ELLIS PhD & Postdoc Scholars at EPFL

The ELLIS PhD & PostDoc program supports excellent PhDs & PostDocs in machine learning related areas across Europe by giving them access to leading European researchers as well as boot camps, summer schools and workshops of the ELLIS programs. ELLIS PhDs & PostDocs are supervised by one ELLIS fellow/scholar and one ELLIS member from different countries.
They conduct cutting-edge curiosity-driven research in machine learning or a related research area and visit the exchange institution for an extended research stay (1 year). 

2020 Call for the PhD Program *closed*


A primer on Motion Capture with Deep Learning: Principles, Pitfalls, and Perspectives from A. Mathis, S. Schneider, J. Lauer and M. W. Mathis has been published in the October 2020 issue of Neuron.

EPFL ELLIS Candidates 

Adaptation and Robustness in Brains and Machines
Steffen Schneider (Ph.D. Student)

Understanding the mechanisms underlying robust learning and efficient adaptation is an open problem both in neuroscience and machine learning. While robustness and domain adaptation in ML is commonly studied with computer vision tasks, adaptation research in neuroscience has been traditionally carried out in sensorimotor paradigms.

My PhD project is a collaborative project between the Mathis lab who studies motor adaptation and the Bethge lab who studies robust ML methods under domain shifts. We will build computational models of neural activity and behavior to closer study neural mechanisms of continual learning during motor adaptation using tools from machine learning. We will compare representations arising in adaptive ML models with those present in the brain.

Motor adaptation tasks offer the unique opportunity to precisely control distribution shift, difficulty and learning objectives and link the biological findings to machine learning using insights from dynamical systems and network theory.

Primary Host: Matthias Bethge (University of Tübingen)
Exchange Host: Mackenzie Mathis (EPFL & Harvard University) 

PhD Duration: 01 November 2019 – 31 October 2022
Exchange Duration: 18 February 2020 – 31 March 2020; January 2021- January 2022

Explainable AI for Nature Conservation
Diego Marcos (PostDoc)

As Deep Learning gets better at visual tasks, including species identification, the learned reasoning behind its decisions gets increasingly obscure. This is in contrast with the procedures developed by taxonomists, the experts in charge of defining the hierarchy of natural species, for manual species recognition. These procedures lead users to follow an identification key, a structured set of attribute observations, to reach a final conclusion.

I will be working towards incorporating this structured reasoning into Deep Learning models for species recognition such that their results become more interpretable, hopefully helping experts to spot mistakes or even yet-to-be-described species, and offering amateur users an expert explanation that can help them become experts themselves.

Primary Host: Devis Tuia (EPFL)
Exchange Host: Zeynep Akata (University of Tübingen)

PostDoc Duration: 01 February 2019 – 31 January 2023
Exchange Duration: 01 August 2020 – 31 October 2020

Machine Learning for the Fusion of Remote Sensing and Tweets Data for Green Space Analysis
Mohamed Ibrahim (Ph.D. Student)

There is increasing evidence that people with higher access to urban green spaces have better mental health and well-being. This project aims to examine the impact of urban green spaces on mental health, and what features play the biggest role.

The combination of airborne or space-borne remote sensing images and geo-tagged social media data can enhance the measurement of the quantity and quality of urban green spaces. Remote sensing imagery can allow us to identify and classify green spaces. Social media data can represent human activity near the identified green spaces.

We hope to gain insight into qualitative characteristics of urban green spaces that could be useful for city planners and has a positive impact on citizens’ mental health.

Primary Host: Xiaoxiang Zhu (German Space Center (DLR) & Technical University of Munich)
Exchange Host: Devis Tuia (EPFL)

PhD Duration: 01 October 2019 – 30 September 2023
Exchange Duration: 01 September 2020 – 31 December 2020

Generative models in Geometric Deep Learning
Clément Vignac (Ph.D. Student)

Clément’s work focuses on the design of neural architectures for structured data: sets, graphs and point clouds. These problems have in common a large symmetry group, which is the invariance to all possible permutations of the points. In order to design architectures that are both computationally and data efficient…

Primary Host: Pascal Frossard (EPFL)
Exchange Host: Max Welling (University of Amsterdam)

PhD Duration: 01 November 2019 – 03 May 2023
Exchange Duration: 01 September 2021 – 31 December 2021

Foundations of Regularization in Deep Learning 
Linara Adilova (Ph.D. Student)

Regularization lies at the core of successful training state-of-the-art deep neural networks. It allows to control overfitting and allows to obtain good generalization even with massively overparametrized models. Regularization influences the training process both implicitly – through the properties of optimizers – and explicitly – by using a regularized loss function, dropout, batch normalization, etc. The goal of this Project is to shed more light on the foundations of regularization techniques employed in deep learning and to formally ground empirical results using the insights from the regularization theory.
Primary Host: Asja Fischer (Ruhr University Bochum)
Exchange Host: Martin Jaggi (EPFL)

PhD Duration: 01 February 2021 – 31 March 2024
Exchange Duration: 01 June 2022 – 31 December 2022

Machine learning and AI for secure and trustworthy autonomous systems 
Oishi Deb (Ph.D. Student)

The project focuses on trustworthy-autonomous systems which include working on explainable-by-design/interpretable Deep Learning models to ensure better decision making in safety-critical applications. It will address vulnerabilities and countermeasures of ML and AI algorithms that are being used in Autonomous Systems (AS). Uncertainty handling and errors propagation will be considered as well as various scenarios/methods will also be under investigation.
Primary Host: Plamen P. Angelov (Lancaster University)
Exchange Host: Aude Billard (EPFL)

PhD Duration: 01 October 2021 – 31 March 2024
Exchange Duration: 01 June 2022 – 31 August 2022   01 June 2023 – 31 August 2023

List of all Ellis PhD Students and PostDocs