Course information

Mandatory courses:
CEE foundations – Statistics – Scientific Programming
Data science – Machine learning – Image processing
Mathematical modelling – ETHZ – Fribourg
You have to choose at least one of these courses during your first PhD year. Be aware that you also need to have 4 credits to pass the first year.
CEE foundations
Spatial statistics and analysis ENG-440 (5 credits) – FALL
The main objective is to make the students understand the importance of the spatial issues in environmental sciences and engineering, for example for mapping and interpolation. Presentation of different concepts and techniques devoted to spatial data.
Image processing for earth observation ENV-540 (3 credits) – FALL
This course covers optical remote sensing from satellites and airborne platforms. The different systems are presented. The students will acquire skills in image processing and machine learning to extract end-products, such as land cover or risk maps, from the images.
Advanced composites in Engineering Structures CIVIL-443 (3 credits) – FALL
The objective of the course is to: 1. Introduce topics in properties, processing, mechanical behavior, characterization, analysis and structural design of Fiber Reinforced Composites 2. Help students develop their research skills through independent investigations on research topics.
Air pollution and climate change ENV-400 (5 credits) – SPRING
A survey course describing the origins of air pollution and climate change.
Fourier analysis and boundary value problems ENV-614 (4 credits) – SPRING
Learning Fourier Series and Boundary Value Problems with a view to a variety of science and engineering problems. Learn the use of special functions like Bessel functions and applications. Introduce the doctoral students to general Sturm-Liouville problems and applications.
Structural stability CIVIL-369 (4 credits) SPRING
Advanced topics in structural stability; elastic & inelastic column buckling; beam-columns; lateral-torsional buckling of bridge girders; nonlinear geometric effects; frame stability; computational formulation of stability theory; stiffness & flexibility methods
Advanced continuum mechanics CIVIL-422 (3 credits) FALL
Reading class of classic text book of Lawrence Malvern “Introduction to the Mechanics of a Continuous Medium”. A special emphasis will be put on advanced topics, including finite kinematics, and non-linear material behavior. Applications will cover both solids and structures fluid mechanics.
Statistics
Applied biostatistics MATH-493 (5 credits) – SPRING
This course covers topics in applied biostatistics, with an emphasis on practical aspects of data analysis using R statistical software. Topics include types of studies and their design and analysis, high dimensional data analysis (genetic/genomic) and other topics as time and interest permit.
Biostatistics MATH-449: (5 credits) – SPRING
Statistics for life sciences – seems to cover a lot of basic statistic information that was present in the cancelled courses so it may still be relevant.
Multivariate statistics with R in Environment ENV-521 (4 credits) – FALL
Introduction to multivariate data analysis and modelling. The course helps for a critical choice of methods and their integration in a research planning. It prepares for complexe data analysis in various fields of environemental sciences. Use of dedicated R libraries.
Understanding statistics and Experimental design BIO-449 (4 credits) – FALL
This course is neither an introduction to the mathematics of statistics nor an introduction to a statistics program such as R. The aim of the course is to understand statistics from its experimental design and to avoid common pitfalls of statistical reasoning. There is space to discuss ongoing work.
Scientific Programming
Scientific programming for engineers MATH-611 (4 credits) FALL
The students will acquire a solid knowledge on the processes necessary to design, write and use scientific software, including the analysis of results. Modeling aspects, which constrain software design, will lead the students to algorithmic and complexity concepts inherent to all numerical calculation.
Data science
Applied data analysis CS-401 (6 credits) – FALL
This course teaches the basic techniques and practical skills required to make sense out of a variety of data, with the help of the most acclaimed software tools in the data science world: pandas, scikit-learn, Spark, etc.
Distributed information systems CS-423 (4 credits) – SPRING
Information retrieval, data mining and knowledge bases
Systems for data science CS-449 (6 credits) – SPRING
Principles for understanding and building systems for managing and analysing large amounts of data – requires the Bachelor unit Introduction to database systems cs-322
Data Analysis for Science and Engineering MATH-710 (4 credits) – Postponed until further notice
Machine learning
Machine learning CS-433 (7 credits) – FALL
Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and practically implemented.
