Available positions

The Swiss Plasma Center seeks PhD students throughout the year and encourages candidates to apply at any time. PhD projects are discussed with the prospective thesis supervisor at SPC during the application phase, and can be tuned to the candidate’s interest. A non-exhaustive list of possible projects can be found below.

If you need more information on any proposal, send an e-mail to the corresponding contact person.

If you want to apply for one of those topics, please follow the procedure indicated on this page.

Thank you.

Experimental physics on the TCV tokamak

Experimental physics on the TORPEX device

Experimental physics on the JET tokamak

Plasma Physics Theory

Superconductivity for fusion

Collaboration with CERN

Open positions in experimental physics on the TCV tokamak

  • Study of fluctuations and transport on the TCV tokamak

    Contact person: Dr. MER S. Coda

    We are proposing a Ph.D. dissertation centred on a TCV diagnostic used to measure plasma density fluctuations, based on the Phase Contrast technique. The study of fluctuations, whether coherent or turbulent, remains an essential component of understanding the basic workings of thermonuclear plasmas. Fluctuations are deemed responsible for the anomalous transport that drives reactor sizes upward in order to keep the fusion reactions going. In spite of decades of investigations, both in fluids and in plasmas, turbulence remains only partly understood. The Tangential Phase Contrast Imaging (TPCI) system on TCV is a state-of-the-art fluctuation diagnostic, which, in its latest incarnation, is able to resolve fluctuations over an unprecedented range, from microscopic to macroscopic scales. In parallel, advances in computational tools and modeling sophistication, at SPC in particular, are opening new avenues for realistic simulations of turbulence, which are then compared to measurements through the mediation of synthetic diagnostics. The successful candidate would be expected to be responsible for the operation and upkeep of the diagnostic, the design and execution of specific experiments on TCV, and data analysis and interpretation. He or she could also become involved in part with the modeling aspect depending on aptitude and interest. A rich palette of subjects can be studied, focusing on particular plasma regimes or regions of the plasma cross section, inhabiting the leading edge of current fusion and plasma-physics research.


  • Visible light 2D camera diagnostics of the TCV divertor

Contact person: Dr. MER B.P. Duval or Dr. MER H. Reimerdes

One of the outstanding problems that requires resolution for a functional Fusion reactor is that of Fusion power exhaust. In the most promising magnetic “bottle” fusion plasma configuration (the Tokamak such as the TCV device at the Swiss Plasma Center), plasma is directed to a special region called the divertor. Due to the high power exhaust of a fusion reactor, if unmitigated, the power density reaching the divertor would quickly damage the reactor vessel. For this reason, considerable research effort is dedicated to controlling this heat flux and changing the magnetic configuration (the “bottle” shape) and adding highly radiating impurities to the plasma edge that can reduce the heat flux to tolerable levels. To understand the plasma performance in these endeavours, we use plasma diagnostics. Plasmas in this divertor region, where the plasma is relatively cold (compared to the fusion core), emit a lot of power as visible light. Diagnostics using multiple visible cameras are used to monitor this light that, by using filters to isolate specific spectral lines, can be associated with the radiation from chosen impurity species. This PhD project aims at two such diagnostics. The first, called MANTIS, is a multi camera system that has been developed over the last 5 years to provide 2D plasma images with repetition rates up to 1kHz, of up to 10 separate spectral lines whose intensity distributions can be used to diagnose the plasma conditions as they vary through TCV’s plasma discharge. In the second, which shall be a new diagnostic for TCV, the doppler shift of the light from the plasma is cast as a set of fringes on the camera image. From this fringe pattern, the plasma flow across the whole divertor region can be tracked. This technique, known as Coherence Imaging Spectroscopy, or CIS, will be designed, built and operated on TCV with the collaboration of international experts. These are complex optical systems that will require an enthusiastic and practical minded candidate who enjoys working, and evolving, within a lively research group.

  • Fast-ion deuterium alpha (FIDA) Spectroscopy

Contact person:Dr. MER B.P. Duval

Neutral heating beams are often used in thermonuclear devices to heat the plasma above that achievable by passing large currents through the plasma resistance (Ohmic Heating). The fast neutral atoms injected are well above thermal (called fast-ions) and must slow down in the plasma to efficiently heat the thermal plasma. FIDA spectroscopy takes the light emitted from the interaction of the fast ions/atoms within the plasma to analyse the spatial and velocity profiles of these ions from injection to thermalisation. These fast ions can be taken as a proxy for the fast Helium atoms created by particle fusion (the basic process of energy production concerned) and as they slow, they are subject to many interactions with the target plasma that can prematurely eject these fast ions, which could be catastrophic as their energy is used to keep the plasma hot and thus reactive. TCV has recently installed such a fast ion heating beam and preliminary FIDA spectroscopy shows a rich range of physical processes. This thesis will commence with the installation of two multi-chord spectroscopic systems to observe FIDA light. Many experimental probes on the effect of plasma shape and other parameters (density, temperature etc.) will follow. The student will use the FIDASIM program developed by a worldwide group to interpret the spectra together with detailed plasma transport modelling to diagnose the fast ion behaviour. This work will be part of a new and developing group at the SPC looking into fast ion behaviour on the TCV Tokamak.

