Saliency-driven Black Point Compensation
We present a novel framework for automatically determining whether or not to apply black point compensation (BPC) in image reproduction. Visually salient objects have a larger influence on determining image quality than the number of dark pixels in an image, and thus should drive the use of BPC. We propose a simple and efficient algorithmic implementation to determine when to apply BPC based on low-level saliency estimation. We evaluate our algorithm with a psychophysical experiment on an image data set printed with or without BPC on a Canon printer. We find that our algorithm is correctly able to predict the observers’ preferences in all cases when the saliency maps are unambiguous and accurate.
Proceedings SPIE
2011
IS&T / SPIE Electronic Imaging, Color Imaging XVI: Display, Processing, Hardcopy, and Applications, San Francisco, CA, USA, January 23-27, 2011.DOI : 10.1117/12.872448
Downloads
Comparison of our method against thresholding