Applied machine learning MICRO-455 (4 credits) – FALL
Real-world engineering applications must cope with a large dataset of dynamic variables, which cannot be well approximated by classical or deterministic models. This course gives an overview of methods from Machine Learning for the analysis of non-linear, highly noisy and multi dimensional data.
Machine learning for engineers EE-613 (EDOC) (4 credits) – FALL / Next time fall 2021
The objective of this course is to give an overview of machine learning techniques used for real-world applications, and to teach how to implement and use them in practice.
Image processing
Image analysis and pattern recognition EE-451 (4 credits) – SPRING
This course gives an introduction to the main methods of image analysis and pattern recognition.
Mathematical modelling
Optimization and simulation MATH-600 (4 credits) – SPRING
Master state-of-the art methods in discrete optimization and simulation. Work involves: – reading the material beforehand – class hours to discuss the material and solve problems – homework
Mathematical modelling of behaviour MATH-463 (5 credits) – FALL
Discrete choice models allow for the analysis and prediction of individuals’ choice behavior. The objective of the course is to introduce both methodological and applied aspects, in the field of marketing, transportation, and finance.
Courses at ETHZ
Summary
The course introduces ‘classical’ statistical design of experiments, particularly designs for blocking, full and fractional factorial designs with confounding, and response surface methods. Topics covered include (restricted) randomization and blocking, sample size and power calculations, confounding, and basics of analysis-of-variance methods for analysis including random effects and nesting. 3h per week (5 credits?).
Applied Analysis of Variance and Experimental Design– 5 credits
Summary
Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.
Courses in Fribourg
Statistics and experimental design – 3 credits
Summary
The course aims to introduce basic concepts of statistics and experimental design. The course will cover topics from the description of data set to multilinear regression analysis.
Introduction to statistics with R – Model selection – 1 credit
Summary
The open source software R (http://www.r-project.org) has revolutionized the statistical data analysis for most bioscience disciplines. R environment covers an unmatched spectrum of statistical tools including an efficient programming language for automating time-consuming analysis routines. Due to its popularity, R is continuously updated and extended with the latest analysis tools that are available in the different research fields. The R environment is completely free and runs on all common operating systems. This course provides a short introduction into the R environment and then tackles in more depth the problem of model selection (the task of selecting a statistical model from a set of candidate models).
FAQ
How can I get credits from courses?
- See the EDCE regulations about credit allocation.
- No credits can be earned from Bachelor courses
- Maximum 4 credits can be earned from transferrable skill courses
- Credits from master courses and courses given at other universities must be pre-approved by the thesis director and the director of the doctoral program. The credits will be awarded only after the reception of an official transcript describing explicitly that an exam was passed, and providing the exact number of ECTS credits.
- Credits can be obtained from short courses or summer schools under the following conditions:
- The thesis director and the director of the doctoral program must approve the course
- An official transcript must be provided indicating the number of course hours, plus the number of ECTS credits if available.
- A formal exam must be passed to evaluate the learning outcomes of the course (a certificate of participation is not sufficient)
Note that the number of ECTS credits proposed by the course organizer does not necessarily correspond to the number of ECTS credits awarded by the doctoral program. The general rule is that a 5-day course is worth 1 ECTS.
- No credit can be obtained from conferences, seminars, symposium, workshops, internships, etc.
About PhD courses
https://www.epfl.ch/education/phd/doctoral-studies-structure/doctoral-courses/edoc-about-phd-courses
How to know the number of credits?
EDCE program regulation, section 2: https://www.epfl.ch/education/phd/regulations/doctoral-programs-regulations
EDCE external course list
These are lists of courses followed by oher EDCE Phd students, its main purpose is to help you find interesting courses that you can’t find at EPFL
Statistics
Course name | Location |
Applied analysis of variance and experimental design | ETHZ |
Applied Statistical Regression | ETHZ |
Applied statistics for Ph.D students | University of Zürich |
Designing experiments on the hyporheic zone | University of Birmingham |
Environmental data mining | UNIL |
Introduction to statistics | Swiss institute of bioinformatics |
Méthodes statistiques: théories et applications | UNIL |
Statistics for experimental research | ETHZ |
Uncertainty and sensitivity analysis of numerical models | DTU, Denmark |
Using R for Data Analysis and Graphics | ETHZ |
Introduction to spatial analysis of ecological data using R | PR statistics head-office, Glasgow, scotland |
Specialized experimental methods
Course name | Location |
Combining Structural & Analytical Investigations of Matter at the Micro-, nano- and Atomic Scales | CCMX, Lausanne |
Cook and look: Synchrotron techniques | ETHZ |
DIA/SWATH course, Mass spectrometry | ETHZ |
Mass spectrometry School in Biotechnology and Medicine | Dubrovnik, summer school |
Microbial biofilm techniques | DTU, Denmark |
Modern mass spectrometry, Hyphenated methods, and chemometrics | ETHZ |
Sampling in hyporheic zones, in situ measurement techniques | University of Birmingham |
Spectroscopy of the earth system | University of Zürich |
Economics
Course name | Location |
Computable general equilibrium in climate and energy economics | UNIBE |
Swiss program for beginning of doctoral studies in economic macroeconomics | Study center Gerzensee |
Swiss program for beginning of doctoral studies in economic microeconomics | Study center Gerzensee |
General Civil and Environmental Engineering courses
Course name | Location |
Aerosol I: Physical and Chemical principles | ETHZ |
Analysis of climate and weather data | ETHZ |
Arctic environmental toxicology | University center in Svalbard, Norway |
Atmospheric general circulation dynamics | ETHZ |
Concrete with Supplementary cementitious materials | DTU, Lyngby, Denmark |
Current topics in Grassland Sciences | ETHZ |
DGPT Molecular cell toxicology | Zurich University |
Environmental systems analysis | EAWAG, summer school, switzerland |
EURO Ph.D school on routing and logistics | University of Brescia, Italy |
Fragrance chemistry | ETHZ |
Frontiers in plant sciences, application of stable isotopes in plant sciences | ETHZ |
Geomonitoring and Geosensors | ETHZ |
Global change biology | ETHZ |
Hypobasics | Leibniz institue of freshwater ecology and inland fisheries, Berlin |
Infectious disease dynamics | ETHZ |
Marges arides | UNIL |
Mechanical and Physics of fracture: Multi-scale Modeling of the failure behaviour of Solids | International center for Mechanical Sciences, Udine, Italy |
Microbiology and disposal of radioactive waste | ETHZ |
Physical chemistry | ETHZ |
Physical Limnology | University of Heidelberg |
Physics as a basis for modeling | UNIL |
Plant-atmosphere interactions in a changing climate | Göteborgs universitet, Sweden |
Project INFRASTAR fatigue and risk analysis of structures | BAM, Berlin |
Quantitative flow visualization | ETHZ |
Quantitative microbial risk assessment | Michigan State University, USA |
Resevoir Geomechanics | Stanford university |
Seismic response and analysis of structures | UME school Pavia, Italy |
Selected chapters in Bioinformatics | UNIGE |
Shaping the energy transition | SCCER school, Switzerland |
Snowcover: physics and modeling | ETHZ |
Summer school of fluvial geomorphology | ETHZ |
System models in life cycle assessment, summer school | ETHZ |
Tropospheric Chemistry | ETHZ |
Virology: Principles of molecular biology, pathogenesis and control of human viruses | University of Zürich |
Virus-host Interactions | UNIL |
Visions for sustainable agriculture | UNINE |
Water resources and drinking water | ETHZ |
Winter school on the observation and modeling of high-latitude and Arctic Clouds | Finland |
EDCE external transferrable skills list
Course name | Location |
Environmental communication teaching | Campus virtual ISM, Spain |
Reading in environmental thinking | ETHZ |
Research ethics | ETHZ |
Responsible conduct in research | ETHZ |
Interesting sites for courses:
Swiss Institute of Bioinformatics
EMBO – Excellence in the life sciences.
This list includes doctoral courses only, master courses are not listed.
All external courses are subject to approval by the thesis director and the doctoral school. Contact the EDCE office for all external courses.
Listed credits may not correspond to the number of credits awarded by EPFL.
Check if an equivalent course at EPFL exists.
Courses on the list may not longer be taught.