4, p. 12547-12554. DOI : 10.1109/LRA.2022.3218167.

Deep learning-based monitoring of laser powder bed fusion process on variable time-scales using heterogeneous sensing and operando X-ray radiography guidance

V. Pandiyan; G. Masinelli; N. Claire; Tri Le-Quang; M. Hamidi-Nasab et al. 

Additive Manufacturing. 2022-10-01. Vol. 58, p. 103007. DOI : 10.1016/j.addma.2022.103007.

Roadmap on wavefront shaping and deep imaging in complex media

S. Gigan; O. Katz; H. B. de Aguiar; E. R. Andresen; A. Aubry et al. 

Journal Of Physics-Photonics. 2022-10-01. Vol. 4, num. 4, p. 042501. DOI : 10.1088/2515-7647/ac76f9.

In vivo magnetic resonance P-31-Spectral Analysis With Neural Networks: 31P-SPAWNN

J. Songeon; S. Courvoisier; L. Xin; T. Agius; O. Dabrowski et al. 

Magnetic Resonance In Medicine. 2022-09-25. DOI : 10.1002/mrm.29446.

M2D2: Maximum-Mean-Discrepancy Decoder for Temporal Localization of Epileptic Brain Activities

A. Amirshahi; A. Thomas; A. Aminifar; T. Rosing; D. Atienza Alonso 

IEEE Journal of Biomedical and Health Informatics (JBHI). 2022-09-22. DOI : 10.1109/jbhi.2022.3208780.

On Triangulation as a Form of Self-Supervision for 3D Human Pose Estimation

S. K. Roy; L. Citraro; S. Honari; P. Fua 

2022-09-12. 10th International Conference on 3D Vision 2022 (3DV), Prague, Czechia, September 12-15, 2022.

Mapping forest in the Swiss Alps treeline ecotone with explainable deep learning

T-A. Nguyen; B. Kellenberger; D. Tuia 

Remote Sensing of Environment. 2022-09-02. Vol. 281, p. 113217. DOI : 10.1016/j.rse.2022.113217.

WikiArtVectors: Style and Color Representations of Artworks for Cultural Analysis via Information Theoretic Measures

B. S. Desikan; H. Shimao; H. Miton 

Entropy. 2022-09-01. Vol. 24, num. 9, p. 1175. DOI : 10.3390/e24091175.

Auto-tuning deep forest for shear stiffness prediction of headed stud connectors

X. Wang; H. Liu; Y. Liu 

Structures. 2022-09-01. Vol. 43, p. 1463-1477. DOI : 10.1016/j.istruc.2022.07.054.

Generating LOD3 building models from structure-from-motion and semantic segmentation

B. G. Pantoja-Rosero; R. Achanta; M. Kozinski; P. Fua; F. Perez-Cruz et al. 

Automation In Construction. 2022-09-01. Vol. 141, p. 104430. DOI : 10.1016/j.autcon.2022.104430.

Karl Jaspers and artificial neural nets: on the relation of explaining and understanding artificial intelligence in medicine

G. Starke; C. Poppe 

Ethics And Information Technology. 2022-09-01. Vol. 24, num. 3, p. 26. DOI : 10.1007/s10676-022-09650-1.

Time-delay estimation in unresolved lensed quasars

L. Biggio; A. Domi; S. Tosi; G. Vernardos; D. Ricci et al. 

Monthly Notices Of The Royal Astronomical Society. 2022-08-19. Vol. 515, num. 4, p. 5665-5672. DOI : 10.1093/mnras/stac2034.

Multiscale light-sheet organoid imaging framework

G. de Medeiros; R. Ortiz; P. Strnad; A. Boni; F. Moos et al. 

Nature Communications. 2022-08-18. Vol. 13, num. 1, p. 4864. DOI : 10.1038/s41467-022-32465-z.

TOPO-Loss for continuity-preserving crack detection using deep learning

B. G. Pantoja-Rosero; D. Oner; M. Kozinski; R. Achanta; P. Fua et al. 

Construction And Building Materials. 2022-08-15. Vol. 344, p. 128264. DOI : 10.1016/j.conbuildmat.2022.128264.

Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning

B. Denizdurduran; H. Markram; M-O. Gewaltig 

Biological Cybernetics. 2022-08-11. DOI : 10.1007/s00422-022-00940-x.

Deep learning approaches for conformational flexibility and switching properties in protein design

L. S. P. Rudden; M. Hijazi; P. Barth 

Frontiers in Molecular Biosciences. 2022-08-10. Vol. 9, p. 928534. DOI : 10.3389/fmolb.2022.928534.

Review Of Particle Physics

R. L. Workman; V. D. Burkert; V. Crede; E. Klempt; U. Thoma et al. 

Progress Of Theoretical And Experimental Physics. 2022-08-08. Vol. 2022, num. 8, p. 083C01. DOI : 10.1093/ptep/ptac097.

On the robustness of randomized classifiers to adversarial examples

R. Pinot; L. Meunier; F. Yger; C. Gouy-Pailler; Y. Chevaleyre et al. 

Machine Learning. 2022-08-02. DOI : 10.1007/s10994-022-06216-6.

Reconstructing Kinetic Models for Dynamical Studies of Metabolism using Generative Adversarial Networks

S. Choudhury; M. Moret; P. Salvy; D. Weilandt; V. Hatzimanikatis et al. 

Nature Machine Intelligence. 2022-08-01. Vol. 4, num. 8, p. 710-719. DOI : 10.1038/s42256-022-00519-y.

A Compressor Off-Line Washing Schedule Optimization Method With a LSTM Deep Learning Model Predicting the Fouling Trend

J. Chen; X. Tang; J. Lu; H. Zhang 

Journal Of Engineering For Gas Turbines And Power-Transactions Of The Asme. 2022-08-01. Vol. 144, num. 8, p. 081005. DOI : 10.1115/1.4054748.

A prescriptive Dirichlet power allocation policy with deep reinforcement learning

Y. Tian; M. Han; C. Kulkarni; O. Fink 

Reliability Engineering & System Safety. 2022-08-01. Vol. 224, p. 108529. DOI : 10.1016/j.ress.2022.108529.

Scaffolding protein functional sites using deep learning

J. Wang; S. Lisanza; D. Juergens; D. Tischer; J. L. Watson et al. 

Science. 2022-07-22. Vol. 377, num. 6604, p. 387-394. DOI : 10.1126/science.abn2100.

Adjusting the Ground Truth Annotations for Connectivity-Based Learning to Delineate

D. Oner; M. Kozinski; L. Citraro; P. Fua 

IEEE Transactions on Medical Imaging. 2022-07-21. Vol. 41, num. 12, p. 3675-3685. DOI : 10.1109/TMI.2022.3193072.

GANs for All: Supporting Fun and Intuitive Exploration of GAN Latent Spaces

W. Jiang; R. L. Davis; K. G. Kim; P. Dillenbourg 

2022-07-20. NeurIPS 2021 Competitions and Demonstrations Track, Online , December 6-14, 2022. p. 292-296.

ShapeNet: Shape constraint for galaxy image deconvolution

F. Nammour; U. Akhaury; J. N. Girard; F. Lanusse; F. Sureau et al. 

Astronomy & Astrophysics. 2022-07-19. Vol. 663, p. A69. DOI : 10.1051/0004-6361/202142626.

Combining computational fluid dynamics and neural networks to characterize microclimate extremes: Learning the complex interactions between meso-climate and urban morphology

K. Javanroodi; V. M. Nik; M. G. Giometto; J-L. Scartezzini 

Science Of The Total Environment. 2022-07-10. Vol. 829, p. 154223. DOI : 10.1016/j.scitotenv.2022.154223.

Searching for visual patterns in a children’s drawings collection

R. Annapureddy 

2022-07-08.

Depth Estimation for Egocentric Rehabilitation Monitoring Using Deep Learning Algorithms

Y. Izadmehr; H. F. Satizabal; K. Aminian; A. Perez-Uribe 

Applied Sciences-Basel. 2022-07-01. Vol. 12, num. 13, p. 6578. DOI : 10.3390/app12136578.

