SFA Ceramic X.0

High-precision micro-manufacturing of ceramics

PI: Prof. Dr. Jürgen Brugger
Project start: 1st July 2017
Project duration: 48 months
SFA website: http://www.sfa-am.ch/ceramic-x0.html

Project team (leaders):
  • Prof. Dr. Christophe Moser, Laboratory of Applied Photonic Devices, EPF Lausanne
  • Prof. Dr. Demetri Psaltis, Optics Laboratory, EPF Lausanne
  • Dr. Gurdial Blugan, Laboratory for High Performance Ceramics, Empa
  • Prof. Dr. Katharina Maniura, Laboratory for Biointerfaces, Empa
  • Prof. Dr. Helena Van Swygenhoven, Photons for Engineering and Manufacturing Group, PSI

Project team (LMIS1):

  • Dr. Pierrick Clément
  • Lorenz Hagelüken
Summary:

Engineered ceramic materials have found widespread use in various industrial applications due to their unique properties. However, it is difficult if not impossible to produce micron-scale high-precision ceramic components with current manufacturing techniques.

The main aim of this project is thus to develop novel micro-manufacturing techniques for high-precision, ceramic components based on polymer-derived ceramics (PDC). Furthermore, novel PDC materials will be evaluated for their in vitro biocompatibility as dental implants as well as pacemaker electrodes.

Scope of Research Activities
  1. Development of polymer-derived ceramics (PDC) materials suitable for micro-casting
  2. Development of processes and devices to …
    • Manufacture micro-molds,
    • Fill preceramic polymers (PCPs) into these micro-molds (micro-casting) and
    • Transform the material into PDC micro-parts by pyrolysis
  3. Characterization of the ceramic micro-parts regarding in vitro biocompatibility as…
    • Dental implants
    • Pacemaker electrodes
Key Technical Problems to Solve
  • Increase the achievable precision of the ceramic micro-parts.
  • Find ways to overcome current issues in the manufacturing of high precision ceramics due to shrinkage.
  • Define PDC compositions leading to bright colored implant materials.
  • Develop a suitable 3D in vitro model and setup with electrical pacing capabilities to study the fibrotic encapsulation of PDC implant materials.
Demonstrators
  • High precision watch parts
  • Dental implants
  • Implantable (e.g. pacemaker) electrodes

2022

Tomographic Volumetric Additive Manufacturing of Silicon Oxycarbide Ceramics

M. Kollep; G. Konstantinou; J. Madrid-Wolff; A. Boniface; L. Hagelüken et al. 

Advanced Engineering Materials. 2022. Vol. 24, num. 7, p. 2101345. DOI : 10.1002/adem.202101345.

2020

Electrochemical performance of polymer-derived SiOC and SiTiOC ceramic electrodes for artificial cardiac pacemaker applications

J. Jang; P. V. Warriam Sasikumar; F. Navaee; L. Hagelüken; G. Blugan et al. 

Ceramics International. 2020. Vol. 47, num. 6, p. 7593 – 7601. DOI : 10.1016/j.ceramint.2020.11.098.

Cracks, porosity and microstructure of Ti modified polymer-derived SiOC revealed by absorption-, XRD- and XRF-contrast 2D and 3D imaging

M. Makowska; P. V. W. Sasikumar; L. Hagelüken; D. F. Sanchez; N. Casati et al. 

Acta Materialia. 2020. Vol. 198, p. 134 – 144. DOI : 10.1016/j.actamat.2020.07.067.

Additive micro-manufacturing of crack-free PDCs by two-photon polymerization of a single, low-shrinkage preceramic resin

G. Konstantinou; E. Kakkava; L. Hagelüken; P. V. Warriam Sasikumar; J. Wang et al. 

Additive Manufacturing. 2020.  p. 101343. DOI : 10.1016/j.addma.2020.101343.

2018

Growth of Large-Area 2D MoS2 Arrays at Pre-Defined Locations Using Stencil Mask Lithography

I. Sharma; Y. Batra; V. Flauraud; J. Brugger; B. R. Mehta 

Journal of Nanoscience and Nanotechnology. 2018. Vol. 18, num. 3, p. 1824 – 1832. DOI : 10.1166/jnn.2018.14265.

