SFA Ceramic X.0

High-precision micro-manufacturing of ceramics

PI: Prof. Dr. Jürgen Brugger
Project start: 1st July 2017
Project duration: 48 months
SFA website: http://www.sfa-am.ch/ceramic-x0.html

Project team (leaders):
  • Prof. Dr. Christophe Moser, Laboratory of Applied Photonic Devices, EPF Lausanne
  • Prof. Dr. Demetri Psaltis, Optics Laboratory, EPF Lausanne
  • Dr. Gurdial Blugan, Laboratory for High Performance Ceramics, Empa
  • Prof. Dr. Katharina Maniura, Laboratory for Biointerfaces, Empa
  • Prof. Dr. Helena Van Swygenhoven, Photons for Engineering and Manufacturing Group, PSI

Project team (LMIS1):

  • Dr. Pierrick Clément
  • Lorenz Hagelüken

Engineered ceramic materials have found widespread use in various industrial applications due to their unique properties. However, it is difficult if not impossible to produce micron-scale high-precision ceramic components with current manufacturing techniques.

The main aim of this project is thus to develop novel micro-manufacturing techniques for high-precision, ceramic components based on polymer-derived ceramics (PDC). Furthermore, novel PDC materials will be evaluated for their in vitro biocompatibility as dental implants as well as pacemaker electrodes.

Scope of Research Activities
  1. Development of polymer-derived ceramics (PDC) materials suitable for micro-casting
  2. Development of processes and devices to …
    • Manufacture micro-molds,
    • Fill preceramic polymers (PCPs) into these micro-molds (micro-casting) and
    • Transform the material into PDC micro-parts by pyrolysis
  3. Characterization of the ceramic micro-parts regarding in vitro biocompatibility as…
    • Dental implants
    • Pacemaker electrodes
Key Technical Problems to Solve
  • Increase the achievable precision of the ceramic micro-parts.
  • Find ways to overcome current issues in the manufacturing of high precision ceramics due to shrinkage.
  • Define PDC compositions leading to bright colored implant materials.
  • Develop a suitable 3D in vitro model and setup with electrical pacing capabilities to study the fibrotic encapsulation of PDC implant materials.
  • High precision watch parts
  • Dental implants
  • Implantable (e.g. pacemaker) electrodes


Tomographic microscopy of functionally graded polymer-derived SiCN ceramics with tunable gradients

L. Hageluken; M. G. Makowska; F. Marone; J. Brugger 

Materialia. 2024-01-31. Vol. 33, p. 102025. DOI : 10.1016/j.mtla.2024.102025.


SU-8 cantilever with integrated pyrolyzed glass-like carbon piezoresistor

J. Jang; G. Panusa; G. Boero; J. Brugger 

Microsystems & Nanoengineering. 2022-02-10. Vol. 8, num. 1, p. 22. DOI : 10.1038/s41378-022-00351-9.

Tomographic Volumetric Additive Manufacturing of Silicon Oxycarbide Ceramics

M. Kollep; G. Konstantinou; J. Madrid-Wolff; A. Boniface; L. Hagelüken et al. 

Advanced Engineering Materials. 2022-01-16. Vol. 24, num. 7, p. 2101345. DOI : 10.1002/adem.202101345.


Multiscale 2D/3D microshaping and property tuning of polymer-derived SiCN ceramics

L. Hagelüken; P. V. Warriam Sasikumar; H-Y. Lee; D. Di Stadio; Y. Chandorkar et al. 

Journal of the European Ceramic Society. 2021-12-17. Vol. 42, num. 5, p. 1963-1970. DOI : 10.1016/j.jeurceramsoc.2021.12.044.


One-step fabrication of high refractive index inorganic nanostructures

E. Zanchetta; G. Della Giustina; A. Gandin; V. Auzelyte; G. Brusatin 

Journal Of Sol-Gel Science And Technology. 2023. Vol. 107, p. 122–132. DOI : 10.1007/s10971-021-05633-8.


Electrochemical performance of polymer-derived SiOC and SiTiOC ceramic electrodes for artificial cardiac pacemaker applications

J. Jang; P. V. Warriam Sasikumar; F. Navaee; L. Hagelüken; G. Blugan et al. 

Ceramics International. 2020-11-19. Vol. 47, num. 6, p. 7593-7601. DOI : 10.1016/j.ceramint.2020.11.098.

Cracks, porosity and microstructure of Ti modified polymer-derived SiOC revealed by absorption-, XRD- and XRF-contrast 2D and 3D imaging

M. Makowska; P. V. W. Sasikumar; L. Hagelüken; D. F. Sanchez; N. Casati et al. 

Acta Materialia. 2020-08-01. Vol. 198, p. 134-144. DOI : 10.1016/j.actamat.2020.07.067.

Additive micro-manufacturing of crack-free PDCs by two-photon polymerization of a single, low-shrinkage preceramic resin

G. Konstantinou; E. Kakkava; L. Hagelüken; P. V. Warriam Sasikumar; J. Wang et al. 

Additive Manufacturing. 2020-05-26.  p. 101343. DOI : 10.1016/j.addma.2020.101343.

In Vitro Cytocompatibility Assessment of Ti-Modified, Silicon-oxycarbide-Based, Polymer-Derived, Ceramic-Implantable Electrodes under Pacing Conditions

P. V. W. Sasikumar; E. Mueller; P. Clement; J. Jang; E. Kakkava et al. 

Acs Applied Materials & Interfaces. 2020-04-15. Vol. 12, num. 15, p. 17244-17253. DOI : 10.1021/acsami.0c01465.