NMR and ESR Spectroscopy

Integration of the sensitivity-relevant electronics of nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectrometers on a single chip is a promising approach to improve the limit of detection, especially for samples in the nanoliter and sub-nanoliter range. As a group, we are designing integrated sensors for NMR and ESR spectroscopy using different integrated technologies such as CMOS, HEMT and SiGe.

10 GHz Single Chip DNP Microsystem

We have recently demonstrated the cointegration on a single silicon chip of the front-end electronics of NMR and ESR detectors. The excitation/detection planar spiral microcoils of the NMR and ESR detectors are concentric and interrogate the same sample volume. This combination of sensors allows one to perform dynamic nuclear polarization (DNP) experiments using a single-chip integrated microsystem having an area of about 2 mm2. NMR enhancements as large as 50 are achieved on TEMPOL/H2O solutions at room temperature. The chip is fabricated using a standard silicon CMOS technology (TSMC 180 nm, MS/RF).

An Ultra-Low Power 35 GHz Electron Spin Resonance Detector

A low power microwave oscillator designed as sensor for electron spin resonance (ESR) spectroscopy. Low power consumption is necessary for low temperature operation. Additionally, lower power consumption allows for a lower microwave magnetic field in the sensing volume, which avoids the saturation of samples having long spin relaxation times and, consequently, the degradation of the spin sensitivity. The oscillator operates at 35 GHz, consuming 90 µW at 300 K and 15 µW at 1.4 K. This is the lowest power consumption reported to date for oscillators operating in the same frequency range. The fully integrated oscillator is based on a single HEMT transistor having a gate length of 70 nm and realized using a 2DEG in In0:7Ga0:3As. The detector operates at down to 1.4 K.

Keywords: NMR, ESR, DNP, spectroscopy


Publications

 

Towards optical MAS magnetic resonance using optical traps

L. Marti; N. S. Solmaz; M. Kern; A. Chu; R. Farsi et al. 

Journal Of Magnetic Resonance Open. 2023-12-28. Vol. 18, p. 100145. DOI : 10.1016/j.jmro.2023.100145.

NMR spectroscopy of a single mammalian early stage embryo

G. Sivelli; G. M. Conley; C. Herrera; K. Marable; K. J. Rodriguez et al. 

Journal Of Magnetic Resonance. 2022-02-01. Vol. 335, p. 107142. DOI : 10.1016/j.jmr.2021.107142.

NMR microsystem for label-free characterization of 3D nanoliter microtissues

M. Grisi; G. M. Conley; K. J. Rodriguez; E. Riva; L. Egli et al. 

Scientific Reports. 2020-10-27. Vol. 10, p. 1-9, 18306. DOI : 10.1038/s41598-020-75480-0.

Single chip dynamic nuclear polarization microsystem

N. Sahin Solmaz; M. Grisi; A. V. Matheoud; G. Gualco; G. Boero 

Analytical Chemistry. 2020-06-12. Vol. 92, num. 14, p. 9782–9789. DOI : 10.1021/acs.analchem.0c01221.

CMOS and 3D Printing for NMR Spectroscopy at the Single Embryo Scale

M. Grisi; E. Montinaro; F. Vincent; L. Petho; M. C. Letizia et al. 

Chimia. 2019-08-01. Vol. 73, num. 7-8, p. 635-635. DOI : 10.2533/chimia.2019.635.

A single-chip integrated transceiver for high field NMR magnetometry

M. Grisi; G. M. Conley; P. Sommer; J. Tinembart; G. Boero 

Review Of Scientific Instruments. 2019-01-01. Vol. 90, num. 1, p. 015001. DOI : 10.1063/1.5066436.

A single chip electron spin resonance detector based on a single high electron mobility transistor

A. V. Matheoud; N. Sahin; G. Boero 

Journal of Magnetic Resonance. 2018-07-05. Vol. 294, p. 59-70. DOI : 10.1016/j.jmr.2018.07.002.

3D printed microchannels for sub-nL NMR spectroscopy

E. Montinaro; M. Grisi; M. C. Letizia; L. Pethö; M. A. M. Gijs et al. 

PLOS ONE. 2018-05-09. Vol. 13, num. 5, p. e0192780. DOI : 10.1371/journal.pone.0192780.

