Meet the People Behind CIS

This video series presents the people behind the center, from our Board Members to our Scientific Committee. Each team member gives an insight into the role of intelligent systems in their field and how they will impact our future.

Scientific Committee 

Prof. Alexandre Alahi

Head of the Visual Intelligence for Transportation Laboratory (VITA)

We work on the theoretical challenges and practical applications of socially-aware systems, i.e., machines that can not only perceive human behavior, but reason with social intelligence in the context of transportation problems and smart spaces.

We envision a future where intelligent machines are ubiquitous, where self-driving cars, delivery robots, and self-moving Segways are facts of everyday life. Beyond embodied agents, we will also see our living spaces – our homes, buildings, and cities – become equipped with ambient intelligence which can sense and respond to human behavior. However, to realize this future, intelligent machines need to develop social intelligence and the ability to make safe and consistent decisions in unconstrained crowded social scenes. Self-driving vehicles must learn social etiquette in order to navigate cities like Paris or Naples. Social robots need to comply with social conventions and obey (unwritten) common-sense rules to effectively operate in crowded terminals. For instance, they need to respect personal space, yield right-of-way, and “read” the behavior of others to predict future actions.

Our research is centered around understanding and predicting human social behavior with multi-modal visual data. Our work spans multiple aspects of socially-aware systems: from 1- collecting multi-modal data at scale, 2- Extracting coarse-to-fine grained behaviours in real-time, 3- designing deep learning methods that can learn to predict human social behavior in a fully data-driven way, to 4- integrating the developed methods in real-world systems such as a vehicle or a socially-aware robot that navigates crowded social scenes.

Alexandre is leading the Visual Intelligence for Transportation laboratory (VITA) in ENAC. Before joining EPFL in 2017, he spent multiple years at Stanford University (CS) as a Post-doc and Research Scientist. His research lies at the intersection of Computer Vision, Machine Learning, and Robotics applied to autonomous vehicles, and the built environment (digital twins). He envisions a new type of Artificial Intelligence (AI), namely socially aware AI, i.e., intelligent systems equipped with perception and social intelligence.

He won the CVPR Open Source Award (2012) for his work on Retina-inspired image descriptors, and the ICDSC Challenge Prize (2009) for his sparsity-driven algorithm that has tracked more than 100 million pedestrians to date. His research has been covered internationally by BBC, ABC, PBS, Euronews, Wall Street Journal, and other national news outlets around the world. Alexandre has also co-founded multiple startups such as Visiosafe, and won several startup competitions. He was elected as one of the Top 20 Swiss Venture leaders in 2010.

Alexandre Alahi
[email protected]
+41 21 693 26 08

Prof. Auke Ijspeert

Head of the Biorobotics Laboratory (BioRob)

His research interests are at the intersection between robotics, computational neuroscience, nonlinear dynamical systems, and applied machine learning. He is interested in using numerical simulations and robots to get a better understanding of animal locomotion and movement control, and in using inspiration from biology to design novel types of robots and locomotion controllers (see for instance Ijspeert et al, Science, Vol. 315. no. 5817, pp. 1416 – 1420, 2007 and Ijspeert, Science Vol. 346, no. 6206, 2014). He is regularly invited to give talks on these topics (e.g. TED talk given at TED Global Geneva, Dec 8 2015). With his colleagues, he has received paper awards at ICRA2002, CLAWAR2005, IEEE Humanoids 2007, IEEE ROMAN 2014, and CLAWAR 2015.

He is member of the Board of Reviewing Editors of Science magazine, and associate editor for Soft Robotics and for the International Journal of Humanoid Robotics. He has acted as an associate editor for the IEEE Transactions on Robotics (2009-2013) and as a guest editor for the Proceedings of IEEE,  IEEE Transactions on Biomedical Engineering, Autonomous Robots, IEEE Robotics and Automation Magazine, and Biological Cybernetics. He has been the organizer of 6 international conferences (BioADIT2004, SAB2004, AMAM2005, BioADIT2006, LATSIS2006, SSRR2016), and a program committee member of over 50 conferences. Please visit the BioRob Home and BioRob publication pages or have a look at his CV for more information about his research and publications (See also Ijspeert’s Google Scholar Profile).

More info

Auke Ijspeert is a full professor at the EPFL (the Swiss Federal Institute of Technology at Lausanne), and head of the Biorobotics Laboratory (BioRob). He has a B.Sc./M.Sc. in physics from the EPFL (1995), and a PhD in artificial intelligence from the University of Edinburgh (1999). He carried out postdocs at IDSIA and EPFL, and at the University of Southern California (USC). He then became a research assistant professor at USC, and an external collaborator at ATR (Advanced Telecommunications Research institute) in Japan. In 2002, he came back to the EPFL as an SNF assistant professor. He was promoted to associate professor in October 2009 and to full professor in April 2016. His primary affiliation is with the Institute of Bioengineering, and secondary affiliation with the Institute of Mechanical Engineering.

