Condensed Matter Physics

Laboratory for Topological Matter (LTM)

Gabriel Aeppli

Aeppli’s scientific research is currently focused on the applications of nanotechnology and photon science to biomedicine and quantum information processing. Projects include the development of optical and microwave tools for medical diagnostics and pharmacology, where we are interested in new drug-target and antibody-antigen binding assays.


Laboratory of the Physics of Nanostructured Materials (LPMN)

Jean-Philippe Ansermet

Involvement since the early days of spintronics, recognition for his work on giant magnetoresistance (CPP-GMR).Magnetic relaxation of single nanostructures.


Laboratory of Quantum Physics, Topology and Correlations (LQP)

Mitali Banerjee

The research of Mitali Banerjee focuses on the understanding of fundamentals of emergent quantum many-body physics. Strong correlations in solid-state systems often make the regular electrons behave differently, and sometimes the resultant quantum states host quasi-particles that are rather immune to local environmental disturbance. These quasi-particles are fundamentally different from electrons or any other fundamental particles.


Laboratory of Nanostructures at Surfaces (LNS)

Harald Brune

Professor Harald Brune’s research program focuses on the exploration of the novel physical and chemical properties arising when metals shrink to the nanoscale.


Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES)

Fabrizio Carbone

Femtosecond dynamics of Cooper pairs condensate in superconductors, melting dynamics of quantum solids, dynamics of surface electric fields in nanostructures and membranes.


Spin Orbit Interaction Spectroscopy (SOIS)

Hugo Dil

Our research program focusses on the study of the effects of spin-orbit interaction (SOI) on the electronic structure of a variety of materials. Most prominent examples are topological insulators and Rashba systems where the SOI lifts the spin degeneracy, making these materials promising candidates for spintronics applications. Our experimental method of choice is spin- and angle-resolved photoemission using synchrotron radiation.


Laboratory of Nanostructures and Novel Electronic Materials (LPMC)

László Forró

Synthesis, physical properties and manipulation of carbon nanostuctures and nanostucturedarrays.- Mechanical properties of carbon nanotubes, carbon onions, biological tubular systems.


Earth and Planetary Science Laboratory (EPSL)

Philippe Gillet

The Earth and Planetary Science Laboratory works to apply the techniques of physics and chemistry to the behavior of Earth and planetary materials in order to understand processes of planetary surfaces, mantles and cores.


Laboratory of Photoelectron Spectroscopy (LSE)

Marco Grioni

At the Laboratory of Electron Spectroscopy (LSE-IPN) I run a research program focussed on strong electronic correlations in solids and at surfaces. The main research tool is angle-resolved photoemission (ARPES) with very high energy and momentum resolution.


Electron Spectrometry and Microscopy Laboratory (LSME)

Cécile Hébert

Electron microscopy, Angular resolved Electron Energy Loss Spectrometry, Focused Ion Beam nano-tomography.


Laboratory of Nanoscale Science (LSEN)

Klaus Kern

Nanoscale science, self-ordering phenomena and in chemistry and physics of surfaces and interfaces.


Chair of Condensed Matter Theory (CTMC)

Frédéric Mila

He is working on several aspects of the problem of strongly correlated electronic systems, with current emphasis on frustrated magnetism and low-dimensional conductors, in the context of several transition metal oxides as well as organic conductors.


Chair of Atomic Scale Simulation (CSEA)

Alfredo Pasquarello

The research activity covers the study of atomic-scale phenomena both from the structural and dynamical point of view. The aim is to complement experiment by providing a realistic description of the mechanisms occurring on the atomic and nanometer scale.


Laboratory for Quantum Magnetism (LQM)

Henrik Rønnow

We study mainly magnetic phenomena in correlated electron materials ranging from local spin clusters to novel superconductors. Our thrust is on combination of the powerful techniques of neutron scattering at large scale facilities with in house measurements.


Chair of Computational Condensed Matter Physics (C3MP)

Oleg Yazyev

Theoretical and computational physics of Dirac fermion materials (graphene and topological insulators) with strong emphasis on their prospective technological applications