Single-chip electron spin resonance detectors operating at 50 GHz, 92 GHz, and 146 GHz

A. V. Matheoud; G. Gualco; M. Jeong; I. Zivkovic; J. Brugger et al. 

Journal of Magnetic Resonance. 2017. Vol. 278, p. 113-121. DOI : 10.1016/j.jmr.2017.03.013.

NMR spectroscopy of single sub-nL ova with inductive ultra-compact single-chip probes

M. Grisi; F. Vincent; B. Volpe; R. Guidetti; N. Harris et al. 

Scientific Reports. 2017. Vol. 7, p. 44670. DOI : 10.1038/srep44670.

A low-power high-sensitivity single-chip receiver for NMR microscopy

J. Anders; J. Handwerker; M. Ortmanns; G. Boero 

Journal Of Magnetic Resonance. 2016. Vol. 266, p. 41-50. DOI : 10.1016/j.jmr.2016.03.004.

A broadband single-chip transceiver for multi-nuclear NMR probes

M. Grisi; G. Gualco; G. Boero 

Review Of Scientific Instruments. 2015. Vol. 86, num. 4, p. 044703. DOI : 10.1063/1.4916206.

Cryogenic single-chip electron spin resonance detector

G. Gualco; J. Anders; A. Sienkiewicz; S. Alberti; L. Forro et al. 

Journal of Magnetic Resonance. 2014. Vol. 247, p. 96-103. DOI : 10.1016/j.jmr.2014.08.013.

Room temperature strong coupling between a microwave oscillator and an ensemble of electron spins

G. Boero; G. Gualco; R. Lisowski; J. Anders; D. Suter et al. 

Journal Of Magnetic Resonance. 2013. Vol. 231, p. 133-140. DOI : 10.1016/j.jmr.2013.04.004.

K-band single-chip electron spin resonance detector

J. Anders; A. Angerhofer; G. Boer 

Journal Of Magnetic Resonance. 2012. Vol. 217, p. 19-26. DOI : 10.1016/j.jmr.2012.02.003.

Integrated active tracking detector for MRI-guided interventions

J. Anders; P. SanGiorgio; X. Deligianni; F. Santini; K. Scheffler et al. 

Magnetic Resonance In Medicine. 2012. Vol. 67, p. 290-296. DOI : 10.1002/mrm.23112.

A fully integrated IQ-receiver for NMR microscopy

J. Anders; P. SanGiorgio; G. Boero 

Journal Of Magnetic Resonance. 2011. Vol. 209, p. 1-7. DOI : 10.1016/j.jmr.2010.12.005.

A single-chip array of NMR receivers

J. Anders; G. Chiaramonte; P. SanGiorgio; G. Boero 

Journal Of Magnetic Resonance. 2009. Vol. 201, p. 239-249. DOI : 10.1016/j.jmr.2009.09.019.

Single-chip detector for electron spin resonance spectroscopy

T. Yalcin; G. Boero 

Review Of Scientific Instruments. 2008. Vol. 79, p. 094105. DOI : 10.1063/1.2969657.

NMR spectroscopy and perfusion of mammalian cells using surface microprobes

K. Ehrmann; K. Pataky; M. Stettler; F. M. Wurm; J. Brugger et al. 

Lab on a Chip. 2007. Vol. 7, num. 3, p. 381-383. DOI : 10.1039/B613240E.

Planar microcoil-based microfluidic NMR probes

C. Massin; F. Vincent; A. Homsy; K. Ehrmann; G. Boero et al. 

Journal of Magnetic Resonance. 2003. Vol. 164, num. 2, p. 242-255. DOI : 10.1016/S1090-7807(03)00151-4.

High-Q factor RF planar microcoils for micro-scale NMR spectroscopy

C. Massin; G. Boero; F. Vincent; J. Abenhaim; P-A. Besse et al. 

Sensors and Actuators, A: Physical. 2002. Vol. 97-98, p. 280-288. DOI : 10.1016/S0924-4247(01)00847-0.

An NMR magnetometer with planar microcoils and integrated electronics for signal detection and amplification

G. Boero; C. de Raad Iseli; P. Besse; R. Popovic 

SENSORS AND ACTUATORS A-PHYSICAL. 1998. Vol. 67, num. 1-3, p. 18-23. DOI : 10.1016/S0924-4247(97)01722-6.