Laboratory for Bio- and Nano- Instrumentation

Student projects

We are a lab at the crossroads between instrumentation, microfabrication, and nanoscale biology. Our main expertise is in scanning probe microscopy.

Our two main research axes are high speed atomic force microscopy and the combination of different microscopy techniques.

We focus mainly on the fabrication of various AFM cantilevers. Our approach is to optimise the performance through material engineering.

We use AFM and other scanning probe techniques to understand biology at various spatial and temporal scales.

An image description

Open Hardware

Read more

As technology developers, the outcomes of our research are in part the instruments and technologies themselves. In order to share these research outputs with the wider scientific community, we actively engage in dissemination activities in the form of open hardware workshops.


© 2020 EPFL

New PhD Thesis Defense at LBNI

— Mélanie successfully passed her PhD exam on September 25th, 2020.  Thesis title: Time-lapse high-resolution microscopy to study the morphogenesis of micro-organisms

© 2020 EPFL

Bacteria under the microscope: a new growth model for tuberculosis

— New research has shed light on how mycobacteria grow. This discovery could explain why some members of this family of single-celled organisms, which includes the bacillus that causes tuberculosis, can develop resistance to antibiotics

© 2019 EPFL

Dr. Adrian Nievergelt receives the EDMI 2019 Thesis Distinction

— Dr. Adrian Nievergelt receives the year's EPFL Microsystems & Microelectronics Doctoral Program Thesis Distinction

Bacteria. Credit: iStock

Bacteria must be “stressed out” to divide

— Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

Researchers can come to EPFL to learn how to build the instrument from its spare parts. ©LBNI/EPFL

Observing cellular activity, one molecule at a time

— Using a new mode of atomic force microscopy, researchers at EPFL have found a way to see and measure protein assembly in real time and with unprecedented detail.

© 2018 EPFL

School of Engineering awarded two ERC Consolidator Grants

— Professors Camille Brès and Georg Fantner, from EPFL’s School of Engineering, have both been awarded European Research Council (ERC) Consolidator Grants. These highly prestigious grants are designed to support young researchers with seven to twelve years of experience who have a solid track record and a top-notch research project.

All news


A biphasic growth model for cell pole elongation in mycobacteria

M. T. M. Hannebelle; J. X. Y. Ven; C. Toniolo; H. A. Eskandarian; G. Vuaridel-Thurre et al. 

Nature Communications. 2020-01-23. Vol. 11, num. 452. DOI : 10.1038/s41467-019-14088-z.

Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process

N. Hosseini; M. Neuenschwander; O. Peric; S. Andany; J. D. Adams et al. 

Beilstein Journal of Nanotechnology. 2019-11-29. Vol. 10, p. 2357–2363. DOI : 10.3762/bjnano.10.226.
SEM image of a single cantilever. The pyramidal tip consists of four {111}-planes and has a half-cone angle of 35°. It is aligned with the cantilever.

Overlapping and essential roles for molecular and mechanical mechanisms in mycobacterial cell division

P. D. Odermatt; M. T. M. Hannebelle; H. A. Eskandarian; A. P. Nievergelt; J. D. McKinney et al. 

Nature Physics. 2019-10-21. DOI : 10.1038/s41567-019-0679-1.
A time sequence of measured stiffness maps of the cell surface from the appearance of the PCF until cleavage

Batch Fabrication of Multilayer Polymer Cantilevers with Integrated Hard Tips for High-Speed Atomic Force Microscopy

N. Hosseini; O. Peric; M. Neuenschwander; S. Andany; J. D. Adams et al. 

2019-08-22. Transducers & Eurosensors XXXIII, Berlin, Germany, June 23-27, 2019. DOI : 10.1109/TRANSDUCERS.2019.8808606.

Large‐Range HS‐AFM Imaging of DNA Self‐Assembly through In Situ Data‐Driven Control

A. P. Nievergelt; C. M. Kammer; C. Brillard; E. E. Kurisinkal; M. Bastings et al. 

Small Methods. 2019. Vol. 3, p. 1900031. DOI : 10.1002/smtd.201900031.
DNA tripod constructs assemble by blunt‐end stacking on mica into a mostly hexagonal lattice with pentagonal and heptagonal defects.

Single-molecule kinetics of pore assembly by the membrane attack complex

E. S. Parsons; G. J. Stanley; A. L. B. Pyne; A. W. Hodel; A. P. Nievergelt et al. 

Nature Communications. 2019-05-06. Vol. 10, p. 2066. DOI : 10.1038/s41467-019-10058-7.
Formation of MAC on bacterial model membranes

Increased drug permeability of a stiffened mycobacterial outer membrane in cells lacking MFS transporter Rv1410 and lipoprotein LprG

M. Hohl; S. Remm; H. A. Eskandarian; M. Dal Molin; F. M. Arnold et al. 

Molecular Microbiology. 2019-05-01. Vol. 111, num. 5, p. 1263-1282. DOI : 10.1111/mmi.14220.
AFM images of representative wild‐type and dKO cells are depicted in 3D with the AFM stiffness (DMT modulus) image overlaid as a skin on top of the AFM height image

Detecting topological variations of DNA at single-molecule level

K. Liu; C. Pan; A. Kühn; A. P. Nivergelt; G. Fantner et al. 

Nature Communications. 2019. DOI : 10.1038/s41467-018-07924-1.
An overview AFM image of the programmed ds–ss–ds DNA complex on Mica under physiological conditions

An analog high-speed single-cycle lock-in amplifier for next generation AFM experiments

B. Schlecker; A. Nievergelt; M. Ortmanns; G. Fantner; J. Anders 

2018-01-01. 17th IEEE SENSORS Conference, New Delhi, INDIA, Oct 28-31, 2018. p. 168-171.
CD-ROM sample: (a) Topography and (b) 3D image, obtained using the AM-AFM setup and a fastscana cantilever

Air and Water-Stable n-Type Doping and Encapsulation of Flexible MoS2 Devices with SU8

Y-C. Kung; N. Hosseini; D. Dumcenco; G. E. Fantner; A. Kis 

Advanced Electronic Materials. 2018-11-09.  p. 1800492. DOI : 10.1002/aelm.201800492.
Bottom‐gated monolayer MoS2 FET with SU8 coating

Maturing Mycobacterium smegmatis peptidoglycan requires non-canonical crosslinks to maintain shape

C. Baranowski; M. A. Welsh; L-T. Sham; H. A. Eskandarian; H. C. Lim et al. 

Elife. 2018-10-16. Vol. 7, p. e37516. DOI : 10.7554/eLife.37516.

Photothermal Off-Resonance Tapping for Rapid and Gentle Atomic Force Imaging of Live Cells

A. Nievergelt; C. Brillard; H. Eskandarian; J. McKinney; G. Fantner 

International Journal of Molecular Sciences. 2018-09-30. Vol. 19, num. 10, p. 2984. DOI : 10.3390/ijms19102984.
Membrane disruption on E. coli due to attack by the antimicrobial peptide CM-15

Reducing uncertainties in energy dissipation measurements in atomic force spectroscopy of molecular networks and cell-adhesion studies

S. Biswas; S. Leitao; Q. Theillaud; B. W. Erickson; G. E. Fantner 

Scientific Reports. 2018-06-20. Vol. 8, num. 1. DOI : 10.1038/s41598-018-26979-0.

High-speed photothermal off-resonance atomic force microscopy reveals assembly routes of centriolar scaffold protein SAS-6

A. P. Nievergelt; N. Banterle; S. H. Andany; P. Gönczy; G. E. Fantner 

Nature Nanotechnology. 2018-08-13. Vol. 13, num. 8, p. 696-701. DOI : 10.1038/s41565-018-0149-4.
HS-PORT reveals distinct assembly routes

Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy

M. Dukic; V. Todorov; S. Andany; A. P. Nievergelt; C. Yang et al. 

Review of Scientific Instruments. 2017. Vol. 88, num. 12, p. 123712. DOI : 10.1063/1.5010181.
A comparison of HS-AFM imaging between the analog PID and the standard commercial digital controllers

Components for high-speed atomic force microscopy optimized for low phase-lag

A. P. Nievergelt; S. H. Andany; J. D. Adams; M. T. Hannebelle; G. E. Fantner 

2017. 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3-7 July 2017. p. 731-736. DOI : 10.1109/AIM.2017.8014104.
Small cantilever AFM head with photothermal drive capability: section view through head, exposing the laser light path.

Microfluidic bacterial traps for simultaneous fluorescence and atomic force microscopy

O. Peric; M. Hannebelle; J. D. Adams; G. E. Fantner 

Nano Research. 2017. Vol. 10, num. 11, p. 3896-3908. DOI : 10.1007/s12274-017-1604-5.

Probing the Morphology and Evolving Dynamics of 3D Printed Nanostructures Using High-Speed Atomic Force Microscopy

C. Yang; R. Winkler; M. Dukic; J. Zhao; H. Plank et al. 

Acs Applied Materials & Interfaces. 2017. Vol. 9, num. 29, p. 24456-24461. DOI : 10.1021/acsami.7b07762.