EDCE Awards laureates

Winners of the

“EPFL Outstanding Ph.D Thesis Distinction in Civil and Environmental Engineering” 2021

2021  2020   2019  

Dr. Jan Brütting

Ph.D. at the Structural Xploration Lab, SXL

Thesis title: Optimum design of low environmental impact structures through component reuse

The construction industry is endangering Earth’s environment and current mitigation efforts to reduce its impact do not suffice. Additional sustainable strategies are needed. One such strategy consists in reusing building components over multiple service lives and in new layouts. Not so long ago, this practice was common everywhere. Today, the trend is reversed: well-established markets, logistics, norms, and building cultures jeopardize the prospect of a systemic application of component reuse; circular economy principles are yet to be implemented on the large scale despite attracting growing interest from governments and design professionals.

My PhD thesis reacts to this context by opening up a new research direction for the field of structural design – one that addresses the following research questions: What environmental benefits would be achieved if reclaimed structural components were to be reused in new structural systems? How to form-find structural systems that make best use of an existing stock of components? How to specify a new stock of structural components in order to allow its reuse in diverse systems? To answer these questions, I developed computational methods that combine state-of-the-art optimization procedures and design-integrated life-cycle assessments and applied them to multiple case studies and built prototypes. Results show that component reuse can significantly reduce the environmental impact of building structures compared to new construction. These attainable impact reductions obtained through applying the proposed methods can fosters a broader implementation of reuse strategies in research and practice.

As a structural engineer at schlaich bergermann partner (Germany), I am currently working on the design of footbridges and lightweight structures with the aim of implementing the sustainable structural design principles that I have acquired while working at SXL.

Dr. Josué Gehring

Ph.D at the Environmental Remote Sensing Laboratory, LTE

Thesis title: “Leveraging meteorological radars to investigate the influence of atmospheric dynamics on snowfall microphysics”

Precipitation is the result of a chain of meteorological processes ranging from the large- (>1000 km) to the micro-scale (<1 m). While the transport of moisture and lifting mechanisms leading to cloud formation are mostly governed by dynamical processes, the formation and growth of hydrometeors are ultimately determined by microphysical processes. A proper understanding of the complex interactions between atmospheric dynamics and microphysics is of paramount importance to accurately forecast precipitation. In particular, snowfall microphysics is greatly influenced by dynamical processes, such as turbulence and updraughts. Yet, the impact of atmospheric dynamics on snowfall microphysics remains poorly understood.

In my thesis, I combined meteorological radar observations and atmospheric model simulations to investigate how dynamical processes occurring at different scales can influence snowfall microphysics. The objectives were twofold: (i) collect data on clouds and precipitation during two field campaigns in South Korea and Antarctica, and (ii) leverage this data to investigate how dynamical processes influenced the microphysics of two snowfall events.

Altogether, my thesis offers two unique datasets which are available to the scientific community and can be used for future studies on snowfall microphysics. It also contributes to a better understanding of how atmospheric dynamics can influence snowfall microphysics. In particular, it illustrates how processes occurring at different spatial scales can determine the dominating snowfall microphysical processes.

As a meteorologist at MeteoSwiss, I am currently applying my knowledge to forecast the weather for the western part of Switzerland. My expertise in snowfall microphysics and weather radars is especially useful to forecast and diagnose intense snowfall.

Winners of the

“EPFL Outstanding Ph.D Thesis Distinction in Civil and Environmental Engineering” 2020

Dr. Lucas Frérot

Ph.D at the Computational Solid Mechanics Laboratory, LSMS

Thesis title: Bridging scales in Wear Modeling with Volume Integral Methods for Elastic-Plastic Contact

Friction and wear are fundamental tribological phenomena that affect many aspects of our society: from the gears of a Swiss watch to car brakes and earthquakes. Despite being integral parts of everyday life, friction and wear remain elusive to quantitative predictions. Their systematic study, since the seminal experiments of Da Vinci, Amontons and Coulomb, has been quasi-exclusively experimental. This limits our capacity to understand tribological systems to those that can be reproduced experimentally. Perhaps the most challenging factors are the profoundly multi-scale and multi-physics aspect of both friction and wear, as well as the difficulty of observing what occurs at frictional interfaces.

Due to natural or artificial roughness, things that appear in contact at the macro-scale actually only interact on an area that is much smaller than their apparent contact area. The processes that give rise to macroscopic friction and wear occur that the micro-contacts that make up this “true” contact area. During my thesis, I have developed simulation methods to accurately compute contact interfaces with multi-scale roughness. Because the true contact area is small, contact pressures can be very large, causing plastic (irreversible) deformation of the bodies in contact. To account for this effect, I developed a new approach to volume integral methods. My contributions allowed large scale simulations of plastic rough contact, which contributed to the understanding of the role of plasticity on the formation of cracks that can lead to wear debris detachment.

As a postdoctoral fellow at Johns Hopkins University in Baltimore, I study the micro-scale friction mechanisms of self-assembled monolayers and the wear of polymer systems.

Dr. Juan Carlos Quezada

Ph.D at the the Laboratory of Ecological Systems, ECOS

Thesis title: Alternative land use change scenarios for the expansion of a
more sustainable agriculture in the tropics.

Expansion of oil palm plantations in the tropics, particularly in Southeast Asian countries, has been blamed for unprecedented rates of deforestation in recent decades. The continuing expansion of oil palm agriculture across tropical countries poses significant threats and pressure to ecosystems and potentially the global climate. Along my PhD work, I assessed the impacts of alternative pathways for a more sustainable development of oil palm agriculture with a focus on carbon and soil biogeochemistry.

In general, expansion of oil palm in Latin-America has not been at high deforestation cost because land previously cleared for other agricultural uses has often been used. Based on a long-term chronosequence in Colombia encompassing two-cycle plantations (over 56 years) on former pastures areas, I demonstrated that oil palm cultivation can be carbon neutral from an ecosystem standpoint (considering both the development of the plant biomass and the soil organic matter). I also found that a second investigated deforestation-free land use change scenario, converting savanna into oil palm, led to a positive ecosystem carbon balance. In parallel with these two positive ecosystem carbon outcomes at the ecosystem level, other important soil biogeochemical characteristics, i.e. soil biological activity, showed promising trends for the sustainability of oil palm agroecosystems if more ecologically oriented management practices are adopted, in particular in promoting organic inputs.

It is concluded that for a pathway toward sustainability in the eminent expansion scenario of oil palm plantations, emphasis should be put on degraded pastures or degraded savannas if they cannot be restored. Currently, as a post-doctoral fellow at ETH, I am integrating and synthetizing the data and insights produced by research groups of a wide range of expertise in natural science in the frame of the Oil Palm Adaptive Landscapes (OPAL) project.

Dr. Numa Joy Bertola

Thesis title: Measurement-system design for structural identification

Ph.D. at the Applied Computing and Mechanics Laboratory (IMAC) and Future Cities Laboratory, Singapore-ETH Centre.

The management of existing civil infrastructure is challenging due to evolving function requirements, aging and climate change. Civil infrastructure often has hidden reserve capacity because of the conservative approaches used in construction design and practice. The information collected through sensor measurements has the potential to improve knowledge of the structural behavior, such as the maximal load-bearing capacity of a bridge. In this situation, the design of the monitoring system is crucial as the information collected during load testing depends on this choice. However, this task is usually carried out by engineers using only qualitative rules of thumb and experience, limiting the information gain on structural behavior during monitoring.

The aim of the thesis was to develop algorithms to design measurement systems. New methods have been presented in order to either maximize the information gain of a sensor configuration or recommend an optimal solution based on multiple conflicting performance criteria. Additionally, a methodology has been introduced to assess whether monitoring information can influence decisions on asset management. Results on three full-scale bridges and one excavation site have shown that an optimal measurement-system design leads to better understandings of the structural behavior.

As a post-doctoral fellow at EPFL in the Laboratory for Maintenance and Safety of Structures (MCS), I am currently working on new diagnostic tools and innovative maintenance strategies to retrofit damaged bridges.