TCV is now equipped with a high power (1MW) / high-energy (25keV) Neutral Beam Injection (NBI) system, with a second system being planned to deliver fast neutrals at even higher energy (50keV). The injected fast neutrals then ionize in the plasma, producing supra-thermal ions which, in turns, may undergo charge-exchange neutralization and be expelled from the plasma. These ejected fast neutrals can be measured using a neutral particle analyzers and can then be used as a proxy to determine the fast ion distribution function in some relevant phase-space region.
TCV is currently equipped with a compact NPA, and major improvements will be needed to measure the fast ions produced by the second NBI system, hence the development of a new I-NPA, currently at the stage of conceptual design. This thesis will commence with the completion of the design, procurement, installation and commissioning of the I-NPA system, and will then move onto the analysis of the measurements obtained with this system, and other fast ion diagnostics, towards the development of a multi-diagnostic tomographic reconstruction of the fast ion distribution function. This work will be part of a new and developing group at the SPC looking into fast ion behavior on TCV.

  • Thomson scattering data analysis for real-time applications

Contact person: Dr. P. Blanchard

On the TCV tokamak, reliable electron temperature and density profiles are routinely obtained from Thomson Scattering (TS) measurements. In 2013-2014, the TS diagnostic has undergone a substantial upgrade which is opening the road to real-time (RT) applications of such parameters.
In the frame of a PhD, algorithms for RT analysis of TS signals should be first developed and tested along with the implementation of a new DAQ system. The availability of electron temperature and density profiles in RT could then be used for TCV scenario development and actuator control like microwave heating system as well as inputs for RT transport code like RAPTOR.

  • Real Time Control of Tokamaks

Contact person: Dr Federico Felici

The SPC tokamak TCV is equipped with an advanced real-time control system, based on matlab-simulink and which allows rapid and flexible developments. In addition, we have developed a rapid tokamak transport simulator, RAPTOR, capable of simulating in real-time current density and kinetic profiles. This is a perfect environment for PhD thesis project related to real-time control of tokamaks, including magnetic control, plasma profile control, as well as advanced topics such as scenario control, monitoring and supervision.

  • Measurement of turbulence and modes driven by and interacting with the high-energy NBI ions in TCV

Contact person: Dr. Duccio Testa

Analysis of NBI-driven magnetic turbulence and modes in TCV, and interaction of MHD instabilities with the slowing-down NBI ions; develop and test mathematical tools for the magnetic turbulence analysis as needed; develop high-frequency magnetic sensors based on LTCC technology.

Open positions in experimental physics on the TORPEX device

  • Suprathermal ion dynamics in turbulent plasmas

Contact person: Prof. Ivo Furno

Understanding the interaction of plasma turbulence with suprathermal ions, i.e. ions with energies greater than the quasi-Maxwellian background plasma, is a major challenge for the next generation of magnetic fusion reactors. While experimentally challenging in fusion devices, suprathermal ion measurements are accessible in basic devices with extended diagnostic capabilities and flexible configurations, such as the TORPEX device at SPC.
We are seeking for a Ph.D. candidate to conduct detailed investigations of basic aspects of suprathermal ion-turbulence interaction on TORPEX using a controllable suprathermal ion source and diagnostics, which allow fully time-resolved 3D measurements of the suprathermal ion dynamics. In parallel with the experiments, the Candidate will use state-of-the-art numerical codes to obtain 3D simulations, which will be compared with experimental data and theory predictions. The proposed subject is of fundamental importance for nuclear fusion and crosses the frontier between plasma physics and research in complex systems.

Open positions in experimental physics on the JET tokamak

  • Measurement and interpretation of TAE in JET, including DT experiments.

Contact person: Dr. Duccio Testa

Analysis of the Toroidal Alfven Eigenmode (TAE) measurements obtained in JET using the upgraded TAE system, including real-time control applications, MHD spectroscopy, and in preparation of studies of alpha-driven TAEs during the DT experiment planned at JET for 2017-2018.
Note: the upgraded TAE system should become operational around the end of 2014 or early 2015.
Overall data analysis for JET also to include comparison with all fast ion diagnostics and other turbulence diagnostic.