Robust Classification Using Contractive Hamiltonian Neural ODEs

M. Zakwan; L. Xu; G. Ferrari-Trecate 

Ieee Control Systems Letters. 2022-06-28. Vol. 7, p. 145-150. DOI : 10.1109/LCSYS.2022.3186959.

Toward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural Networks

J. Liu; J. Lan; X. He 

Journal Of Physical Chemistry A. 2022-06-23. Vol. 126, num. 24, p. 3926-3936. DOI : 10.1021/acs.jpca.2c00601.

Autoencoders reloaded

H. Bourlard; S. H. Kabil 

Biological Cybernetics. 2022-06-21. DOI : 10.1007/s00422-022-00937-6.

Dynamic Probabilistic Pruning: A General Framework for Hardware-Constrained Pruning at Different Granularities

L. Gonzalez-Carabarin; I. A. M. Huijben; B. Veeling; A. Schmid; R. J. G. van Sloun 

Ieee Transactions On Neural Networks And Learning Systems. 2022-06-08. DOI : 10.1109/TNNLS.2022.3176809.

Roadmap on Machine learning in electronic structure

H. J. Kulik; T. Hammerschmidt; J. Schmidt; S. Botti; M. A. L. Marques et al. 

Electronic Structure. 2022-06-01. Vol. 4, num. 2, p. 023004. DOI : 10.1088/2516-1075/ac572f.

PDE-Aware Deep Learning for Inverse Problems in Cardiac Electrophysiology

R. Tenderini; S. Pagani; A. Quarteroni; S. Deparis 

SIAM Journal on Scientific Computing. 2022-06-01. Vol. 44, num. 3, p. B605-B639. DOI : 10.1137/21M1438529.

Exploring quantum perceptron and quantum neural network structures with a teacher-student scheme

A. Gratsea; P. Huembeli 

Quantum Machine Intelligence. 2022-06-01. Vol. 4, num. 1, p. 2. DOI : 10.1007/s42484-021-00058-6.

A Fetal Brain magnetic resonance Acquisition Numerical phantom (FaBiAN)

H. Lajous; C. W. Roy; T. Hilbert; P. de Dumast; S. Tourbier et al. 

Scientific Reports. 2022-05-23. Vol. 12, num. 1, p. 8682. DOI : 10.1038/s41598-022-10335-4.

Latent Space Slicing for Enhanced Entropy Modeling in Learning-Based Point Cloud Geometry Compression

N. Frank; D. Lazzarotto; T. Ebrahimi 

2022-05-22. IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, May 22-27, 2022. p. 4878-4882. DOI : 10.1109/ICASSP43922.2022.9747496.

Deep learning exotic hadrons

L. Ng; L. Bibrzycki; J. Nys; C. Fernandez-Ramirez; A. Pilloni et al. 

Physical Review D. 2022-05-17. Vol. 105, num. 9, p. L091501. DOI : 10.1103/PhysRevD.105.L091501.

Electromagnetic wave-based extreme deep learning with nonlinear time-Floquet entanglement

A. Momeni; R. Fleury 

Nature Communications. 2022-05-12. Vol. 13, num. 2651, p. 1-11. DOI : 10.1038/s41467-022-30297-5.

The Food Recognition Benchmark: Using Deep Learning to Recognize Food in Images

S. P. Mohanty; G. Singhal; E. A. Scuccimarra; D. Kebaili; H. Heritier et al. 

Frontiers In Nutrition. 2022-05-06. Vol. 9, p. 875143. DOI : 10.3389/fnut.2022.875143.

Finding quadruply imaged quasars with machine learning – I. Methods

A. Akhazhanov; A. More; A. Amini; C. Hazlett; T. Treu et al. 

Monthly Notices Of The Royal Astronomical Society. 2022-05-05. Vol. 513, num. 2, p. 2407-2421. DOI : 10.1093/mnras/stac925.

E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials

S. Batzner; A. Musaelian; L. Sun; M. Geiger; J. P. Mailoa et al. 

Nature Communications. 2022-05-04. Vol. 13, num. 1, p. 2453. DOI : 10.1038/s41467-022-29939-5.

Predicting chemical hazard across taxa through machine learning

J. Wu; S. D’Ambrosi; L. Ammann; J. Stadnicka-Michalak; K. Schirmer et al. 

Environment International. 2022-05-01. Vol. 163, p. 107184. DOI : 10.1016/j.envint.2022.107184.

Deep transfer learning of additive manufacturing mechanisms across materials in metal-based laser powder bed fusion process

V. Pandiyan; R. Drissi-Daoudi; S. Shevchik; G. Masinelli; Tri Le-Quang et al. 

Journal Of Materials Processing Technology. 2022-05-01. Vol. 303, p. 117531. DOI : 10.1016/j.jmatprotec.2022.117531.

An occupant-centric control framework for balancing comfort, energy use and hygiene in hot water systems: A model-free reinforcement learning approach

A. Heidari; F. Marechal; D. Khovalyg 

Applied Energy. 2022-04-15. Vol. 312, p. 118833. DOI : 10.1016/j.apenergy.2022.118833.

CNN-Based Image Reconstruction Method for Ultrafast Ultrasound Imaging

D. Perdios; M. Vonlanthen; F. Martinez; M. Arditi; J-P. Thiran 

Ieee Transactions On Ultrasonics Ferroelectrics And Frequency Control. 2022-04-01. Vol. 69, num. 4, p. 1154-1168. DOI : 10.1109/TUFFC.2021.3131383.

Impact and implications of mixed plaque class in automated characterization of complex atherosclerotic lesions

M. L. Olender; Y. Niu; D. Marlevi; E. R. Edelman; F. R. Nezami 

Computerized Medical Imaging And Graphics. 2022-04-01. Vol. 97, p. 102051. DOI : 10.1016/j.compmedimag.2022.102051.

Exploiting environmental signals to enable policy correlation in large-scale decentralized systems

P. Danassis; Z. D. Erden; B. Faltings 

Autonomous Agents And Multi-Agent Systems. 2022-04-01. Vol. 36, num. 1, p. 13. DOI : 10.1007/s10458-021-09541-7.

Multiple sclerosis cortical lesion detection with deep learning at ultra-high-field MRI

F. La Rosa; E. S. Beck; J. Maranzano; R-A. Todea; P. van Gelderen et al. 

Nmr In Biomedicine. 2022-03-31.  p. e4730. DOI : 10.1002/nbm.4730.

Wind-Topo: Downscaling near-surface wind fields to high-resolution topography in highly complex terrain with deep learning

J. Dujardin; M. Lehning 

Quarterly Journal Of The Royal Meteorological Society. 2022-03-29. DOI : 10.1002/qj.4265.

Learnable filter-banks for CNN-based audio applications

H. Peic Tukuljac; B. Ricaud; N. Aspert; L. Colbois 

2022-03-28. 5th Northern Lights Deep Learning Conference (NLDL 2022), Tromsø, Norway, January 10-12, 2022. DOI : 10.7557/18.6279.

A Deep-Learning Approach to Side-Channel Based CPU Disassembly at Design Time

H. Fendri; M. Macchetti; J. Perrine; M. Stojilovic 

2022-03-22. 25th Design, Automation and Test in Europe Conference and Exhibition (DATE), Antwerp, Belgium [Virtual], March 14-23, 2022. p. 670-675. DOI : 10.23919/DATE54114.2022.9774531.

Latent Mechanisms of Polarization Switching from In Situ Electron Microscopy Observations

R. Ignatans; M. Ziatdinov; R. Vasudevan; M. Valleti; V. Tileli et al. 

Advanced Functional Materials. 2022-03-04.  p. 2100271. DOI : 10.1002/adfm.202100271.

Statistical distortion of supervised learning predictions in optical microscopy induced by image compression

E. Pomarico; C. Schmidt; F. Chays; D. Nguyen; A. Planchette et al. 

Scientific Reports. 2022-03-02. Vol. 12, num. 1, p. 3464. DOI : 10.1038/s41598-022-07445-4.

Learning Disentangled Behaviour Patterns for Wearable-based Human Activity Recognition

J. Su; Z. Wen; T. Lin; Y. Guan 

Proceedings Of The Acm On Interactive Mobile Wearable And Ubiquitous Technologies-Imwut. 2022-03-01. Vol. 6, num. 1. DOI : 10.1145/3517252.

A Practical Guide to Supervised Deep Learning for Bioimage Analysis: Challenges and good practices

V. Uhlmann; L. Donati; D. Sage 

Ieee Signal Processing Magazine. 2022-03-01. Vol. 39, num. 2, p. 73-86. DOI : 10.1109/MSP.2021.3123589.

Semi-supervised Active Salient Object Detection

Y. Lv; B. Liu; J. Zhang; Y. Dai; A. Li et al. 

Pattern Recognition. 2022-03-01. Vol. 123, p. 108364. DOI : 10.1016/j.patcog.2021.108364.

Impulsive noise removal via a blind CNN enhanced by an iterative post-processing

S. Sadrizadeh; H. Otroshi-Shahreza; F. Marvasti 

Signal Processing. 2022-03-01. Vol. 192, p. 108378. DOI : 10.1016/j.sigpro.2021.108378.

Editorial: Computational Neuroimage Analysis Tools for Brain (Diseases) Biomarkers

D. M. Sima; M. Bach Cuadra; T. B. Dyrby; K. Van Leemput 

Frontiers In Neuroscience. 2022-02-18. Vol. 16, p. 841807. DOI : 10.3389/fnins.2022.841807.

Magnetic control of tokamak plasmas through deep reinforcement learning

J. Degrave; F. Felici; J. Buchli; M. Neunert; B. Tracey et al. 

Nature. 2022-02-16. Vol. 602, num. 7897, p. 414-419. DOI : 10.1038/s41586-021-04301-9.

High-speed identification of suspended carbon nanotubes using Raman spectroscopy and deep learning

J. Zhang; M. L. Perrin; L. Barba; J. Overbeck; S. Jung et al. 

Microsystems & Nanoengineering. 2022-02-10. Vol. 8, num. 1, p. 19. DOI : 10.1038/s41378-022-00350-w.

Automatic table detection and classification in large-scale newspaper archives

A. Vernet 

2022-02-08.

Photo-astrometric distances, extinctions, and astrophysical parameters for Gaia EDR3 stars brighter than G=18.5

F. Anders; A. Khalatyan; A. B. A. Queiroz; C. Chiappini; J. Ardevol et al. 

Astronomy & Astrophysics. 2022-02-07. Vol. 658, p. A91. DOI : 10.1051/0004-6361/202142369.

Deep Learning Detection of GPS Spoofing

O. Jullian; B. Otero; M. Stojilović; J. J. Costa; J. Verdú et al. 

2022-02-02. 7th International Conference Machine Learning, Optimization, and Data Science (LOD 2021), Grasmere, UK, October 4-8, 2021. p. 527-540. DOI : 10.1007/978-3-030-95467-3_38.

Deep MinCut: Learning Node Embeddings by Detecting Communities

C. T. Duong; T. T. Nguyen; T-D. Hoang; H. Yin; M. Weidlich et al. 

Pattern Recognition. 2022-02-01. Vol. 134, p. 109126. DOI : 10.1016/j.patcog.2022.109126.

Fast and accurate decoding of finger movements from ECoG through Riemannian features and modern machine learning techniques

L. Yao; B. Zhu; M. Shoaran 

Journal Of Neural Engineering. 2022-02-01. Vol. 19, num. 1, p. 016037. DOI : 10.1088/1741-2552/ac4ed1.

Align, then memorise: the dynamics of learning with feedback alignment*

M. Refinetti; S. D’Ascoli; R. Ohana; S. Goldt 

Journal Of Physics A-Mathematical And Theoretical. 2022-01-28. Vol. 55, num. 4, p. 044002. DOI : 10.1088/1751-8121/ac411b.