LAURENCZY Gabor, Hon. Prof. – Publications

Journal Articles


A TiO2/Nb2O5 center dot nH(2)O heterojunction catalyst for conversion of glucose into 5-hydroxymethylfurfural in water

F. Huang; T. Jiang; X. Xu; L. Chen; G. Laurenczy et al. 

Catalysis Science & Technology. 2020-12-07. Vol. 10, num. 23, p. 7857-7864. DOI : 10.1039/d0cy01601b.

Selective hydrogenation of lignin-derived compounds under mild conditions

L. Chen; A. P. Van Muyden; X. Cui; G. Laurenczy; P. J. Dyson 

Green Chemistry. 2020-03-27. Vol. 22, num. 10, p. 3069-3073. DOI : 10.1039/D0GC00121J.


A Precious Catalyst: Rhodium-Catalyzed Formic Acid Dehydrogenation in Water

C. Fink; G. Laurenczy 

European Journal Of Inorganic Chemistry. 2019-05-15. num. 18, p. 2381-2387. DOI : 10.1002/ejic.201900344.


Mechanistic Study of the N-Formylation of Amines with Carbon Dioxide and Hydrosilanes

M. Hulla; G. Laurenczy; P. J. Dyson 

ACS Catalysis. 2018-11-01. Vol. 8, num. 11, p. 10619-10630. DOI : 10.1021/acscatal.8b03274.

Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid

Z. Xin; J. Zhang; K. Sordakis; M. Beller; C. Du et al. 

CHEMSUSCHEM. 2018. Vol. 11, num. 13, p. 2077-2082. DOI : 10.1002/cssc.201800408.

Homogeneous Catalytic Formic Acid Dehydrogenation in Aqueous Solution using Ruthenium Arene Phosphine Catalysts

C. Fink; L. Chen; G. Laurenczy 

ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE. 2018. Vol. 644, num. 14, p. 740-744. DOI : 10.1002/zaac.201800107.

Intricacies of Cation-Anion Combinations in Imidazolium Salt-Catalyzed Cycloaddition of CO2 Into Epoxides

F. D. Bobbink; D. Vasilyev; M. Hulla; S. Chamam; F. Menoud et al. 

ACS Catalysis. 2018. Vol. 8, num. 3, p. 2589-2594. DOI : 10.1021/acscatal.7b04389.

Heterogeneous Catalytic Reactor for Hydrogen Production from Formic Acid and Its Use in Polymer Electrolyte Fuel Cells

I. Yuranov; N. Autissier; K. Sordakis; A. F. Dalebrook; M. Grasemann et al. 

ACS Sustainable Chemistry & Engineering. 2018. Vol. 6, num. 5, p. 6635-6643. DOI : 10.1021/acssuschemeng.8b00423.

Additive free, room temperature direct homogeneous catalytic carbon dioxide hydrogenation in aqueous solution using an iron(II) phosphine catalyst

M. Montandon-Clerc; G. Laurenczy 

Journal of Catalysis. 2018. Vol. 362, p. 78-84. DOI : 10.1016/j.jcat.2018.03.030.

Towards a frustrated Lewis pair-ionic liquid system

F. G. Perrin; F. D. Bobbink; E. Paunescu; Z. Fei; R. Scopelliti et al. 

Inorganica Chimica Acta. 2018. Vol. 470, p. 270-274. DOI : 10.1016/j.ica.2017.07.045.

Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol

N. Onishi; G. Laurenczy; M. Beller; Y. Himeda 

Coordination Chemistry Reviews. 2018. Vol. 373, p. 317-332. DOI : 10.1016/j.ccr.2017.11.021.


Dehydrogenation of Formic Acid over a Homogeneous Ru-TPPTS Catalyst: Unwanted CO Production and Its Successful Removal by PROX

V. Henricks; I. Yuranov; N. Autissier; G. Laurenczy 

Catalysts. 2017. Vol. 7, num. 11, p. 348. DOI : 10.3390/catal7110348.

Versatile palladium-catalyzed double carbonylation of aryl bromides

C. Shen; C. Fink; G. Laurenczy; P. J. Dyson; X-F. Wu 

Chemical Communications. 2017. Vol. 53, p. 12422-12425. DOI : 10.1039/C7CC07412C.

An efficient Pt nanoparticle–ionic liquid system for the hydrodeoxygenation of bio-derived phenols under mild conditions

L. Chen; C. Fink; Z. Fei; P. J. Dyson; G. Laurenczy 

Green Chem.. 2017. Vol. 19, num. 22, p. 5435-5441. DOI : 10.1039/C7GC01870C.

Delineating the Mechanism of Ionic Liquids in the Synthesis of Quinazoline-2,4(1H,3H)-dione from 2-Aminobenzonitrile and CO2

M. Hulla; S. M. A. Chamam; G. Laurenczy; S. Das; P. J. Dyson 

Angewandte Chemie-International Edition. 2017. Vol. 56, num. 35, p. 10559-10563. DOI : 10.1002/anie.201705438.

Formic Acid as a Hydrogen Carrier for Fuel Cells Toward a Sustainable Energy System

H. Kawanami; Y. Himeda; G. Laurenczy 

Inorganic Reaction Mechanisms. 2017. Vol. 70, p. 395-427. DOI : 10.1016/bs.adioch.2017.04.002.

trans-Mutation at Gold(III): A Mechanistic Study of a Catalytic Acetylene Functionalization via a Double Insertion Pathway

M. S. M. Holmsen; A. Nova; D. Balcells; E. Langseth; S. Øien-Ødegaard et al. 

ACS Catalysis. 2017. Vol. 7, p. 5023-5034. DOI : 10.1021/acscatal.7b01364.

Aqueous phase homogeneous formic acid disproportionation into methanol

K. Sordakis; A. Tsurusaki; M. Iguchi; H. Kawanami; Y. Himeda et al. 

Green Chem.. 2017. Vol. 19, num. 10, p. 2371-2378. DOI : 10.1039/C6GC03359H.

CO2 as hydrogen vector – Transition metal diamine catalysts for selective HCOOH dehydrogenation

C. Fink; G. Laurenczy 

Dalton Transactions. 2017. Vol. 46, num. 5, p. 1670-1676. DOI : 10.1039/C6DT04638J.

Investigation of Hydrogenation of Formic Acid to Methanol using H2 or Formic Acid as a Hydrogen Source

A. Tsurusaki; K. Murata; N. Onishi; K. Sordakis; G. Laurenczy et al. 

ACS Catalysis. 2017. Vol. 7, p. 1123-1131. DOI : 10.1021/acscatal.6b03194.


Carbon Dioxide to Methanol: The Aqueous Catalytic Way at Room Temperature

K. Sordakis; A. Tsurusaki; M. Iguchi; H. Kawanami; Y. Himeda et al. 

Chemistry – A European Journal. 2016. Vol. 22, num. 44, p. 15605-15608. DOI : 10.1002/chem.201603407.

Quantitative aqueous phase formic acid dehydrogenation using iron(II) based catalysts

M. Montandon-Clerc; A. F. Dalebrook; G. Laurenczy 

Journal of Catalysis. 2016. Vol. 343, p. 62-67. DOI : 10.1016/j.jcat.2015.11.012.

A simple catalyst for aqueous phase Suzuki reactions based on palladium nanoparticles immobilized on an ionic polymer

S. Ghazali-Esfahani; E. Paunescu; M. Bagherzadeh; Z. Fei; G. Laurenczy et al. 

Science China-Chemistry. 2016. Vol. 59, num. 4, p. 482-486. DOI : 10.1007/s11426-015-5542-3.

Calorimetric and Spectroscopic Studies on the Solvation Energetics for H2 Storage in the CO2/HCOOH System

C. Fink; S. Katsyuba; G. Laurenczy 

Phys. Chem. Chem. Phys.. 2016. Vol. 18, p. 10764-10773. DOI : 10.1039/C5CP06996C.


Hydrogen Storage in the Carbon Dioxide – Formic Acid Cycle

C. Fink; M. Montandon-Clerc; G. Laurenczy 

Chimia. 2015. Vol. 69, num. 12, p. 746-752. DOI : 10.2533/chimia.2015.746.


G. Laurenczy; M. Beller 

Chimia. 2015. Vol. 69, num. 6, p. 313-313.

High-pressure NMR spectroscopy: An in situ tool to study tin-catalyzed synthesis of organic carbonates from carbon dioxide and alcohols. Part 2 [1]

G. Laurenczy; A. F. Dalebrook; M. Picquet; L. Plasseraud 

Journal of Organometallic Chemistry. 2015. Vol. 796, p. 53-58. DOI : 10.1016/j.jorganchem.2015.02.006.

A Viable Hydrogen Storage and Release System Based on Cesium Formate and Bicarbonate Salts: Mechanistic Insights into the Hydrogen Release Step

K. Sordakis; A. F. Dalebrook; G. Laurenczy 

ChemCatChem. 2015. Vol. 7, num. 15, p. 2332-2339. DOI : 10.1002/cctc.201500359.

Homogenous catalytic hydrogenation of bicarbonate with water soluble aryl phosphine ligands

K. Sordakis; A. Guerriero; H. Bricout; M. Peruzzini; P. J. Dyson et al. 

Inorganica Chimica Acta. 2015. Vol. 431, p. 132-138. DOI : 10.1016/j.ica.2014.10.034.

Rh(I)-Catalyzed Hydroamidation of Olefins via Selective Activation of N–H Bonds in Aliphatic Amines

K. Dong; X. Fang; R. Jackstell; G. Laurenczy; Y. Li et al. 

Journal of the American Chemical Society. 2015. Vol. 137, num. 18, p. 6053-6058. DOI : 10.1021/jacs.5b02218.


Formic Acid Dehydrogenation Catalysed by Tris(TPPTS) Ruthenium Species: Mechanism of the Initial “Fast” Cycle

A. Thevenon; E. Frost-Pennington; G. Weijia; A. F. Dalebrook; G. Laurenczy 

Chemcatchem. 2014. Vol. 6, num. 11, p. 3146-3152. DOI : 10.1002/cctc.201402410.

Metal-Free Catalyst for the Chemoselective Methylation of Amines Using Carbon Dioxide as a Carbon Source

S. Das; F. D. Bobbink; G. Laurenczy; P. J. Dyson 

Angewandte Chemie-International Edition. 2014. Vol. 53, num. 47, p. 12876-12879. DOI : 10.1002/anie.201407689.

Base-Free Non-Noble-Metal-Catalyzed Hydrogen Generation from Formic Acid: Scope and Mechanistic Insights

D. Mellmann; E. Barsch; M. Bauer; K. Grabow; A. Boddien et al. 

Chemistry – A European Journal. 2014. Vol. 20, num. 42, p. 13589-13602. DOI : 10.1002/chem.201403602.

Hydrogen Production by Selective Dehydrogenation of HCOOH Catalyzed by Ru-Biaryl Sulfonated Phosphines in Aqueous Solution

A. Guerriero; H. Bricout; K. Sordakis; M. Peruzzini; E. Monflier et al. 

ACS Catalysis. 2014. Vol. 4, num. 9, p. 3002-3012. DOI : 10.1021/cs500655x.

A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions

S. Siankevich; G. Savoglidis; Z. Fei; G. Laurenczy; D. T. L. Alexander et al. 

Journal Of Catalysis. 2014. Vol. 315, p. 67-74. DOI : 10.1016/j.jcat.2014.04.011.

Enhanced Conversion of Carbohydrates to the Platform Chemical 5-Hydroxymethylfurfural Using Designer Ionic Liquids

S. Siankevich; Z. Fei; R. Scopelliti; G. Laurenczy; S. Katsyuba et al. 

Chemsuschem. 2014. Vol. 7, num. 6, p. 1647-1654. DOI : 10.1002/cssc.201301368.

Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media

S. Moret; P. J. Dyson; G. Laurenczy 

Nature Communications. 2014. Vol. 5. DOI : 10.1038/ncomms5017.

Electrostatic and Non-covalent Interactions in Dicationic Imidazolium-Sulfonium Salts with Mixed Anions

Z. Fei; D-R. Zhu; N. Yan; R. Scopelliti; S. A. Katsuba et al. 

Chemistry-A European Journal. 2014. Vol. 20, num. 15, p. 4273-4283. DOI : 10.1002/chem.201303520.

Chemical Equilibria in Formic Acid/Amine-CO2 Cycles under Isochoric Conditions using a Ruthenium(II) 1,2-Bis(diphenylphosphino)ethane Catalyst

K. Sordakis; M. Beller; G. Laurenczy 

ChemCatChem. 2014. Vol. 6, num. 1, p. 96-99. DOI : 10.1002/cctc.201300740.

Amide bond formation via C(sp(3))-H bond functionalization and CO insertion

H. Liu; G. Laurenczy; N. Yan; P. J. Dyson 

Chemical Communications. 2014. Vol. 50, num. 3, p. 341-343. DOI : 10.1039/c3cc47015f.


Heterogeneous Silica-Supported Ruthenium Phosphine Catalysts for Selective Formic Acid Decomposition

W. Gan; P. J. Dyson; G. Laurenczy 

ChemCatChem. 2013. Vol. 5, p. 3124-3130. DOI : 10.1002/cctc.201300246.

Cycloaddition of CO2 to epoxides catalyzed by imidazolium-based polymeric ionic liquids

S. Ghazali-Esfahani; H. Song; E. Paunescu; F. D. Bobbink; H. Liu et al. 

Green Chemistry. 2013. Vol. 15, num. 6, p. 1584-1589. DOI : 10.1039/c3gc37085b.

How Strong Is Hydrogen Bonding in Ionic Liquids? Combined X-ray Crystallographic, Infrared/Raman Spectroscopic, and Density Functional Theory Study

S. A. Katsyuba; M. V. Vener; E. E. Zvereva; Z. Fei; R. Scopelliti et al. 

Journal Of Physical Chemistry B. 2013. Vol. 117, num. 30, p. 9094-9105. DOI : 10.1021/jp405255w.

Hydrogen storage: beyond conventional methods

A. F. Dalebrook; W. Gan; M. Grasemann; S. Moret; G. Laurenczy 

Chemical Communications. 2013. Vol. 49, p. 8735-8751. DOI : 10.1039/c3cc43836h.

Ruthenium(II)-Catalyzed Hydrogen Generation from Formic Acid using Cationic, Ammoniomethyl-Substituted Triarylphosphine Ligands

W. Gan; D. J. M. Snelders; P. J. Dyson; G. Laurenczy 

ChemCatChem. 2013. Vol. 5, num. 5, p. 1126-1132. DOI : 10.1002/cctc.201200782.

Development of Palladium Surface-Enriched Heteronuclear Au-Pd Nanoparticle Dehalogenation Catalysts in an Ionic Liquid

X. Yuan; G. Sun; H. Asakura; T. Tanaka; X. Chen et al. 

Chemistry – A European Journal. 2013. Vol. 19, num. 4, p. 1227-1234. DOI : 10.1002/chem.201203605.

Direct, in situ determination of pH and solute concentrations in formic acid dehydrogenation and CO2 hydrogenation in pressurised aqueous solutions using 1H and 13C NMR spectroscopy

S. Moret; P. J. Dyson; G. Laurenczy 

Dalton Transactions. 2013. Vol. 42, p. 4353-4356. DOI : 10.1039/c3dt00081h.

