Available positions

The Swiss Plasma Center seeks PhD students throughout the year and encourages candidates to apply at any time. PhD projects are discussed with the prospective thesis supervisor at SPC during the application phase, and can be tuned to the candidate’s interest. A non-exhaustive list of possible projects can be found below.

If you need more information on any proposal, send an e-mail to the corresponding contact person.

If you want to apply for one of those topics, please follow the procedure indicated on this page.

Thank you.

Experimental physics on the TCV tokamak

Experimental physics on the TORPEX device

Experimental physics on the JET tokamak

Plasma Physics Theory

Superconductivity for fusion

Open positions in experimental physics on the TCV tokamak

  • Study of fluctuations and transport on the TCV tokamak

    Contact person: Dr. MER S. Coda

    We are proposing a Ph.D. dissertation centred on a TCV diagnostic used to measure plasma density fluctuations, based on the Phase Contrast technique. The study of fluctuations, whether coherent or turbulent, remains an essential component of understanding the basic workings of thermonuclear plasmas. Fluctuations are deemed responsible for the anomalous transport that drives reactor sizes upward in order to keep the fusion reactions going. In spite of decades of investigations, both in fluids and in plasmas, turbulence remains only partly understood. The Tangential Phase Contrast Imaging (TPCI) system on TCV is a state-of-the-art fluctuation diagnostic, which, in its latest incarnation, is able to resolve fluctuations over an unprecedented range, from microscopic to macroscopic scales. In parallel, advances in computational tools and modeling sophistication, at SPC in particular, are opening new avenues for realistic simulations of turbulence, which are then compared to measurements through the mediation of synthetic diagnostics. The successful candidate would be expected to be responsible for the operation and upkeep of the diagnostic, the design and execution of specific experiments on TCV, and data analysis and interpretation. He or she could also become involved in part with the modeling aspect depending on aptitude and interest. A rich palette of subjects can be studied, focusing on particular plasma regimes or regions of the plasma cross section, inhabiting the leading edge of current fusion and plasma-physics research.

 

  • Multi-diagnostic study of core turbulence

    Contact person: Dr. Laurie Porte ; Dr.  MER Stefano Coda

    Energy and particle confinement in magnetised plasma is anomalous: it is not as good as classical theory predicts. Advances in measurement and computation now suggest that turbulence may be the root cause of anomalous heat and particle confinement. TCV is equipped with a set of diagnostics dedicated to measurement of both electron density and temperature turbulence. Ultra-fast reflectometry and tangential phase contrast imaging (T-PCI) are used to measure turbulence in electron density. Correlation electron cyclotron emission (CECE) is used to measure turbulence in electron temperature. A PhD thesis is proposed where core turbulence is studied using all of the above diagnostic systems. The first topic would be to make simultaneous measurements of electron density and temperature fluctuations in the same plasma volume and to extract the cross-phase between the two. This is motivated by the fact that gyrokinetic codes, that are used to simulate heat and particle transport that is driven by turbulence, provide estimates of cross-phase between density and temperature fluctuations. Direct comparison between experiment and computation is, therefore, possible. A second, equally important yet more demanding, thrust would be to explore the effect of magnetic islands on turbulence. Magnetic islands are associated with magnetohydrodynamic (MHD) instability in magnetically confined plasma. They modulate the local pressure profile and, as a result, modulate turbulence. The second thrust would be to explore, experimentally, the effect of islands on turbulence. The PhD candidate will be expected to be able to operate the diagnostics, in collaboration with experienced diagnostic operators, and to interact with the TCV experimental team to design and produce experimental scenarios that permit this study. In parallel the candidate will be expected to interact, very closely, with the theory group to ensure efficient and fruitful physics studies.

 

  • Study of Electron Cyclotron Emission (ECE) on TCV Tokamak

    Contact person: Prof. Ambrogio Fasoli ; Dr. Laurie Porte

    Electron Cyclotron Emission (ECE) is ubiquitous in magnetically confined plasma. It is generated by the acceleration of free electrons immersed in a magnetic field and, in the right conditions, can be used to determine the electron temperature of the plasma with high spatial and temporal resolution. By changing the line of sight, or in the presence of strong microwave heating, the frequency spectrum of ECE provides information on the electron energy distribution. This information provides information on the generation and the dynamics of ‘runaway’ electrons in tokamaks that are of sufficient energy to damage the vacuum vessel and are to be avoided. It also is important in the characterisation of electron cyclotron current drive efficiency which is a key parameter for future steady state tokamak designs. Now, by making very highly resolved measurements of the ECE spectrum and by making estimates of the statistical properties of the measured signal it is possible to infer the spatial distribution and spectral content of electron turbulence. This measurement is key in the understanding of energy and heat transport in tokamaks; a subject that is a dynamic area of tokamak research. TCV is equipped with a suite of heterodyne radiometers that permit detailed study of ECE on TCV. Making use of the numerous lines of sight available, measurements can be made of electron temperature, electron turbulence and of the dynamics of the electron energy distribution function in various plasma regimes. A PhD dissertation is proposed where the candidate is expected to contribute to the operation of the whole suite of ECE diagnostic systems on TCV. At the same time the candidate will be expected to develop new and robust means of calibration of the systems and to develop data analysis tools. The candidate will be free to contribute original work in collaboration with the TCV team, in any or all fields of research. This may include extensive modelling of ECE emission and its relation to non-thermal electron energy distributions or, indeed, the use of machine learning and Bayesian techniques for optimising diagnostic data analysis.  The candidate may prefer more technical challenges like, for example but not limited to, implementing real-time control of filters and polarisers.

  • Visible light 2D camera diagnostics of the TCV divertor

Contact person: Dr. MER B.P. Duval or Dr. MER H. Reimerdes

One of the outstanding problems that requires resolution for a functional Fusion reactor is that of Fusion power exhaust. In the most promising magnetic “bottle” fusion plasma configuration (the Tokamak such as the TCV device at the Swiss Plasma Center), plasma is directed to a special region called the divertor. Due to the high power exhaust of a fusion reactor, if unmitigated, the power density reaching the divertor would quickly damage the reactor vessel. For this reason, considerable research effort is dedicated to controlling this heat flux and changing the magnetic configuration (the “bottle” shape) and adding highly radiating impurities to the plasma edge that can reduce the heat flux to tolerable levels. To understand the plasma performance in these endeavours, we use plasma diagnostics. Plasmas in this divertor region, where the plasma is relatively cold (compared to the fusion core), emit a lot of power as visible light. Diagnostics using multiple visible cameras are used to monitor this light that, by using filters to isolate specific spectral lines, can be associated with the radiation from chosen impurity species. This PhD project aims at two such diagnostics. The first, called MANTIS, is a multi camera system that has been developed over the last 5 years to provide 2D plasma images with repetition rates up to 1kHz, of up to 10 separate spectral lines whose intensity distributions can be used to diagnose the plasma conditions as they vary through TCV’s plasma discharge. In the second, which shall be a new diagnostic for TCV, the doppler shift of the light from the plasma is cast as a set of fringes on the camera image. From this fringe pattern, the plasma flow across the whole divertor region can be tracked. This technique, known as Coherence Imaging Spectroscopy, or CIS, will be designed, built and operated on TCV with the collaboration of international experts. These are complex optical systems that will require an enthusiastic and practical minded candidate who enjoys working, and evolving, within a lively research group.

  • Fast-ion deuterium alpha (FIDA) Spectroscopy

Contact person:Dr. MER B.P. Duval

Neutral heating beams are often used in thermonuclear devices to heat the plasma above that achievable by passing large currents through the plasma resistance (Ohmic Heating). The fast neutral atoms injected are well above thermal (called fast-ions) and must slow down in the plasma to efficiently heat the thermal plasma. FIDA spectroscopy takes the light emitted from the interaction of the fast ions/atoms within the plasma to analyse the spatial and velocity profiles of these ions from injection to thermalisation. These fast ions can be taken as a proxy for the fast Helium atoms created by particle fusion (the basic process of energy production concerned) and as they slow, they are subject to many interactions with the target plasma that can prematurely eject these fast ions, which could be catastrophic as their energy is used to keep the plasma hot and thus reactive. TCV has recently installed such a fast ion heating beam and preliminary FIDA spectroscopy shows a rich range of physical processes. This thesis will commence with the installation of two multi-chord spectroscopic systems to observe FIDA light. Many experimental probes on the effect of plasma shape and other parameters (density, temperature etc.) will follow. The student will use the FIDASIM program developed by a worldwide group to interpret the spectra together with detailed plasma transport modelling to diagnose the fast ion behaviour. This work will be part of a new and developing group at the SPC looking into fast ion behaviour on the TCV Tokamak.

TCV is now equipped with a high power (1MW) / high-energy (25keV) Neutral Beam Injection (NBI) system, with a second system being planned to deliver fast neutrals at even higher energy (50keV). The injected fast neutrals then ionize in the plasma, producing supra-thermal ions which, in turns, may undergo charge-exchange neutralization and be expelled from the plasma. These ejected fast neutrals can be measured using a neutral particle analyzers and can then be used as a proxy to determine the fast ion distribution function in some relevant phase-space region.
TCV is currently equipped with a compact NPA, and major improvements will be needed to measure the fast ions produced by the second NBI system, hence the development of a new I-NPA, currently at the stage of conceptual design. This thesis will commence with the completion of the design, procurement, installation and commissioning of the I-NPA system, and will then move onto the analysis of the measurements obtained with this system, and other fast ion diagnostics, towards the development of a multi-diagnostic tomographic reconstruction of the fast ion distribution function. This work will be part of a new and developing group at the SPC looking into fast ion behavior on TCV.

  • Thomson scattering data analysis for real-time applications

Contact person: Dr. P. Blanchard

On the TCV tokamak, reliable electron temperature and density profiles are routinely obtained from Thomson Scattering (TS) measurements. In 2013-2014, the TS diagnostic has undergone a substantial upgrade which is opening the road to real-time (RT) applications of such parameters.
In the frame of a PhD, algorithms for RT analysis of TS signals should be first developed and tested along with the implementation of a new DAQ system. The availability of electron temperature and density profiles in RT could then be used for TCV scenario development and actuator control like microwave heating system as well as inputs for RT transport code like RAPTOR.

  • Real Time Control of Tokamaks

Contact person: Dr Federico Felici

The SPC tokamak TCV is equipped with an advanced real-time control system, based on matlab-simulink and which allows rapid and flexible developments. In addition, we have developed a rapid tokamak transport simulator, RAPTOR, capable of simulating in real-time current density and kinetic profiles. This is a perfect environment for PhD thesis project related to real-time control of tokamaks, including magnetic control, plasma profile control, as well as advanced topics such as scenario control, monitoring and supervision.

  • Measurement of turbulence and modes driven by and interacting with the high-energy NBI ions in TCV

Contact person: Dr. Duccio Testa

Analysis of NBI-driven magnetic turbulence and modes in TCV, and interaction of MHD instabilities with the slowing-down NBI ions; develop and test mathematical tools for the magnetic turbulence analysis as needed; develop high-frequency magnetic sensors based on LTCC technology.

Open positions in experimental physics on the TORPEX device

  • Suprathermal ion dynamics in turbulent plasmas

Contact person: Prof. Ivo Furno

Understanding the interaction of plasma turbulence with suprathermal ions, i.e. ions with energies greater than the quasi-Maxwellian background plasma, is a major challenge for the next generation of magnetic fusion reactors. While experimentally challenging in fusion devices, suprathermal ion measurements are accessible in basic devices with extended diagnostic capabilities and flexible configurations, such as the TORPEX device at SPC.
We are seeking for a Ph.D. candidate to conduct detailed investigations of basic aspects of suprathermal ion-turbulence interaction on TORPEX using a controllable suprathermal ion source and diagnostics, which allow fully time-resolved 3D measurements of the suprathermal ion dynamics. In parallel with the experiments, the Candidate will use state-of-the-art numerical codes to obtain 3D simulations, which will be compared with experimental data and theory predictions. The proposed subject is of fundamental importance for nuclear fusion and crosses the frontier between plasma physics and research in complex systems.

Open positions in experimental physics on the JET tokamak

  • Measurement and interpretation of TAE in JET, including DT experiments.

Contact person: Dr. Duccio Testa

Analysis of the Toroidal Alfven Eigenmode (TAE) measurements obtained in JET using the upgraded TAE system, including real-time control applications, MHD spectroscopy, and in preparation of studies of alpha-driven TAEs during the DT experiment planned at JET for 2017-2018.
Note: the upgraded TAE system should become operational around the end of 2014 or early 2015.
Overall data analysis for JET also to include comparison with all fast ion diagnostics and other turbulence diagnostic.

Plasma Physics Theory

  • A new tool for the modelling of kinetic-magnetohydrodynamic instabilities in high temperature tokamak plasmas

    Contact persons: Prof. Andreas Mortensen and Prof. Paolo Ricci

    The Laboratory for Mechanical Metallurgy at EPFL and the Swiss Plasma Center are inviting candidacies for a Ph.D. student position. This position is funded by a large-scale project (Swiss equivalent to an ERC Advanced Grant funded by the Swiss National Science Foundation) that will explore the potential held by electromagnetic forces in harnessing melt flow and solidification towards innovations in the 3D printing of aluminium and its alloys. The Ph.D. thesis will have a goal of building an in-depth and predictive understanding of the physical phenomena at play in this process via the development and exploitation of advanced simulation tools. It will be conducted under the dual supervision of Professors Paolo Ricci and Andreas Mortensen, and will be conducted in symbiosis with a second thesis that will address the question experimentally. Candidates are sought having a top-level academic education and a strong background in electromagnetism, fluid dynamics, simulation and computational techniques.
  • Gyrokinetic turbulence simulations with advanced numerical techniques

Contact person: Prof L. Villard

The SPC theory group has been active since many years in the field of numerical simulation of magnetized fusion-relevant plasmas by developing codes that are run on some of the currently most powerful High Performance Computing (HPC) platforms. In particular, the realistic description of low frequency turbulence from first principles using gyrokinetic theory, which remains a great simulation challenge, has been one of the group’s main research focus. The loss of heat and particles associated to this turbulence is a key limiting factor in achieving the conditions required in a fusion reactor. The architecture of the most powerful HPC platforms has been evolving towards more heterogenous systems (CPU+GPU or CPU+MIC) and there is therefore the need to adapt our physics application codes to this new type of machines. We are currently looking for a PhD candidate that is seriously motivated to deal with advanced numerical simulations of gyrokinetic turbulence and actively engage in the current effort to adapt our codes to the new generation platforms. The thesis will thus include both physical studies as well as technical aspects. The successful candidate will interact with our group at SPC and other institutions and laboratories.

  • Simulation of the plasma dynamics at the tokamak edge

Contact person: Prof P. Ricci

The understanding turbulence in the edge of magnetic confinement device is an outstanding open issue in magnetic fusion. The physics of this region determines the boundary conditions of the whole plasma by controlling the plasma refueling, heat losses, and impurity dynamics. Edge dynamics regulates the heat load on the tokamak vessel; this is considered among the most crucial open problems for ITER and future fusion reactors. Since a few years, a project has been initiated at the SPC with the goal of improving the understanding of edge physics. This effort has significantly advanced our grasp of plasma turbulence in the edge of a relatively simple configuration, the circular limited tokamak, and we are now exploring the physics of diverted configurations. Ph.D. theses are proposed with the goal of advancing the simulation and the understanding of edge turbulence in reactor relevant conditions, in particular to consider improved plasma models and advanced exhaust configurations.

Open positions in superconductivity for fusion

  • Applied Superconductivity – R&D on Nb3Sn  Superconducting Magnets

    Contact Person: Dr. Xabier Sarasola, email: [email protected] .

    We are looking for a motivated PhD candidate with a solid background in physics, interested in the R&D program of high-field dipole magnets suitable for constructing superconducting test facilities and accelerator magnets. The magnets are based on an innovative type of two-stage cable made of high Jc, Nb3Sn strands. The challenging project has a potential to open a new avenue towards the next generation of the accelerator-type magnets.

    The successful candidate will prepare a short section of the high Jc cable with the support of an industrial partner, and characterize it in the SPC laboratory. The focus of the work is on the design, construction and test of a small prototype coil, retaining basic characteristics of a high field dipole magnet. The student will present his/her work in international conferences and report the results and findings in scientific journals. Experience in applied superconductivity or cryogenics is a valuable asset, though not a mandatory requirement. The place of work is Villigen PSI, close to Zurich.