Fundamentals of Atomistic Machine Learning

Key in atomistic modeling is to find the relationship between a given structure and its properties. To find this relationship, we need to build a representation of the structure and a model that relates this representation to the target properties.

In our group, we investigate the fundamental questions related to the mathematical representations by studying their equivariance under basic physical symmetries, their smoothness and additivity. We also study solutions to the issue of the lack of completeness of some commonly employed representations, whereby two physically different atomic structures share the same representation. 

Beyond that, we are putting our efforts into creating new models for more accurate predictions and estimating the uncertainty that should be ascribed to machine learning models. We also develop auxiliary techniques for analysing and reducing the complexity of big datasets, and to get a physical interpretation of the local quantities, like local energies or local dipoles, predicted via machine learning approaches.