The drift-kinetic code VENUS-LEVIS is designed for simulating a wide variety of physical phenomena related to fast particle motion in electromagnetic fields.

The code employs a 4th order Runge-Kutta method to solve the single particle equations of motion, either in the guiding-centre approximation or following the full particle orbits. The formulation is independent of coordinate choice and handles 3D time-varying electromagnetic fields.

The interaction with the background plasma as well as ICRH antennas is emulated via various Monte-Carlo collision operators. Particle slowing down, pitch angle scattering, anomalous transport and other physical phenomena are modeled using this numerical technique.

The VENUS code

VENUS-LEVIS reproduces realistic neutral beam injection distributions via a dedicated module. Coupled to an equilibrium code such as ANIMEC, it is a perfect tool to investigate the effect of 3D magnetic geometry on fast ion transport, for example stellerator physics, helical cores, resonant magnetic perturbations, magnetic ripple, etc…