Winners of the

“EPFL Outstanding Ph.D Thesis Distinction in Civil and Environmental Engineering” 2019

Dr. Fabian Barras

Thesis title: When dynamic cracks meet disorder: A journey along the fracture process zone

Ph.D in the Computational Solid Mechanics Laboratory, LSMS

My PhD research focused on the rapid propagation of rupture front, a highly dynamic phenomenon at the origin of many catastrophic events. In the wake of a dynamic rupture, materials and structures fail, violent earthquakes nucleate along crustal faults, snow avalanches start hurtling down steep mountain slopes, drops of delicious wine spill out of a breaking glass. In each of these examples, the medium holds inherent heterogeneities (defects, inclusions, microstructure) which are magnified by the sharp stress concentration existing at the tip of the front. Understanding their impact on the rupture dynamics is hence a fundamental but challenging problem.

During my thesis at the Computational Solid Mechanics Laboratory (LSMS), I developed and used high-performance numerical methods to simulate the propagation of dynamic ruptures within heterogeneous materials. The developed models allowed to challenge the predictions of the dynamic fracture theory in the presence of microscopic heterogeneities. In a second phase, the same framework was applied to study the onset of sliding along frictional interfaces. In the context of friction, the microscopic heterogeneity stems from the sparse contact points existing when two rough surfaces come into contact. The obtained results shed new light on the dynamics of seismic ruptures and the energy budget of earthquakes.

As a post-doctoral fellow at the University of Oslo, I am currently studying how earthquake ruptures interplay with fluid present in the Earth crust, notably in the context of seismicity induced by underground fluid injection.

Dr. Aida Cameselle

Thesis title: Two-dimensional crack growth in FRP structures

Ph.D in Composite Construction Laboratory, CCLAB

Fiber-reinforced polymer (FRP) composite materials are currently being selected for the design of lightweight and efficient structural members in a wide number of engineering applications. The load-bearing capacity of FRP structures can be significantly reduced by delamination and debonding damage which, in actual structural members, may extend all around its perimeter, thus constantly changing the size of the crack front. However, most research efforts concerning the fracture characterization of delamination and debonding damage have focused on one‑dimensional (1D) fracture specimens where cracks propagate longitudinally with an approximately constant crack width, thus resulting in fracture properties that may lead to inaccurate predictions of fracture behavior in real structures. The aim of my thesis was thus to investigate, characterize and quantify, experimentally and numerically, potential 2D effects on the 2D delamination in laminates and 2D debonding in face sheet/core interfaces of sandwich structures that are not captured by 1D fracture mechanics tests. The thesis developed the scientific bases for a better understanding of delamination and debonding in real 2D cases.

Currently I am working as a project engineer for Ingeni SA in Geneva, a cutting-edge structural engineering office with four offices in Switzerland.


Mobility Award winners

Janody Pougala, TRANSP-OR

As a member of the Transport and Mobility Lab (TRANSP-OR), I am developing and activity-based framework for the estimation of transport demand, using optimization to simulate daily activity schedules of a given population. The fundamental assumption of our framework is grounded on first behavioral principles: we consider that individuals are sensitive to time, and schedule activities in order to maximize the utility or satisfaction they gain from the resulting plan. The model takes as input options of activities, modes and locations, and returns a distribution of feasible schedules that is guided by the preferences of the individual (e.g. desired start time and duration for each activity).

The Human-Centric Laboratory of Dr. Tim Hillel at University College London (UCL) develops decision-aid models and tools to plan future built environments (spanning a variety of fields such as mobility, energy consumption, or infrastructure maintenance) by considering holistic systems centered around people. During my academic visit, I aim to investigate methodological extensions to the model, to achieve a highly generalizable framework. It will also be an opportunity to explore practical applications with additional resources and case studies provided by my host institution.

Monika Feldmann, LTE

My PhD is set up as a collaboration between the environmental remote sensing laboratory (LTE) at EPFL and the radar, satellite and nowcasting division (RSN) at MeteoSwiss. The research focuses on investigating the occurrence and behaviour of supercells, a particularly severe type of thunderstorm, in Switzerland. Using operational radar data from MeteoSwiss we established a first time description of the spatio-temporal occurrence of supercells in Switzerland. To better understand the interaction of these severe thunderstorms with the complex Alpine terrain, we aim to reproduce typical supercell cases in a mesoscale meteorological model.
The Mesoscale and Microscale Meteorology Laboratory (MMM) at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado (USA) have extensive expertise in mesoscale modelling and mountain meteorology. In collaboration with Dr. Richard Rotunno we hope to disentangle supercell dynamics and orographic influences, based on the cases observed in the Alpine region. The interactions of severe thunderstorms with complex terrain are still poorly understood and advances in this area benefit the convective research community in general. Combining the observational expertise of LTE and RSN with the dynamical and modelling experience of MMM offers an excellent opportunity to expand the collaborative expertise contributing to this research.

Eugénie Mas, PERL

As a member of the Plant Ecology Research Lab (PERL), I investigate the impact of tree species interactions on tree plastic physiological responses to heat and drought stress. Indeed, in the context of climate change, trees can adapt their functional trait, and their interactions with other individuals can modulate their response to abiotic stress and reduce the negative impacts of extreme events on forests.

During my Mobility project, I have the great opportunity to work with the expert in plant physiological ecology, Dr. Alberto Vilagrosa in the Mediterranean Centre for Environmental Studies (CEAM) institute hosted at the University of Alicante, Spain. Together, we will conduct physiological measurements in natural Mediterranean forests in Spain exposed to hot droughts. Moreover, I will be trained on a specific hydraulic machine that I will use for further experiments back in Switzerland during my Ph.D. studies.

Caio Vitor Beojone, LUTS

My Ph.D. research focuses on on-demand mobility services. In the first years of my Ph.D., I developed knowledge about the effects of such services in traffic conditions of an urban area. To date, our simulations enlightened the impacts that the number of available drivers and the passengers’ attitude towards shared-ride options has on congestion. It was possible to show how service providers can attract drivers to decrease waiting times faced by passengers at the expense of deteriorating average traveling speeds for everyone in the city.

The Laboratory for Innovative Mobility Systems (LIMOS), led by Prof. Yafeng Yin at the University of Michigan, has contributed to the literature of emerging transportation technologies during the last 20 years. For my academic visit to LIMOS, I aim to develop policies on innovative on-demand transportation modes capable of improving the welfare of society with a sustainable outcome for all stakeholders, mitigating negative externalities. Overall, the experience obtained there will allow me to expand my research to a more comprehensive side of mobility problems.

Selin Atac, TRANSP-OR

After joining Transport and Mobility Laboratory (TRANSP-OR) in September 2018, I have started working on demand-based operations of vehicle sharing systems (VSS). In the first stage of my PhD thesis, we have conducted an extended literature review and proposed a holistic framework that identifies the relations between different decision levels, different actors, and different layers. As an outcome of the framework, we have seen that there is more focus on supply aspects than demand aspects in the literature. One of the main issues for this skew is because the disaggregate data collection and developing a demand model are exhaustive and costly.

To address this issue, we have decided to use the Multi-Agent Transport Simulation (MATSim). The main idea is to utilize MATSim as a ground truth and analyze different configurations and their relations to rebalancing operations. Assist. Prof. Joseph Chow, from the C2SMART lab in New York University (NYU) Tandon School of Engineering, and his team have been working on the rebalancing strategies for car sharing services using MATSim. His expertise on this topic will contribute developing a more structured framework according to the advantages and limitations of MATSim.

Ioannis Mirtsopoulos, SXL

As part of the Structural Xploration Lab (SXL), I work at the interface between architecture and structural engineering with the aim of exploring the design space of structurally-aware structures. My research mainly focuses on the development of a novel design computational workflow that generates reticulated structures in static equilibrium at an early design stage, as a result of user defined force-driven rules rather than numerical variables. Its implementation is reflected on a user-controlled, form-finding engine which unveils unprecedent structural typologies through the extensive exploration of the design space. Part of the research objectives is the human-machine collaboration and the exploitation of intelligence and logic sourcing from both sides.

During my academic visit to the “Digital Structures” research lab of Prof. Caitlin Muller, at the Massachusetts Institute of Technology (MIT), I aim to integrate artificial intelligence into the developed computational workflow. This approach will upgrade the machine as a collaborative partner during the design process, that contributes with its own intelligence towards the final design. Overall, the guidance and experience gained there will allow me extend my research towards a more intelligent and multidisciplinary approach.

Niloufar Vahedi, CCLAB

In the scope of my PhD research project ‘’Composite sandwich bridge decks on fire’’, I investigate the thermo-mechanical behavior of composite sandwich bridge decks composed of glass fiber-reinforced (GFRP) face sheets and a balsa wood core during a fire. This new type of sandwich bridge decks has to meet the same requirements as traditional decks do. In particular, their behavior during a fire incident has to be known and predictable.

As a main step of my project, numerical thermo-physical and thermo-mechanical sandwich response models are currently developed and will be validated by the fire resistance experiments. The mentioned fire resistance experiments are my mobility project that will be performed on full-scale GFRP-Balsa sandwich panels and require a specific instrumentation. All the equipment’s will be provided by CERIS (Civil Engineering Research and Innovation for Sustainability) of the Instituto Superior Técnico (IST), during a totally six months stay at the beginning of next year.

Aryan Rad Rezaei, IBOIS

I enrolled in the doctoral program of EDCE, EPFL and started my Ph.D at the Laboratory for Timber Constructions (IBOIS) in July 2016. My research is mainly focused on the mechanical characterization and structural optimization of spatial timber-plate structures using wood-wood connections, for which multiple experimental investigations have been already carried out. In parallel, I have recently introduced and developed a new modeling strategy for timber plate structures. The strategy, which is referred to as “macro models”, aims to simulate the global behavior of timber plate structures, reduce the computational expense and improve the efficiency of the design workflow.

An interdisciplinary design framework, where the knowledge of architects, engineers, and computer and robotic scientists is combined, is critical to my doctoral studies. My plan is to develop an automatic algorithm which integrate Computer-aided Design (CAD), the macro models, and open-source computational/structural platforms for Computer-aided Engineering (CAE) analyses and design workflow. The framework aims to develop a dialog between architects and engineers, and links the state of the research to the structural engineering practice. During my academic visit to the research lab of Professor Dr. Henry Burton, my co-supervisor, at the University of California Los Angeles (UCLA), I aim to finalize my research on developing the interactive tool for performance assessment of spatial timber plate systems at the macro scale.

Anna Depetris, SBER

As member of the SBER laboratory at ENAC, I investigate spatial patterns in freshwater benthic biofilm and their interactions with the surrounding hydrodynamics. Stream benthic biofilms are microbial communities that live attached to the stream bed and exposed to the water flow. They develop remarkable morphological features in response to contrasting flow regimes. Biofilms’ architectural attributes relevantly correlate with spatial inhomogeneities in metabolic rates and biodiversity patterns.

For my Mobility project, I have the honor to take part in the prestigious course in Microbial Diversity held in Woods Hole, MA. During this course I will be trained in state-of-the-art techniques to study microbial biodiversity and to characterize metabolic activity. This will provide essential tools to investigate the ecological processes that underly spatial patterns in stream biofims, ultimately linking important ecosystem processes with stream hydrodynamic regimes.

Other awards won by EDCE students

Dr. Oliver Selmoni

ENAC Doctoral Research Award in the field of environmental engineering for the publication entitled:

“Seascape genomics as a new tool to empower coral reef conservation strategies: An example on north-western Pacific Acropora digitifera.”

The future of coral reefs is under threat since anomalous heat waves are causing the death of reef building corals around the world. Without corals, the entire reef ecosystem is expected to collapse, threatening the survival of up to one third of marine wildlife. Despite the catastrophic perspectives, a glimmer of hope is brought by corals that persist at reefs exposed to recurrent heat waves. Evolutionary adaptation might underpin these observations.

In this publication, we used an approach called seascape genomics to characterize the adaptation to heat stress in a coral population from Japan. We first used remote sensing data to portray patterns of thermal stress across all the reefs of the study area, and then analyzed the genetic variation of corals living across this thermal gradient. We uncovered genetic traits that are more frequent in corals living at reefs exposed to recurrent heat stress. Finally, we predicted the distribution of these adaptive traits for every reef of the study area. This information is of paramount importance, as it constitutes a to-date missing criterion to prioritize reef based on their adaptive potential.

As a postdoctoral fellow at LASIG, I am currently working on extending the seascape genomics approach to other reef systems around the world.