Classical and non-classical phosphine-Ru(ii)-hydrides in aqueous solutions: many, various, and useful

G. Papp; H. Horváth; G. Laurenczy; I. Szatmári; Á. Kathó et al. 

Dalton Transactions. 2013. Vol. 42, num. 2, p. 521. DOI : 10.1039/c2dt31793a.


Towards the development of a hydrogen battery

A. Boddien; C. Federsel; P. Sponholz; D. Mellmann; R. Jackstell et al. 

Energy & Environmental Science. 2012. Vol. 5, num. 10, p. 8907. DOI : 10.1039/c2ee22043a.

Formic acid as a hydrogen source – recent developments and future trends

M. Grasemann; G. Laurenczy 

Energy & Environmental Science. 2012. Vol. 5, num. 8, p. 8171. DOI : 10.1039/c2ee21928j.

Tuning the Chemoselectivity of Rh Nanoparticle Catalysts by Site-Selective Poisoning with Phosphine Ligands: The Hydrogenation of Functionalized Aromatic Compounds

D. J. M. Snelders; N. Yan; W. Gan; G. Laurenczy; P. J. Dyson 

Acs Catalysis. 2012. Vol. 2, p. 201-207. DOI : 10.1021/cs200575r.


Hydrogen Storage and Delivery: The Carbon Dioxide – Formic Acid Couple

G. Laurenczy 

CHIMIA International Journal for Chemistry. 2011. Vol. 65, num. 9, p. 663-666. DOI : 10.2533/chimia.2011.663.

A Charge/Discharge Device for Chemical Hydrogen Storage and Generation

G. Papp; J. Csorba; G. Laurenczy; F. Joó 

Angewandte Chemie International Edition. 2011. Vol. 50, num. 44, p. 10433-10435. DOI : 10.1002/anie.201104951.

Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst

A. Boddien; D. Mellmann; F. Gartner; R. Jackstell; H. Junge et al. 

Science. 2011. Vol. 333, num. 6050, p. 1733-1736. DOI : 10.1126/science.1206613.

Synthesis of Gold Nanoparticle Catalysts Based on a New Water-Soluble Ionic Polymer

I. Biondi; G. Laurenczy; P. J. Dyson 

Inorganic Chemistry. 2011. Vol. 50, num. 17, p. 8038-8045. DOI : 10.1021/ic200334m.

Di-n-butyltin(IV)-catalyzed dimethyl carbonate synthesis from carbon dioxide and methanol: An in situ high pressure 119Sn{1H} NMR spectroscopic study

G. Laurenczy; M. Picquet; L. Plasseraud 

Journal of Organometallic Chemistry. 2011. Vol. 696, num. 9, p. 1904-1909. DOI : 10.1016/j.jorganchem.2011.02.010.

Striking Influence of the Catalyst Support and Its Acid–Base Properties: New Insight into the Growth Mechanism of Carbon Nanotubes

A. Magrez; R. Smajda; J. W. Seo; E. Horváth; P. Ribic̆ et al. 

ACS Nano. 2011. Vol. 5, num. 5, p. 3428-3437. DOI : 10.1021/nn200012z.

Hydrogen Storage in Formic Acid – Amine Adducts

A. Boddien; F. Gärtner; D. Mellmann; P. Sponholz; H. Junge et al. 

CHIMIA International Journal for Chemistry. 2011. Vol. 65, num. 4, p. 214-218. DOI : 10.2533/chimia.2011.214.

Supported nitrogen-modified Pd nanoparticles for the selective hydrogenation of 1-hexyne

M. Crespo-Quesada; R. Dykeman; G. Laurenczy; P. J. Dyson; L. Kiwi 

Journal of Catalysis. 2011. Vol. 279, num. 1, p. 66-74. DOI : 10.1016/j.jcat.2011.01.003.


A Well-Defined Iron Catalyst for the Reduction of Bicarbonates and Carbon Dioxide to Formates, Alkyl Formates, and Formamides

C. Federsel; A. Boddien; R. Jackstell; R. Jennerjahn; P. J. Dyson et al. 

Angewandte Chemie-International Edition. 2010. Vol. 49, p. 9777-9780. DOI : 10.1002/anie.201004263.

Ruthenium-Catalyzed Hydrogenation of Bicarbonate in Water

C. Federsel; R. Jackstell; A. Boddien; G. Laurenczy; M. Beller 

ChemSusChem. 2010. Vol. 3, num. 9, p. 1048-1050. DOI : 10.1002/cssc.201000151.

Crystallisation of inorganic salts containing 18-crown-6 from ionic liquids

N. Yan; Z. Fei; R. Scopelliti; G. Laurenczy; Y. Kou et al. 

Inorganica Chimica Acta. 2010. Vol. 363, num. 3, p. 504-508. DOI : 10.1016/j.ica.2009.06.020.

Influence of water-soluble sulfonated phosphine ligands on ruthenium catalyzed generation of hydrogen from formic acid

W. Gan; C. Fellay; P. J. Dyson; G. Laurenczy 

Journal of Coordination Chemistry. 2010. Vol. 63, num. 14-16, p. 2685-2694. DOI : 10.1080/00958972.2010.492470.

Synthesis of Room-Temperature Ionic Liquids with the Weakly Coordinating [Al(ORF)4]- Anion (RF=C(H)(CF3)2) and the Determination of Their Principal Physical Properties

S. Bulut; P. Klose; M-M. Huang; H. Weingaertner; P. J. Dyson et al. 

Chemistry–A European Journal. 2010. Vol. 16, num. 44, p. 13139-13154. DOI : 10.1002/chem.201000982.


Influence of ion pairing on styrene hydrogenation using a cationic η6-arene β-diketiminato-ruthenium complex

A. Moreno; P. S. Pregosin; G. Laurenczy; A. D. Phillips; P. J. Dyson 

Organometallics. 2009. Vol. 28, num. 22, p. 6432-6441. DOI : 10.1021/om900634s.

Hydrogen storage and delivery: immobilization of a highly active homogeneous catalyst for the decomposition of formic acid to hydrogen and carbon dioxide

W. Gan; P. J. Dyson; G. Laurenczy 

REACTION KINETICS AND CATALYSIS LETTERS. 2009. Vol. 98, num. 2, p. 205-213. DOI : 10.1007/s11144-009-0096-z.

Chelating NHC Ruthenium(II) Complexes as Robust Homogeneous Hydrogenation Catalysts

C. Gandolfi; M. Heckenroth; A. Neels; G. Laurenczy; M. Albrecht 

Organometallics. 2009. Vol. 28, num. 17, p. 5112-5121. DOI : 10.1021/om900356w.

Selective Formic Acid Decomposition for High-Pressure Hydrogen Generation: A Mechanistic Study

C. Fellay; N. Yan; P. J. Dyson; G. Laurenczy 

CHEMISTRY – A EUROPEAN JOURNAL. 2009. Vol. 15, p. 3752-3760. DOI : 10.1002/chem.200801824.


Determination of the viscosity of the ionic liquids [bmim][PF6] and [bmim][TF2N] under high CO2 gas pressure using sapphire NMR tubes

G. Laurenczy; P. J. Dyson 

ZEITSCHRIFT FUER NATURFORSCHUNG, B; CHEMICAL SCIENCES. 2008. Vol. 63, num. 6, p. 681-684. DOI : 10.1515/znb-2008-0614.

Biphasic Hydrogenation over PVP Stabilized Rh Nanoparticles in Hydroxyl Functionalized Ionic Liquids

X. Yang; N. Yan; Z. Fei; R. M. Crespo-Quesada; G. Laurenczy et al. 

Inorganic Chemistry. 2008. Vol. 47, num. 17, p. 7444-7446. DOI : 10.1021/ic8009145.

Pd Nanoparticles in a Supported Ionic Liquid Phase: Highly Stable Catalysts for Selective Acetylene Hydrogenation under Continuous-Flow Conditions

M. Ruta; G. Laurenczy; P. J. Dyson; L. Kiwi-Minsker 

Journal of Physical Chemistry C. 2008. Vol. 112, num. 46, p. 17814-17819. DOI : 10.1021/jp806603f.

Hydrocarboxylation of Terminal Alkenes in Supercritical Carbon Dioxide

C. T. Estorach; A. Orejón; N. Ruiz; A. M. Masdeu-Bultó; G. Laurenczy 

European Journal of Inorganic Chemistry. 2008. num. 22, p. 3524-3531. DOI : 10.1002/ejic.200800282.

A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst

C. Fellay; P. J. Dyson; G. Laurenczy 

ANGEWANDTE CHEMIE, INTERNATIONAL EDITION. 2008. Vol. 47, num. 21, p. 3966-8. DOI : 10.1002/anie.200800320.

(Pentamethylcyclopentadienyl)iridium-PTA (PTA = 1,3,5-Triaza-7-phosphaadamantane) Complexes and Their Application in Catalytic Water Phase Carbon Dioxide Hydrogenation

M. Erlandsson; V. R. Landaeta; L. Gonsalvi; M. Peruzzini; A. D. Phillips et al. 

European Journal of Inorganic Chemistry. 2008. num. 4, p. 620-627. DOI : 10.1002/ejic.200700792.


Ruthenium nanoparticles intercalated in hectorite: A reusable hydrogenation catalyst for benzene and toluene

G. Süss-Fink; B. Moollwitz; B. Therrien; M. Dadras; G. Laurenczy et al. 

Journal of cluster science. 2007. Vol. 18, p. 87-95. DOI : 10.1007/s10876-006-0084-7.

Influence of the Interaction between Hydrogen Sulfide and Ionic Liquids on Solubility: Experimental and Theoretical Investigation

C. S. Pomelli; C. Chiappe; A. Vidis; G. Laurenczy; P. J. Dyson 

JOURNAL OF PHYSICAL CHEMISTRY B. 2007. Vol. 111, num. 45, p. 13014-13019. DOI : 10.1021/jp076129d.

Aqueous phase carbon dioxide and bicarbonate hydrogenation catalyzed by cyclopentadienyl ruthenium complexes

S. S. Bosquain; A. Dorcier; P. J. Dyson; M. Erlandsson; L. Gonsalvi et al. 

APPLIED ORGANOMETALLIC CHEMISTRY. 2007. Vol. 21, num. 11, p. 947-951. DOI : 10.1002/aoc.1317.

Structured fiber supports for ionic liquid-phase catalysis used in gas-phase continuous hydrogenation

M. Ruta; I. Yuranov; P. Dyson; G. Laurenczy; L. Kiwi-Minsker 

JOURNAL OF CATALYSIS. 2007. Vol. 247, num. 2, p. 269-276. DOI : 10.1016/j.jcat.2007.02.012.

Carbon dioxide hydrogenation catalyzed by a ruthenium dihydride: a DFT and high-pressure spectroscopic investigation

A. Urakawa; F. Jutz; G. Laurenczy; A. Baiker 

Chemistry-A European Journal. 2007. Vol. 13, num. 14, p. 3886-3899. DOI : 10.1002/chem.200601339.

In situ NMR characterisation of an intermediate in the catalytic hydrogenation of CO2 and HCO3– in aqueous solution

G. Laurenczy; S. Jedner; E. Alessio; P. Dyson 

INORGANIC CHEMISTRY COMMUNICATIONS. 2007. Vol. 10, num. 5, p. 558-562. DOI : 10.1016/j.inoche.2007.01.020.

Facile, thermo-reversible cycloaddition of small molecules to a ruthenium(II) arene-diketiminate

A. Phillips; G. Laurenczy; R. Scopelliti; P. Dyson 

Organometallics. 2007. Vol. 26, num. 5, p. 1120-1122. DOI : 10.1021/om070017r.

High-pressure effects on the Diels-Alder reaction in room temperature ionic liquids

A. Vidiš; G. Laurenczy; E. Küsters; G. Sedelmeier; P. Dyson 

JOURNAL OF PHYSICAL ORGANIC CHEMISTRY. 2007. Vol. 20, num. 2, p. 109-114. DOI : 10.1002/poc.1131.

Heterogeneous dehalogenation of arylhalides in the presence of ionic liquids

C. Ohlin; Z. Béni; G. Laurenczy; N. Ruiz; A. Masdeu-Bultó 

APPLIED ORGANOMETALLIC CHEMISTRY. 2007. Vol. 21, num. 3, p. 156-160. DOI : 10.1002/aoc.1194.

Mechanistic Studies on the Formation of eta(2)-Diphosphine (eta(6)-p-cymene)ruthenium(II) Compounds

A. Chaplin; C. Fellay; G. Laurenczy; P. Dyson 

Organometallics. 2007. Vol. 26, num. 3, p. 586-593. DOI : 10.1021/om060752n.


Kinetic studies on the first dihydrogen aquacomplex, [Ru(H2)(H2O)5]2+: Formation under H2 pressure and catalytic H/D isotope exchange in water

P. V. Grundler; O. V. Yazyev; N. Aebischer; L. Helm; G. Laurenczy et al. 

Inorganica Chimica Acta. 2006. Vol. 359, num. 6, p. 1795-1806. DOI : 10.1016/j.ica.2005.06.056.

Cooperative effect between iridium and platinum in the carbonylation of methanol to acetic acid

S. Gautron; N. Lassauque; C. Berre; L. Azam; R. Giordano et al. 

TOPICS IN CATALYSIS. 2006. Vol. 40, num. 1-4, p. 83-90. DOI : 10.1007/s11244-006-0110-x.

Promoting Role of [PtI2(CO)]2 in the Iridium-Catalyzed Methanol Carbonylation to Acetic Acid and Its Interaction with Involved Iridium Species

S. Gautron; N. Lassauque; C. Le Berre; L. Azam; R. Giordano et al. 

Organometallics. 2006. Vol. 25, num. 25, p. 5894-5905. DOI : 10.1021/om060282x.

In Vitro Evaluation of Rhodium and Osmium RAPTA Analogues: The Case for Organometallic Anticancer Drugs Not Based on Ruthenium

A. Dorcier; W. Ang; S. Bolano; L. Gonsalvi; L. Juillerat-Jeannerat et al. 

Organometallics. 2006. Vol. 25, num. 17, p. 4090-4096. DOI : 10.1021/om060394o.

Regioselectivity in aqueous palladium catalysed hydroxycarbonylation of styrene: a catalytic and mechanistic study

A. Ionescu; G. Laurenczy; O. Wendt 

Dalton Transactions. 2006. num. 32, p. 3934-3940. DOI : 10.1039/b607331j.

Biphasic Hydrosilylation in Ionic Liquids: A Process Set for Industrial Implementation

T. Geldbach; D. Zhao; N. Castillo; G. Laurenczy; B. Weyershausen et al. 

Journal of the American Chemical Society. 2006. Vol. 128, num. 30, p. 9773-9780. DOI : 10.1021/ja0612293.

Analysis of the Synergistic Effect of Carbonylplatinum Complexes on the Iridium-Catalysed Carbonylation of Methanol to Acetic Acid

S. Gautron; N. Lassauque; C. Le Berre; P. Serp; L. Azam et al. 

European Journal of Inorganic Chemistry. 2006. num. 6, p. 1121-1126. DOI : 10.1002/ejic.200500931.

Synthesis of Imidazolium-Tethered Ruthenium(II)-Arene Complexes and Their Application in Biphasic Catalysis

T. Geldbach; G. Laurenczy; R. Scopelliti; P. Dyson 

Organometallics. 2006. Vol. 25, num. 3, p. 733-742. DOI : 10.1021/om050849u.


The water-soluble cluster cation [H3Ru3(C6H6)(C6Me6)(2)(O)](+): Improved synthesis, aerobic oxidation, electrochemical properties and ligand exchange studies

L. Vieille-Petit; M. Tschan; G. Suss-Fink; G. Laurenczy; C. Hagen et al. 

POLYHEDRON. 2005. Vol. 24, num. 15, p. 1961-1967. DOI : 10.1016/j.poly.2005.06.006.

Coordination chemistry of a new rigid, hexadentate bispidine-based bis(amine)tetrakis(pyridine) ligand

C. Bleiholder; H. Borzel; P. Comba; R. Ferrari; M. Heydt et al. 

Inorganic Chemistry. 2005. Vol. 44, num. 22, p. 8145-8155. DOI : 10.1021/ic0513383.

Hydride route for the palladium-catalysed cyclocarbonylation of monoterpenes

D. Nguyen; G. Laurenczy; M. Urrutigoity; P. Kalck 

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY. 2005. num. 20, p. 4215-4225. DOI : 10.1002/ejic.200500136.

In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes

C. Scolaro; A. Bergamo; L. Brescacin; R. Delfino; M. Cocchietto et al. 

JOURNAL OF MEDICINAL CHEMISTRY. 2005. Vol. 48, num. 12, p. 4161-4171. DOI : 10.1021/jm050015d.

Supramolecular triruthenium cluster-based benzene hydrogenation catalysis: Fact or fiction?

C. Hagen; L. Vieille-Petit; G. Laurenczy; G. Suss-Fink; R. Finke 

Organometallics. 2005. Vol. 24, num. 8, p. 1819-1831. DOI : 10.1021/om048976y.

Rationalisation of solvent effects in the diels-alder reaction between cyclopentadiene and methyl acrylate in room temperature ionic liquids

A. Vidis; C. Ohlin; G. Laurenczy; E. Kusters; G. Sedelmeier et al. 

ADVANCED SYNTHESIS & CATALYSIS. 2005. Vol. 347, num. 2-3, p. 266-274. DOI : 10.1002/adsc.200404301.

Experimental and theoretical study of intramolecular exchange in Ir2Rh2(CO)(12) and Ir-4(CO)(11)(mu-SO2)

Z. Beni; L. Guidoni; G. Laurenczy; U. Roethlisberger; R. Roulet 

Dalton Transactions. 2005. num. 2, p. 310-314. DOI : 10.1039/b415147j.

Allyl-functionalised ionic liquids: Synthesis, characterisation, and reactivity

D. Zhao; Z. Fei; T. Geldbach; R. Scopelliti; G. Laurenczy et al. 

HELVETICA CHIMICA ACTA. 2005. Vol. 88, num. 3, p. 665-675. DOI : 10.1002/hlca.200590046.

Synthesis and characterization of new water-soluble hydrides of Ru-II: A step towards dinitrogen activation?

M. Loy; G. Laurenczy 

HELVETICA CHIMICA ACTA. 2005. Vol. 88, num. 3, p. 557-565. DOI : 10.1002/hlca.200590038.


Cluster and polynuclear compounds. Mixed-metal clusters of iridium with ruthenium and osmium

E. Diz; S. Haak; G. Suess-Fink; Z. Beni; G. Laurenczy 

Inorganic Syntheses. 2004. Vol. 34, p. 206-210.

In situ high pressure FT-IR spectroscopy on alkene hydroformylation catalysed by RhH(CO)(PPh3)(3) and Co-2(CO)(8)

M. Caporali; P. Frediani; A. Salvini; G. Laurenczy 

INORGANICA CHIMICA ACTA. 2004. Vol. 357, num. 15, p. 4537-4543. DOI : 10.1016/j.ica.2004.07.021.

On the catalytic activity of cluster anions in styrene hydrogenation: considerable enhancements in ionic liquids compared to molecular solvents

D. Zhao; P. Dyson; G. Laurenczy; S. McIndoe 

JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL. 2004. Vol. 214, num. 1, p. 19-25. DOI : 10.1016/j.molcata.2003.09.037.

Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation

C. Ohlin; P. Dyson; G. Laurenczy 

Chemical Communications. 2004. num. 9, p. 1070-1071. DOI : 10.1039/B401537A.

Supramolecular cluster catalysis: facts and problems

G. Suss-Fink; B. Therrien; L. Vieille-Petit; M. Tschan; V. B. Romakh et al. 

Journal of Organometallic Chemistry. 2004. Vol. 689, num. 8, p. 1362-1369. DOI : 10.1016/j.jorganchem.2003.12.032.

Water-soluble (eta(6)-arene)ruthenium(II)-phosphine complexes and their catalytic activity in the hydrogenation of bicarbonate in aqueous solution

H. Horvath; G. Laurenczy; A. Katho 

JOURNAL OF ORGANOMETALLIC CHEMISTRY. 2004. Vol. 689, num. 6, p. 1036-1045. DOI : 10.1016/j.jorganchem.2003.11.036.

Reactions of [Ru(H2O)(6)](2+) with water-soluble tertiary phosphines

J. Kovacs; F. Joo; A. Benyei; G. Laurenczy 

Dalton Transactions. 2004. num. 15, p. 2336-2340. DOI : 10.1039/b405878j.

Dual-functionalised ionic liquids: synthesis and characterisation of imidazolium salts with a nitrile-functionalised anion

D. Zhao; Z. Fei; C. Ohlin; G. Laurenczy; P. Dyson 

Chemical Communications. 2004. num. 21, p. 2500-2501. DOI : 10.1039/B408938C.


Homogeneous hydrogenation of carbon dioxide and bicarbonate in aqueous solution catalyzed by water-soluble ruthenium(II) phosphine complexes

J. Elek; L. Nadasdi; G. Papp; G. Laurenczy; F. Joo 

APPLIED CATALYSIS A-GENERAL. 2003. Vol. 255, num. 1, p. 59-67. DOI : 10.1016/S0926-860X(03)00644-6.

Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation

P. Dyson; G. Laurenczy; C. Ohlin; J. Vallance; T. Welton 

Chemical Communications. 2003. num. 19, p. 2418-2419. DOI : 10.1039/b308309h.

Water-soluble analogs of [RuCl3(NO)(PPh3)(2)] and their catalytic activity in the hydrogenation of carbon dioxide and bicarbonate in aqueous solution

A. Katho; Z. Opre; G. Laurenczy; F. Joo 

Journal of Molecular Catalysis A: Chemical. 2003. Vol. 204, p. 143-148. DOI : 10.1016/S1381-1169(03)00293-0.

Carbon dioxide reduction in biphasic aqueous-ionic liquid systems by pressurized hydrogen

C. Ohlin; G. Laurenczy 

HIGH PRESSURE RESEARCH. 2003. Vol. 23, num. 3, p. 239-242. DOI : 10.1080/0895795032000102405.

Rhodium-sulfonated diphosphine catalysts in aqueous hydroformylation of vinyl arenes: high-pressure NMR and IR studies

A. Aghmiz; A. Orejon; M. Dieguez; M. Miquel-Serrano; C. Claver et al. 

JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL. 2003. Vol. 195, num. 1-2, p. 113-124. DOI : 10.1016/S1381-1169(02)00544-7.

A comparison of ruthenium-catalysed arene hydrogenation reactions in water and 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids

P. Dyson; D. Ellis; W. Henderson; G. Laurenczy 

ADVANCED SYNTHESIS & CATALYSIS. 2003. Vol. 345, num. 1-2, p. 216-221. DOI : 10.1002/adsc.200390015.