Prof. Auke Ijspeert
[email protected]

Prof. Alcherio Martinoli

Head of the Distributed Intelligent Systems and Algorithms Laboratory (DISAL)

His research interests focus on methods to design, control, model, and optimize distributed intelligent systems, including multi-robot systems, sensor and actuator networks, and intelligent vehicles. He is also interested in the understanding and control of mixed societies consisting of natural and artificial components. His research policy relies on iteratively closing the loop between theory and physical experiments using modeling and computational techniques. His research output ranges from fundamental, methodological aspects to more applied contributions, often associated with application areas of interest in his school, especially in environmental and civil engineering.

Alcherio Martinoli received his Diploma in Electrical Engineering from the Swiss Federal Institute of Technology in Zurich (ETHZ), and a Ph.D. in Computer Science from the Swiss Federal Institute of Technology in Lausanne (EPFL). He is currently an Associate Professor at the School of Architecture, Civil, and Environmental Engineering (ENAC) and the head of the Distributed Intelligent Systems and Algorithms Laboratory. Before joining EPFL he carried out research activities at the Institute of Biomedical Engineering of the ETHZ, at the Institute of Industrial Automation of the Spanish Research Council in Madrid, Spain, and at the California Institute of Technology, Pasadena, U.S.A. Additional information can be found on his full CV.

Prof. Alcherio Martinoli
[email protected]

Prof. David Atienza

Head of the Embedded Systems Laboratory (ESL)


Prof. David Atienza leads the Embedded Systems Laboratory (ESL) at EPFL. He is an expert on the next-generation embedded systems for the Internet of Things (IoT), working for the last 15 years on smart wearables for humans and a wider range of other intelligent objects, including cars, smart buildings and Industry 4.0. He focuses on how these objects can interact to create new intelligent systems composed of autonomous objects. ESL has worked with more than 40 companies worldwide in this area. His expertise also covers 2D/3D thermal modeling and management for multiprocessor system-on-chip, electronic design automation, and low-power hardware and software co-design for embedded machine learning. He has published more than 350 publications and has received several awards in these areas. He is an IEEE Fellow, an ELLIS Fellow, and a Distinguished Member of ACM.

Prof. David Atienza is an associate professor of EE and director of the Embedded Systems Laboratory (ESL) at EPFL, Switzerland. He received his MSc and PhD degrees in computer science and engineering from UCM, Spain, and IMEC, Belgium, in 2001 and 2005, respectively. His research interests include system-level design methodologies for multi-processor system-on-chip (MPSoC) servers and edge AI architectures. 
Dr. Atienza has co-authored more than 350 papers, one book, and 12 patents in these previous areas. He has also received several recognitions and award, among them, the ICCAD 10-Year Retrospective Most Influential Paper Award in 2020, Design Automation Conference (DAC) Under-40 Innovators Award in 2018, the IEEE TCCPS Mid-Career Award in 2018, an ERC Consolidator Grant in 2016, the IEEE CEDA Early Career Award in 2013, the ACM SIGDA Outstanding New Faculty Award in 2012, and a Faculty Award from Sun Labs at Oracle in 2011. He has also earned two best paper awards at the VLSI-SoC 2009 and CST-HPCS 2012 conference, and five best paper award nominations at the DAC 2013, DATE 2013, WEHA-HPCS 2010, ICCAD 2006, and DAC 2004 conferences. He serves or has served as associate editor of IEEE Trans. on Computers (TC), IEEE Design & Test of Computers (D&T), IEEE Trans. on CAD (T-CAD), IEEE Transactions on Sustainable Computing (T-SUSC), and Elsevier Integration. He was the Technical Program Chair of DATE 2015 and General Chair of DATE 2017. He served as President of IEEE CEDA in the period 2018-2019 and was GOLD member of the Board of Governors of IEEE CASS from 2010 to 2012. He is a Distinguished Member of ACM and an IEEE Fellow.

David Atienza 
[email protected]
+41 21 693 11 31

Prof. Martin Jaggi

Head of Machine Learning and Optimization Laboratory


Martin Jaggi is a Tenure Track Assistant Professor at EPFL, heading the Machine Learning and Optimization Laboratory.

His research focuses on distributed and decentralized machine learning, optimization, deep learning, and text understanding. Algorithms developed by his team have found adoption in industry, such in Google’s TensorFlow, by Facebook for PyTorch, and by IBM and Nvidia’s in their cloud machine learning offerings, as well as in natural language processing frameworks. Before joining EPFL, Martin was a post-doctoral researcher at ETH Zurich, at the Simons Institute in Berkeley, and at École Polytechnique in Paris. He has earned his PhD in Machine Learning and Optimization from ETH Zurich in 2011, and a MSc in Mathematics also from ETH Zurich. He is also the founder of the Zurich Machine Learning and Data Science Meetup and a co-founder of EPFL’s Applied Machine Learning Days.

Martin Jaggi
[email protected]

Prof. Claudia R. Binder

Dean of School of Architecture, Civil and Environmental Engineering ENAC Head of the Human-Environment Relations in Urban Systems


Claudia R. Binder, a Swiss, Canadian and Colombian citizen, was born in Montreal and spent most of her childhood in Switzerland and Colombia. She studied at ETH Zurich from 1985 to 1996, earning a degree in biochemistry and then a PhD in environmental sciences. After conducting her post-doctoral research at the University of Maryland in the US from 1996 to 1998, she returned to Switzerland and took a position as a senior research scientist at ETH Zurich, studying the interaction between human and environmental systems at the Institute for Natural and Social Science Interface. In 2006, Binder joined the University of Zurich as an assistant professor in the Department of Geography, and in 2009 moved to the University of Graz in Austria where she served as a full professor of systems science. In 2011, she took a position at the University of Munich’s Department of Geography as a full professor of human-environment relations.
Binder joined EPFL in March 2016 and set up the Laboratory for Human-Environment Relations in Urban Systems (HERUS) at ENAC; she also holds the La Mobilière Chair on Urban Ecology and Sustainable Living. 
In Switzerland, Binder was appointed to the Research Council, Programs Division of the Swiss National Science Foundation (SNSF) in 2016 and serves on the Steering Committee of the SNSF’s National Research Program 71, “Managing Energy Consumption” and the Swiss Competence Centers for Energy Research (SCCER). She is also a member of the Steering Board on Sustainability Research for the Swiss Academies of Arts and Sciences. In 2019, she was elected as a member of the University Council of the University of Munich (LMU). 
Since 2020, Binder is the Dean of the ENAC School at EPFL. She is also the president of the ENAC School Council. From 2017 to 2020 she was the academic director of Design Together, a cross-disciplinary teaching initiative. She was member of the  management team of the Energy Center from 2018 – 2020. 

Her research involves analyzing, modelling and assessing the transition of urban systems towards sustainability. She looks in particular at how we can better understand the dynamics of urban metabolism, what characterizes a sustainable city, and what drives and hinders transformation processes. She does so by combining knowledge from social, natural and data science. Her research focuses on food, energy, and sustainable living and transport in urban systems.

Prof. Boi Faltings

Full professor of computer science and heads the Artificial Intelligence Laboratory


Boi Faltings is a full professor of computer science and heads the Artificial Intelligence Laboratory. He has held visiting positions at NEC Research Institute, Stanford University and the HongKong University of Science and Technology. He has co-founded 6 companies using AI for e-commerce and computer security and acted as advisor to several other companies. Prof. Faltings has published over 300 refereed papers and graduated over 40 Ph.D. students, several of which have won national and international awards. He is a fellow of the European Coordinating Committee for Artificial Intelligence and a fellow of the Association for Advancement of Artificial Intelligence (AAAI). He holds a Diploma from ETH Zurich and a Ph.D. from the University of Illinois at Urbana-Champaign.

Fields of expertise

Artificial intelligence, Constraint programming, Multi-agent systems, Electronic commerce, Computational game theory 
Prof. James Larus

Full Professor, and Head of the Very Large Scale Computing Laboratory


James Larus is Professor and former Dean of the School of Computer and Communication Sciences (IC) at EPFL (École Polytechnique Fédérale de Lausanne). Before joining IC in October 2013, Larus was a researcher, manager, and director in Microsoft Research for over 16 years and an Assistant and Associate Professor in the Computer Sciences Department at the University of Wisconsin, Madison.

Larus has been an active contributor to numerous communities. He published over 100 papers (with 9 best and most influential paper awards), received over 40 US patents, and served on many program committees and NSF, NRC, and DARPA panels. His book, Transactional Memory (Morgan Claypool), appeared in 2007. Larus received a National Science Foundation Young Investigator award in 1993 and became an ACM Fellow in 2006.

James Larus is specializing in the fields of programming languages, compilers, and computer architecture.

Prof. Jan Hesthaven

Vice President for Academic Affairs, Vice Presidency VPA – Management EPFL
Full Professor, Chair of Computational Mathematics and Simulation Science EPFL


After receiving his PhD in 1995 from the Technical University of Denmark, Professor Hesthaven joined Brown University, USA where he became Professor of Applied Mathematics in 2005. In 2013 he joined EPFL as Chair of Computational Mathematics and Simulation Science and since 2017 as Dean of the School of Basic Sciences. His research interests focused on the development, analysis, and application of high-order accurate methods for the solution of complex time-dependent problems, often requiring high-performance computing. A particular focus of his research has been on the development of computational methods for problems of linear and non-linear wave problems and the development of reduced basis methods.

The research activities focuses on the development, analysis and application of high-order accurate computational methods for time-dependent partial differential equations with a particular emphasis on linear and nonlinear wave problems. This has and continues to included research activities in discontinuous Galerkin and spectral methods, certificed reduced basis methods, methods for uncertainty quantification, methods for multiscale problems in time and space,  efficient multilevel solvers and fractional differential equations. A major recent activity is the use of machine learning techniques in computational science with an emphasis on methods that preserve physical characteristics or the use of local neural networks to accelerate existing methods rather than replacing them.

While the emphasis in on the development and analysis of new methods and algorithms, the research is application driven and we generally maintain a strong focus on tying the theoretical developments to real applications, ranging from electromagnetics and plasma physics to geoscience and combustion. There is also a sustained interest in the development of methods and algorithms for parallel computing, GPU accelerated computing and the development of resilient algorithms, to support the development and use of large scale computational tool to enable predictive similation science.