2016

Rapid carbon nanotubes suspension in organic solvents using organosilicon polymers

F. Dalcanale; J. Grossenbacher; G. Blugan; M. Gullo; J. Brugger et al. 

Journal of Colloid and Interface Science. 2016. Vol. 470, num. 15, p. 123 – 131. DOI : 10.1016/j.jcis.2016.02.050.

Harnessing the damping properties of materials for high-speed atomic force microscopy

J. Adams; B. Erickson; J. Grossenbacher; J. Brugger; A. P. Nievergelt et al. 

Nature Nanotechnology. 2016. Vol. 11, p. 147 – 151. DOI : 10.1038/NNANO.2015.254.

2015

Cytotoxicity evaluation of polymer-derived ceramics for pacemaker electrode applications

J. Grossenbacher; M. Gullo; F. Dalcanale; G. Blugan; J. Kuebler et al. 

Journal of Biomedical Materials Research Part A. 2015. Vol. 103, num. 11, p. 3625 – 3632. DOI : 10.1002/jbm.a.35477.

On the micrometre precise mould filling of liquid polymer derived ceramic precursor for 300-µm-thick high aspect ratio ceramic MEMS

J. Grossenbacher; R. M. Gullo; V. Bakumov; G. Blugan; J. Kuebler et al. 

Ceramics International. 2015. Vol. 41, num. 1, p. 623 – 629. DOI : 10.1016/j.ceramint.2014.08.112.

CNT and PDCs: A fruitful association? Study of a polycarbosilane–MWCNT composite

F. Dalcanale; J. Grossenbacher; G. Blugan; M. R. Gullo; J. Brugger et al. 

Journal of the European Ceramic Society. 2015. Vol. 35, num. 8, p. 2215 – 2224. DOI : 10.1016/j.jeurceramsoc.2015.02.016.

2014

UV-Imprint Resists Generated from Polymerizable Ionic Liquids and Titania Nanoparticles

A. Gopakumar; Z. Fei; E. Paunescu; V. Auzelyte; J. Brugger et al. 

The Journal of Physical Chemistry C. 2014. Vol. 118, p. 16743−16748. DOI : 10.1021/jp412722y.

Influence of carbon enrichment on electrical conductivity and processing of polycarbosilane derived ceramic for MEMS applications

F. Dalcanale; J. Grossenbacher; G. Blugan; R. M. Gullo; A. Lauria et al. 

Journal of the European Ceramic Society. 2014. Vol. 34, num. 15, p. 3559 – 3570. DOI : 10.1016/j.jeurceramsoc.2014.06.002.

2013

Integrated long-range thermal bimorph actuators for parallelizable bio-AFM applications

J. Henriksson; R. M. Gullo; J. Brugger 

IEEE Sensors Journal. 2013. Vol. 13, num. 8, p. 2849 – 2856. DOI : 10.1109/JSEN.2013.2261293.

2012

Mechanical and tribological properties of polymer-derived Si/C/N sub-millimetre thick miniaturized components fabricated by direct casting

V. Bakumov; G. Blugan; S. Roos; T. Graule; V. Fakhfouri et al. 

Journal of the European Ceramic Society. 2012. Vol. 32, num. 8, p. 1759 – 1767. DOI : 10.1016/j.jeurceramsoc.2012.01.007.

Highly inorganic titania based sol–gel as directly patternable resist for micro- and nano- structured surfaces

E. Zanchetta; V. Auzelyte; J. Brugger; A. V. Savegnago; G. Della Giustina et al. 

Microelectronic Engineering. 2012. Vol. 98, p. 176 – 179. DOI : 10.1016/j.mee.2012.07.043.

2010

Fast and robust hydrogen sensors based on discontinuous palladium films on polyimide, fabricated on a wafer scale

T. Kiefer; G. Villanueva; F. Fargier; F. G. Favier; J. Brugger 

Nanotechnology. 2010. Vol. 21, num. 50, p. 505501. DOI : 10.1088/0957-4484/21/50/505501.

Large arrays of chemo-mechanical nanoswitches for ultralow-power hydrogen sensing

T. Kiefer; A. Salette; G. Villanueva; J. Brugger 

Journal of Micromechanics and Microengineering. 2010. Vol. 20, p. 105019. DOI : 10.1088/0960-1317/20/10/105019.