Minor modifications to the ligands surrounding a ruthenium complex lead to major differences in the way in which they catalyse the hydrogenation of arenes

P. Dyson; D. Ellis; G. Laurenczy 

ADVANCED SYNTHESIS & CATALYSIS. 2003. Vol. 345, num. 1-2, p. 211-215. DOI : 10.1002/adsc.200390014.

Dramatic pressure effects on the selectivity of the aqueous organic biphasic hydrogenation of trans-cinnamaldehyde catalvzed by water-soluble Ru(II)-tertiary phosphane complexes

G. Papp; J. Elek; L. Nadasdi; G. Laurenczy; F. Joo 

ADVANCED SYNTHESIS & CATALYSIS. 2003. Vol. 345, num. 1-2, p. 172-174. DOI : 10.1002/adsc.200390006.

Crystal structure and fluxional behaviour in solution of [Rh-4(CO)(6)(mu-Me2PCH2PMe2)(3)]

K. Besancon; T. Lumini; G. Laurenczy; S. Detti; K. Schenk et al. 

Dalton Transactions. 2003. num. 5, p. 968-972. DOI : 10.1039/b210986g.

Aqueous organometallic catalysis. Isotope exchange reactions in H-2-D2O and D-2-H2O systems catalyzed by water-soluble Rh- and Ru-phosphine complexes

G. Kovacs; L. Nadasdi; G. Laurenczy; F. Joo 

GREEN CHEMISTRY. 2003. Vol. 5, num. 2, p. 213-217. DOI : 10.1039/b300156n.


Mechanistic in situ high-pressure NMR studies of benzene hydrogenation by supramolecular cluster catalysis with [(eta(6)-C6H6)(eta(6)-C6Me6)(2)Ru-3(mu(3)-O)(mu(2)-OH)(mu(2)-H)(2)][BF4]

G. Laurenczy; M. Faure; L. Vieille-Petit; G. Suss-Fink; T. Ward 

ADVANCED SYNTHESIS & CATALYSIS. 2002. Vol. 344, num. 10, p. 1073-1077. DOI : 10.1002/1615-4169(200212)344:10<1073::AID-ADSC1073>3.0.CO;2-J.

Reaction of triangulo-clusters [Pt3(μ-CO)3(PR3)3] with hexafluorobutyne. The X-ray crystal structures of [Pt2(CO)2(PR3)2(μ-η2:η2-CF3C[triple bond, length as m-dash]CCF3)] (PR3 = PPh3 or PCy3) and [Pt2(CO)2(PBzPh2)(μ-η1:η1-CF3C[triple bond, length as m-dash]CCF3)2]

R. Ros; A. Tassan; R. Roulet; G. Laurenczy; V. Duprez et al. 

Journal of the Chemical Society, Dalton Transactions. 2002. num. 18, p. 3565-3570. DOI : 10.1039/B203075F.

Intramolecular dynamics of [Rh-4(CO)(6)(mu-PPh2)(4)] in solution

E. Gullo; S. Detti; G. Laurenczy; R. Roulet 

Journal of the Chemical Society, Dalton Transactions. 2002. num. 24, p. 4577-4581. DOI : 10.1039/B208318C.


The reaction of alkynes with triangulo-clusters [Pt3(m-CO)3(PR3)3]

R. Ros; A. Tassan; R. Roulet; V. Duprez; S. Detti et al. 

Journal of the Chemical Society, Dalton Transactions. 2001. num. 19, p. 2858-2863. DOI : 10.1039/b103306a.

The reaction of alkenes with triangulo-clusters [Pt3(m-CO)3(PR3)3]

R. Ros; G. Facchin; A. Tassan; R. Roulet; G. Laurenczy et al. 

Journal of Cluster Science. 2001. Vol. 12, num. 1, p. 99-112. DOI : 10.1023/A:1016670928641.

Aspects of aqueous ruthenium(II) chemistry

P. V. Grundler; G. Laurenczy; A. E. Merbach 

Helvetica Chimica Acta. 2001. Vol. 84, num. 10, p. 2854-2867. DOI : 10.1002/1522-2675(20011017)84:10<2854::AID-HLCA2854>3.0.CO;2-E.

(para-Diphenylphosphino)benzenesulfonic acid and its ruthenium(II) complexes: an old water soluble phosphine ligand in a new perspective

G. Papp; J. Kovacs; A. Benyei; G. Laurenczy; L. Nadasdi et al. 

CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE. 2001. Vol. 79, num. 5, p. 635-641. DOI : 10.1139/v01-077.

The effect of pH on the reactions of catalytically important Rh-I complexes in aqueous solution: Reaction of [RhCl(tppms)(3)] and trans-[RhCl(CO)(tppms)(2)] with hydrogen (TPPMS = mono-sulfonated triphenylphosphine)

F. Joo; J. Kovacs; A. Benyei; L. Nadasdi; G. Laurenczy 

Chemistry-A European Journal. 2001. Vol. 7, num. 1, p. 193-199. DOI : 10.1002/1521-3765(20010105)7:1<193::AID-CHEM193>3.0.CO;2-Q.


Synthesis and 13C NMR study of the triangulo-clusters [Pt3(m-CO)3-n(m-SO2)n(PR3)3] (n = 0-3)

R. Ros; A. Tassan; G. Laurenczy; R. Roulet 

Inorganica Chimica Acta. 2000. Vol. 303, num. 1, p. 94-99. DOI : 10.1016/S0020-1693(99)00523-X.

Homogeneous hydrogenation of aqueous hydrogen carbonate to formate under mild conditions with water soluble rhodium(I)- and ruthenium(II)-phosphine catalysts

F. Joo; G. Laurenczy; P. Karady; J. Elek; L. Nadasdi et al. 

Applied Organometallic Chemistry. 2000. Vol. 14, num. 12, p. 857-859. DOI : 10.1002/1099-0739(200012)14:12<857::AID-AOC86>3.0.CO;2-9.

Formation and characterization of water-soluble hydrido-ruthenium(II) complexes of 1,3,5-triaza-7-phosphaadamantane and their catalytic activity in hydrogenation of CO2 and HCO3- in aqueous solution

G. Laurenczy; F. Joo; L. Nadasdi 

Inorganic Chemistry. 2000. Vol. 39, num. 22, p. 5083-5088. DOI : 10.1021/ic000200b.

H/D exchange between H-2-D2O and D-2-H2O catalyzed by water soluble tertiary phosphine complexes of ruthenium(II) and rhodium(I)

G. Kovacs; L. Nadasdi; F. Joo; G. Laurenczy 

COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE C-CHIMIE. 2000. Vol. 3, num. 7, p. 601-605. DOI : 10.1016/S1387-1609(00)01142-7.

Towards an easy carbon dioxide reduction in aqueous solution

G. Laurenczy; F. Joo; L. Nadasdi 

HIGH PRESSURE RESEARCH. 2000. Vol. 18, num. 1-6, p. 251-255. DOI : 10.1080/08957950008200976.


Intramolecular site exchanges in [Ir3Ru(CO)12]

G. Laurenczy; I. Dellavia; R. Roulet 

ACH – Models in Chemistry. 1999. Vol. 136, num. 3, p. 317-324.


Spectroscopic studies of the chemical speciation in concentrated alkaline aluminate solutions

P. Sipos; S. G. Capewell; P. M. May; G. Hefter; G. Laurenczy et al. 

Journal of the Chemical Society : Dalton Transactions : Inorganic Chemistry. 1998. num. 18, p. 3007-3012. DOI : 10.1039/A805271I.

A new variable temperature and pressure infrared cell to study liquid and liquid-gas systems

G. Laurenczy; F. Lukacs; R. Roulet 

Analytica Chimica Acta. 1998. Vol. 359, num. 3, p. 275-281. DOI : 10.1016/S0003-2670(97)00696-X.

Intramolecular dynamics of tetranuclear iridium carbonyl cluster compounds. Part 6. Derivatives with bidentate ligands. Crystal structures of tetrahedro-decacarbonyl{m-[1,1-bis(methylthio-kS)ethane]}tetrairidium ([Ir4(CO)10-(m2-(MeS)2CHMe)]), tetrahedro-tri-m-carbonylheptacarbonyl{m-{ethylidenebis-[diphenylphosphine]k-P: kP’}}tetrairidium ([Ir4(CO)10(m2-(Ph2P)2CHMe)]), and tetrahedro-Tri-m-carbonylheptacarbonyl{m-{propane-1,3-diylbis[diphenylphosphine]-kP: kP’}}tetrairidium ([Ir4(CO)10(m2-Ph2P(CH2)3PPh2)])

T. Lumini; G. Laurenczy; R. Roulet; A. Tassan; R. Ros et al. 

Helvetica Chimica Acta. 1998. Vol. 81, num. 4, p. 781-791. DOI : 10.1002/hlca.19980810328.

Experimental and Theoretical Studies of the Site Exchanges in Rh4(CO)12 and IrRh3(CO)12

K. Besancon; G. Laurenczy; T. Lumini; R. Roulet; R. Bruyndonckx et al. 

Inorganic Chemistry. 1998. Vol. 37, num. 21, p. 5634-5640. DOI : 10.1021/ic9804162.

Amphiphilic organoruthenium oxomolybdenum and oxovanadium clusters

G. Suss-Fink; L. Plasseraud; V. Ferrand; S. Stanislas; A. Neels et al. 

Polyhedron. 1998. Vol. 17, num. 17, p. 2817-2827. DOI : 10.1016/S0277-5387(97)00529-9.


205Tl-NMR and UV-visible spectroscopic determination of the formation constants of aqueous thallium(I) hydroxo-complexes

P. Sipos; S. G. Capewell; P. M. May; G. T. Hefter; G. Laurenczy et al. 

Journal of Solution Chemistry. 1997. Vol. 26, num. 5, p. 419-431. DOI : 10.1007/BF02767599.

Structure and molecular dynamics of Ru2(CO)6(m-PCy2)2: an unusual case of cyclohexyl rearrangement

A. Beguin; M. C. Dai; G. Laurenczy; G. Rheinwald; R. Roulet et al. 

Journal of Organometallic Chemistry. 1997. Vol. 527, num. 1-2, p. 167-172. DOI : 10.1016/S0022-328X(96)06636-3.

Trans- and Cis-Water Reactivities in d6 Octahedral Ruthenium(II) Pentaaqua Complexes: Experimental and Density Functional Theory Studies

N. Aebischer; E. Sidorenkova; M. Ravera; G. Laurenczy; D. Osella et al. 

Inorganic Chemistry. 1997. Vol. 36, num. 26, p. 6009-6020. DOI : 10.1021/ic970783y.


Solution dynamics of cis-bis(diphenylphosphino)ethene substituted derivatives of Ir4(CO)12

G. Laurenczy; G. Bondietti; R. Ros; R. Roulet 

Inorganica Chimica Acta. 1996. Vol. 247, num. 1, p. 65-70. DOI : 10.1016/0020-1693(95)04943-6.

Multiple Bonds between Main-Group Elements and Transition Metals. 152. Hydrolysis and Polymerization-Precipitation of Methyltrioxorhenium in Aqueous Solution

G. Laurenczy; F. Lukacs; R. Roulet; W. A. Herrmann; R. W. Fischer 

Organometallics. 1996. Vol. 15, num. 2, p. 848-51. DOI : 10.1021/om9500937.

High-Pressure Stopped-Flow Spectrometer for Kinetic Studies of Fast Reactions by Absorbance and Fluorescence Detection

P. Bugnon; G. Laurenczy; Y. Ducommun; P-Y. Sauvageat; A. E. Merbach et al. 

Analytical Chemistry. 1996. Vol. 68, num. 17, p. 3045-3049. DOI : 10.1021/ac960382k.


Coordination equilibria and water exchange kinetics of lanthanide(III) propylenediaminetetraacetates and other magnetic resonance imaging related complexes

N. Graeppi; D. H. Powell; G. Laurenczy; L. Zekany; A. E. Merbach 

Inorganica Chimica Acta. 1995. Vol. 235, num. 1-2, p. 311-26. DOI : 10.1016/0020-1693(95)90073-F.


Variable-temperature and -pressure 31P-NMR study of the intramolecular PPh3 migration in the cluster compound [Ir2Rh2(CO)11PPh3]

G. Laurenczy; G. Bondietti; A. E. Merbach; B. Moullet; R. Roulet 

Helvetica Chimica Acta. 1994. Vol. 77, num. 2, p. 547-53. DOI : 10.1002/hlca.19940770216.

Synthesis of [Ir3Rh(CO)12] and fluxional behavior of some of its substituted derivatives

G. Bondietti; G. Laurenczy; R. Ros; R. Roulet 

Helvetica Chimica Acta. 1994. Vol. 77, num. 7, p. 1869-85. DOI : 10.1002/hlca.19940770718.

Mechanism of Aquation of Bicycloalkyl Substituted(Ethylenediamine)dichloroplatinum(II) Complexes: A Search for the Understanding of Their Differences in Antitumor Activity

J-L. Jestin; J-C. Chottard; U. Frey; G. Laurenczy; A. E. Merbach 

Inorganic Chemistry. 1994. Vol. 33, num. 19, p. 4277-82. DOI : 10.1021/ic00097a014.

Second-order globalization for the determination of activation parameters in kinetics

P. Bugnon; J-C. Chottard; J-L. Jestin; B. Jung; G. Laurenczy et al. 

Analytica Chimica Acta. 1994. Vol. 298, num. 2, p. 193-201. DOI : 10.1016/0003-2670(94)00255-X.


Solution equilibria in trialkyl-phosphite derivative of [Ir4(CO)12]. Crystal structure of [Ir4(CO)11{P(OCH2)3CEt}]

K. Besancon; G. Laurenczy; T. Lumini; R. Roulet; G. Gervasio 

Helvetica Chimica Acta. 1993. Vol. 76, num. 8, p. 2926-35.

Intramolecular site exchange of carbonyl ligands in the cluster compounds nonacarbonyl{m3-[h3-(1,3,5-trithiane)]}triruthenium ([Ru3(CO)9{m3-(h3-C3H6S3)}]) and (tert-butyl isocyanide)octacarbonyl-{m3-[h3-(1,3,5-trithiane)]}triruthenium ([Ru3(t-BuNC)(CO)8{m3-(h3-C3H6S3)}])

G. Laurenczy; A. E. Merbach; B. Moullet; R. Roulet; L. Hoferkamp et al. 

Helvetica Chimica Acta. 1993. Vol. 76, num. 8, p. 2936-41. DOI : 10.1002/hlca.19930760817.

Aqueous catalytic dimerization of ethylene: characterization of the ruthenium complex reaction intermediates [Ru(CH2:CH2)(H2O)5](tos)2 and [Ru(CH2:CH2)2(H2O)4](tos)2 (tos = toluene-p-sulfonate)

G. Laurenczy; A. E. Merbach 

Journal of the Chemical Society, Chemical Communications. 1993. num. 2, p. 187-189. DOI : 10.1039/C39930000187.

Monocomplex formation reactions of hexaaquaruthenium(II): a mechanistic study

N. Aebischer; G. Laurenczy; A. Ludi; A. E. Merbach 

Inorganic Chemistry. 1993. Vol. 32, num. 13, p. 2810-14. DOI : 10.1021/ic00065a005.