Plasma Physics Theory

  • A new tool for the modelling of kinetic-magnetohydrodynamic instabilities in high temperature tokamak plasmas

    Contact persons: Jonathan P. Graves and Stephan Brunner

    This project will advance the kinetic-MHD linear and non-linear model equations developed in the previous Ph.D. project by S. Lanthaler:
    The project will construct a new numerical tool which will be of critical value for the description of plasma performance limits in high temperature tokamak reactor plasmas.  The candidate should be interested in mathematical analysis, PDE’s, electrodynamics, fluid mechanics, statistical physics and numerical methods.  No previous knowledge or courses in plasma physics is required.  The interested candidate can take suitable master and doctoral courses on plasma physics during the Ph.D. program, and further knowledge will be attained through close contact with the groups led by Jonathan Graves and Stephan Brunner.  The project can commence whenever a suitable candidate is available. Please contact Prof. Jonathan Graves for further information:[email protected]


  • Gyrokinetic turbulence simulations with advanced numerical techniques

Contact person: Prof L. Villard

The SPC theory group has been active since many years in the field of numerical simulation of magnetized fusion-relevant plasmas by developing codes that are run on some of the currently most powerful High Performance Computing (HPC) platforms. In particular, the realistic description of low frequency turbulence from first principles using gyrokinetic theory, which remains a great simulation challenge, has been one of the group’s main research focus. The loss of heat and particles associated to this turbulence is a key limiting factor in achieving the conditions required in a fusion reactor. The architecture of the most powerful HPC platforms has been evolving towards more heterogenous systems (CPU+GPU or CPU+MIC) and there is therefore the need to adapt our physics application codes to this new type of machines. We are currently looking for a PhD candidate that is seriously motivated to deal with advanced numerical simulations of gyrokinetic turbulence and actively engage in the current effort to adapt our codes to the new generation platforms. The thesis will thus include both physical studies as well as technical aspects. The successful candidate will interact with our group at SPC and other institutions and laboratories.

  • Simulation of the plasma dynamics at the tokamak edge

Contact person: Prof P. Ricci

The understanding turbulence in the edge of magnetic confinement device is an outstanding open issue in magnetic fusion. The physics of this region determines the boundary conditions of the whole plasma by controlling the plasma refueling, heat losses, and impurity dynamics. Edge dynamics regulates the heat load on the tokamak vessel; this is considered among the most crucial open problems for ITER and future fusion reactors. Since a few years, a project has been initiated at the SPC with the goal of improving the understanding of edge physics. This effort has significantly advanced our grasp of plasma turbulence in the edge of a relatively simple configuration, the circular limited tokamak, and we are now exploring the physics of diverted configurations. Ph.D. theses are proposed with the goal of advancing the simulation and the understanding of edge turbulence in reactor relevant conditions, in particular to consider improved plasma models and advanced exhaust configurations.

Open positions in superconductivity for fusion

  • Applied Superconductivity – R&D on Nb3Sn  Superconducting Magnets

    Contact Person: Dr. Xabier Sarasola, email: [email protected] .

    We are looking for a motivated PhD candidate with a solid background in physics, interested in the R&D program of high-field dipole magnets suitable for constructing superconducting test facilities and accelerator magnets. The magnets are based on an innovative type of two-stage cable made of high Jc, Nb3Sn strands. The challenging project has a potential to open a new avenue towards the next generation of the accelerator-type magnets.

    The successful candidate will prepare a short section of the high Jc cable with the support of an industrial partner, and characterize it in the SPC laboratory. The focus of the work is on the design, construction and test of a small prototype coil, retaining basic characteristics of a high field dipole magnet. The student will present his/her work in international conferences and report the results and findings in scientific journals. Experience in applied superconductivity or cryogenics is a valuable asset, though not a mandatory requirement. The place of work is Villigen PSI, close to Zurich.



Open positions in collaboration with CERN


In 2018, the Advanced Wakefield Experiment (AWAKE) reached a milestone demonstrating that plasma wakefields generated by externally injected proton beams can efficiently accelerate charged particles over 10 m distance, thus fulfilling the objective of the AWAKE Run 1 phase. This first ever proof-of-concept boosted the next phase, AWAKE Run 2. The goal of Run 2 is to accelerate an electron bunch with a narrow relative energy spread and an emittance sufficiently low for applications. In parallel to AWAKE Run 2, high-density plasma, generated by a helicon source in a linear geometry, is under development at CERN in collaboration with the Swiss Plasma Center in Lausanne (Switzerland), the Institute for Plasma Physics in Greifswald (Germany), and the University of Madison in Wisconsin (USA). This development poses formidable challenges from the point of view of plasma physics, technology and diagnostics. We are looking for a Ph.D. student who will participate in this joint endeavor, working partly at the Swiss Plasma Center and partly at CERN on the helicon plasma cell and diagnostics development. Should you be interested or know someone who could be, please send an email to [email protected].

Useful links: