Stencil Lithography

Our aim is to push the limits of shadow-mask surface pattering to reach smaller structures (> 50 nm) and to upscale to larger substrates. We strive to find solutions to challenges such as aperture clogging, gap induced blurring and surface diffusion. Further we develop a so-called dynamic stencil tool where the shadow mask moves with respect to the substrate.

Stencil lithography

The stencil is fabricated and aligned to the substrate Both substrate and stencil are placed into the evaporator The stencil is removed, leaving the patterned substrate

Stencil lithography is a high resolution shadow-mask technique used for structuring surfaces at the micro and nanometer scales. It is a one-step technique that eliminates resist-related processing steps, common otherwise in standard lithography. A stencil (membrane with apertures) is placed (aligned if necessary) and clamped to a substrate. The clamped set is placed in an evaporator and material is despotied through the stencil’s apertures onto the substrate.

Stencil lithography is applicable to deposition, etching and implantation.

Dynamic stencil lithography consists of the relative motion of the stencil to the substrate during deposition or in between deposition steps. This allows the in-situ fabrication of multi-material, multi-layer micro- and nanopatterns.

Keywords: stencil, stencil lithography



Nanobridge Stencil Enabling High Resolution Arbitrarily Shaped Metallic Thin Films on Various Substrates

Y-C. Sun; G. Boero; J. Brugger 

Advanced Materials Technologies. 2022-12-04. DOI : 10.1002/admt.202201119.

Stretchable Conductors Fabricated by Stencil Lithography and Centrifugal Force-Assisted Patterning of Liquid Metal

Y-C. Sun; G. Boero; J. Brugger 

ACS Applied Electronic Materials. 2021-11-29. Vol. 3, num. 12, p. 5423–5432. DOI : 10.1021/acsaelm.1c00884.

Growth of Large-Area 2D MoS2 Arrays at Pre-Defined Locations Using Stencil Mask Lithography

I. Sharma; Y. Batra; V. Flauraud; J. Brugger; B. R. Mehta 

Journal of Nanoscience and Nanotechnology. 2018-03-01. Vol. 18, num. 3, p. 1824-1832. DOI : 10.1166/jnn.2018.14265.

Growth Of Organic Semiconductor Thin Films with Multi-Micron Domain Size and Fabrication of Organic Transistors Using a Stencil Nanosieve

P. Fesenko; V. Flauraud; S. Xie; E. Kang; T. Uemura et al. 

ACS Applied Materials & Interfaces. 2017. Vol. 9, num. 28, p. 23314–23318. DOI : 10.1021/acsami.7b06584.

Arrays of Pentacene Single Crystals by Stencil Evaporation

P. Fesenko; V. Flauraud; S. Xie; J. Brugger; J. Genoe et al. 

Crystal Growth & Design. 2016. Vol. 16, p. 4694−4700. DOI : 10.1021/acs.cgd.6b00765.

Exploring Nanoscale Electrical Properties of CuO-Graphene Based Hybrid Interfaced Memory Device by Conductive Atomic Force Microscopy

B. Singh; B. Mehta; D. Varandani; A. V. Savu; J. Brugger 

Journal of Nanoscience and Nanotechnology. 2016. Vol. 16, num. 4, p. 4044-4051. DOI : 10.1166/jnn.2016.10713.

3D nanostructures fabricated by advanced stencil lithography

F. Yesilkoy; V. Flauraud; M. Rüegg; B. Kim; J. Brugger 

Nanoscale. 2016. Vol. 9, p. 4945-4950. DOI : 10.1039/C5NR08444J.

Large-Scale Arrays of Bowtie Nanoaperture Antennas for Nanoscale Dynamics in Living Cell Membranes

V. Flauraud; T. S. van Zanten; M. Mivelle; C. Manzo; M. F. Garcia Parajo et al. 

Nano Letters. 2015. Vol. 15, num. 6, p. 4176-4182. DOI : 10.1021/acs.nanolett.5b01335.

Fabrication of complex oxide microstructures by combinatorial chemical beam vapour deposition through stencil masks

E. Wagner; C. S. Sandu; S. Harada; G. Benvenuti; V. Savu et al. 

Thin Solid Films. 2015. Vol. 586, p. 64-69. DOI : 10.1016/j.tsf.2015.04.021.

Resistless Fabrication of Nanoimprint Lithography (NIL) Stamps Using Nano-Stencil Lithography

L. G. Villanueva; O. Vazquez-Mena; C. Martin-Olmos; A. V. Savu; K. Sidler et al. 

Micromachines. 2013. Vol. 4, p. 370-377. DOI : 10.3390/mi4040370.