Monocomplex formation and dissociation of some first row divalent transition metal ions with 2-chloro-1,10-phenanthroline by the high-pressure stopped-flow technique

G. Laurenczy; P. Bugnon; A. E. Merbach 

Inorganica Chimica Acta. 1992. Vol. 198-200, num. 1, p. 159-64. DOI : 10.1016/S0020-1693(00)92357-0.


Variable-pressure oxygen-17 NMR study of water exchange on hexaaquarhodium(III)

G. Laurenczy; I. Rapaport; D. Zbinden; A. E. Merbach 

Magnetic Resonance in Chemistry. 1991. Vol. 29, num. Spec. Issue, p. S45-S51. DOI : 10.1002/mrc.1260291311.

The binding of dinitrogen to ruthenium(II) in aqueous solution

G. Laurenczy; L. Helm; A. E. Merbach; A. Ludi 

Inorganica Chimica Acta. 1991. Vol. 189, num. 2, p. 131-3. DOI : 10.1016/S0020-1693(00)80178-4.

Quantitative formation in water of [Ru(CO)(H2O)5]2+ from hexaaquaruthenium(II) and carbon monoxide

G. Laurenczy; L. Helm; A. Ludi; A. E. Merbach 

Helvetica Chimica Acta. 1991. Vol. 74, num. 6, p. 1236-8. DOI : 10.1002/hlca.19910740611.


Variable-pressure kinetic and equilibrium study of monocomplex formation of copper(II) and zinc(II) with 2-chloro-1,10-phenanthroline in aqueous solution

G. Laurenczy; Y. Ducommun; A. E. Merbach 

Inorganic Chemistry. 1989. Vol. 28, num. 15, p. 3024-8. DOI : 10.1021/ic00314a031.

High-pressure NMR kinetics. Part 39. Variable pressure spectrophotometric equilibrium and lanthanum-139 NMR kinetic studies of lanthanum(III) ion complex formation with 2,6-dicarboxy-4-hydroxypyridine in aqueous solution

Y. Ducommun; L. Helm; G. Laurenczy; A. E. Merbach 

Inorganica Chimica Acta. 1989. Vol. 158, num. 1, p. 3-4. DOI : 10.1016/S0020-1693(00)84005-0.


The reaction volume for the equilibrium between the lanthanide(III) ennea- and octaaqua ions as a diagnostic aid for their water-exchange mechanisms

G. Laurenczy; A. E. Merbach 

Helvetica Chimica Acta. 1988. Vol. 71, num. 8, p. 1971-1973. DOI : 10.1002/hlca.19880710815.

High-pressure kinetic study of formation and dissociation of first- and second-row d10 divalent metal ion complexes with bipyridine in aqueous solution: a cation size dependent reaction mechanism

Y. Ducommun; G. Laurenczy; A. E. Merbach 

Inorganic Chemistry. 1988. Vol. 27, num. 7, p. 1148-52. DOI : 10.1021/ic00280a011.

Lanthanum-139 NMR as a tool for kinetic studies

Y. Ducommun; L. Helm; G. Laurenczy; A. E. Merbach 

Magnetic Resonance in Chemistry. 1988. Vol. 26, num. 11, p. 1023-6. DOI : 10.1002/mrc.1260261116.

Conference Papers


Carbon dioxide to formic acid and to methanol: Homogeneous catalytic ways in aqueous solution at room temperatures

G. Laurenczy 

2018-08-19. 256th National Meeting and Exposition of the American-Chemical-Society (ACS) – Nanoscience, Nanotechnology and Beyond, Boston, MA, Aug 19-23, 2018.



Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols

K. Sordakis; C. Tang; L. K. Vogt; H. Junge; P. J. Dyson et al. 

Chemical Reviews. 2018. Vol. 118, num. 2, p. 372-433. DOI : 10.1021/acs.chemrev.7b00182.


Homogeneous Catalytic Dehydrogenation of Formic Acid: Progress Towards a Hydrogen-Based Economy

G. Laurenczy; P. J. Dyson 

Journal Of The Brazilian Chemical Society. 2014. Vol. 25, num. 12, p. 2157-2163. DOI : 10.5935/0103-5053.20140235.



Propelling the hydrogen economy: from chemical storage and delivery to utilization in biomass conversion

L. Chen / G. Laurenczy; P. J. Dyson (Dir.)  

Lausanne, EPFL, 2021. 


High-pressure NMR spectroscopic and calorimetric studies on formic acid dehydrogenation and carbon dioxide hydrogenation

C. Fink / G. Laurenczy (Dir.)  

Lausanne, EPFL, 2018. 

Hydrogen storage in the carbon dioxide/formic acid system, using homogeneous iron(II)-phosphine catalysts in aqueous solution

M. Montandon-Clerc / G. Laurenczy (Dir.)  

Lausanne, EPFL, 2018. 


Carbon dioxide for hydrogen storage via formic acid derivatives and methanol

K. S. Sordakis / G. Laurenczy (Dir.)  

Lausanne, EPFL, 2016. 


Méthodes de production par ultrasons, de la théorie à l’application industrielle

C. Laurenczy / P. Ryser; J. Jacot (Dir.)  

Lausanne, EPFL, 2015. 


Direct Carbon Dioxide Hydrogenation into Formic Acid in Acidic Media

S. J. Moret / P. J. Dyson; G. Laurenczy (Dir.)  

Lausanne, EPFL, 2014. 


Kinetics and Mechanism of Formic Acid Decomposition in Aqueous Solution using Ruthenium Pre-catalysts with Hydrophilic Phosphine Ligands

W. Gan / G. Laurenczy (Dir.)  

Lausanne, EPFL, 2012. 


Homogeneous catalytic decomposition of formic acid for high pressure hydrogen generation

C. Fellay / G. Laurenczy; P. J. Dyson (Dir.)  

Lausanne, EPFL, 2008. 

Book Chapters


Synthesis of chloride free ruthenium(II) hexaaqua tosylate, [Ru(H2O)6]tos2

C. Fellay; G. Laurenczy 

Inorganic Syntheses; Hoboken, New Jersey: Wiley, 2010. p. 152-155.


High Pressure NMR Cells

G. Laurenczy; L. Helm 

Mechanisms in Homogeneous Catalysis: A Spectroscopic Approach; Weinheim: Wiley-VCH, 2005. p. 81-106.


Characterization of organometallic compounds in water

G. Laurenczy 

Aqueous-Phase Organometallic Catalysis (2nd Ed.); Weinheim: Wiley-VCH, 2004. p. 57-67.


Characterization of organometallic compounds in water

G. Laurenczy 

Aqueous-Phase Organometallic Catalysis (1st Ed.); Weinheim: Wiley-VCH, 1998. p. 46-55.



Method for producing methanol from carbon dioxide and hydrogen gas in homogeneously catalyzed reactions and in an aqueous medium

K. S. Sordakis; G. Laurenczy; Y. Himeda; H. Kawanami; A. Tsurusaki et al. 

JP6579561; JP2018537461; WO2017093782.



Direct carbon dioxide hydrogenation to formic acid in acidic media

S. Moret; P. J. Dyson; G. Laurenczy 

ES2739081; EP2956433; DK2956433; EP2956433; CN105283436; US9399613; CN105283436; US2016016875; EP2956433; CA2900427; WO2014125409; EP2767530.



Hydrogen production from formic acid

G. Laurenczy; C. Fellay; P. Dyson 

BRPI0718482; ES2538258; CA2666412; EP2086873; KR101434699; JP5390389; BRPI0718482; CN101541668; US8133464; US2010068131; JP2010506818; IL198178; CN101541668; EP2086873; KR20090073230; EP1918247; AU2007311485; CA2666412; WO2008047312.