Fast evaluation of spherical harmonics with sphericart
Journal Of Chemical Physics. 2023-08-14. Vol. 159, num. 6, p. 064802. DOI : 10.1063/5.0156307.Effect of a temperature gradient on the screening properties of ionic fluids
Physical Review Materials. 2023-04-27. Vol. 7, num. 4, p. 045803. DOI : 10.1103/PhysRevMaterials.7.045803.Modeling high-entropy transition metal alloys with alchemical compression
Physical Review Materials. 2023-04-26. Vol. 7, num. 4, p. 045802. DOI : 10.1103/PhysRevMaterials.7.045802.A data-driven interpretation of the stability of organic molecular crystals
Chemical Science. 2023-01-16. Vol. 14, num. 5, p. 1272-1285. DOI : 10.1039/d2sc06198h.Modelling of metal alloys in realistic conditions with machine learning
Lausanne, EPFL, 2023.Machine-learning the electronic density of states: electronic properties without quantum mechanics
Lausanne, EPFL, 2023.Electrokinetic, electrochemical, and electrostatic surface potentials of the pristine water liquid-vapor interface
Journal Of Chemical Physics. 2022-12-28. Vol. 157, num. 24, p. 240902. DOI : 10.1063/5.0127869.A smooth basis for atomistic machine learning
Journal Of Chemical Physics. 2022-12-21. Vol. 157, num. 23, p. 234101. DOI : 10.1063/5.0124363.Beyond potentials: Integrated machine learning models for materials
Mrs Bulletin. 2022-12-06. Vol. 47, p. 1045–1053. DOI : 10.1557/s43577-022-00440-0.Incompleteness of graph neural networks for points clouds in three dimensions
Machine Learning-Science And Technology. 2022-12-01. Vol. 3, num. 4, p. 045020. DOI : 10.1088/2632-2153/aca1f8.Comment on “Manifolds of quasi-constant SOAP and ACSF fingerprints and the resulting failure to machine learn four-body interactions” [J. Chem. Phys. 156, 034302 (2022)]
Journal Of Chemical Physics. 2022-11-07. Vol. 157, num. 17, p. 177101. DOI : 10.1063/5.0088404.Thermodynamics and dielectric response of BaTiO3 by data-driven modeling
Npj Computational Materials. 2022-09-29. Vol. 8, num. 1, p. 209. DOI : 10.1038/s41524-022-00845-0.Predicting hot-electron free energies from ground-state data
Physical Review B. 2022-09-27. Vol. 106, num. 12, p. L121116. DOI : 10.1103/PhysRevB.106.L121116.A Machine Learning Model of Chemical Shifts for Chemically and Structurally Diverse Molecular Solids
Journal Of Physical Chemistry C. 2022-09-22. Vol. 126, num. 39, p. 16710–16720. DOI : 10.1021/acs.jpcc.2c03854.Effects of surface rigidity and metallicity on dielectric properties and ion interactions at aqueous hydrophobic interfaces
Journal Of Chemical Physics. 2022-09-07. Vol. 157, num. 9, p. 094707. DOI : 10.1063/5.0101509.Topology, Oxidation States, and Charge Transport in Ionic Conductors
Annalen Der Physik. 2022-08-17. p. 2200123. DOI : 10.1002/andp.202200123.Roadmap on Machine learning in electronic structure
Electronic Structure. 2022-06-01. Vol. 4, num. 2, p. 023004. DOI : 10.1088/2516-1075/ac572f.Unified theory of atom-centered representations and message-passing machine-learning schemes
Journal Of Chemical Physics. 2022-05-28. Vol. 156, num. 20, p. 204115. DOI : 10.1063/5.0087042.Molecular dynamics simulations of the evaporation of hydrated ions from aqueous solution
Communications Chemistry. 2022-04-19. Vol. 5, num. 1, p. 55. DOI : 10.1038/s42004-022-00669-5.Investigating finite-size effects in molecular dynamics simulations of ion diffusion, heat transport, and thermal motion in superionic materials
Journal Of Chemical Physics. 2022-04-07. Vol. 156, num. 13, p. 134705. DOI : 10.1063/5.0087382.A complete description of thermodynamic stabilities of molecular crystals
Proceedings Of The National Academy Of Sciences Of The United States Of America. 2022-02-08. Vol. 119, num. 6, p. e2111769119. DOI : 10.1073/pnas.2111769119.Temperature- and vacancy-concentration-dependence of heat transport in Li3ClO from multi-method numerical simulations
Npj Computational Materials. 2022-01-28. Vol. 8, num. 1, p. 24. DOI : 10.1038/s41524-021-00693-4.Equivariant representations for molecular Hamiltonians and N-center atomic-scale properties
Journal Of Chemical Physics. 2022-01-07. Vol. 156, num. 1, p. 014115. DOI : 10.1063/5.0072784.Ranking the synthesizability of hypothetical zeolites with the sorting hat
Digital Discovery. 2022. Vol. 1, num. 6, p. 779-789. DOI : 10.1039/D2DD00056C.Characterization and prediction of peptide structures on inorganic surfaces
Lausanne, EPFL, 2022.Local Kernel Regression and Neural Network Approaches to the Conformational Landscapes of Oligopeptides
Journal of Chemical Theory and Computation. 2022. Vol. 18, num. 3, p. 1467-1479. DOI : 10.1021/acs.jctc.1c00813.A route to hierarchical assembly of colloidal diamond
Soft Matter. 2022. Vol. 18, num. 2, p. 304-311. DOI : 10.1039/d1sm01418h.2020 JCP Emerging Investigator Special Collection
Journal Of Chemical Physics. 2021-12-21. Vol. 155, num. 23, p. 230401. DOI : 10.1063/5.0078934.Reply to: On the liquid-liquid phase transition of dense hydrogen
Nature. 2021-12-16. Vol. 600, num. 7889, p. E15-E16. DOI : 10.1038/s41586-021-04079-w.Learning Electron Densities in the Condensed Phase
Journal Of Chemical Theory And Computation. 2021-11-09. Vol. 17, num. 11, p. 7203-7214. DOI : 10.1021/acs.jctc.1c00576.Bayesian probabilistic assignment of chemical shifts in organic solids
Science Advances. 2021-11-01. Vol. 7, num. 48, p. eabk2341. DOI : 10.1126/sciadv.abk2341.Optimal radial basis for density-based atomic representations
Journal Of Chemical Physics. 2021-09-14. Vol. 155, num. 10, p. e104106. DOI : 10.1063/5.0057229.Improving sample and feature selection with principal covariates regression
Machine Learning-Science And Technology. 2021-09-01. Vol. 2, num. 3, p. 035038. DOI : 10.1088/2632-2153/abfe7c.Introduction: Machine Learning at the Atomic Scale
Chemical Reviews. 2021-08-25. Vol. 121, num. 16, p. 9719-9721. DOI : 10.1021/acs.chemrev.1c00598.Gaussian Process Regression for Materials and Molecules
Chemical Reviews. 2021-08-25. Vol. 121, num. 16, p. 10073-10141. DOI : 10.1021/acs.chemrev.1c00022.Physics-Inspired Structural Representations for Molecules and Materials
Chemical Reviews. 2021-08-25. Vol. 121, num. 16, p. 9759-9815. DOI : 10.1021/acs.chemrev.1c00021.Importance of Nuclear Quantum Effects for NMR Crystallography
Journal Of Physical Chemistry Letters. 2021-08-19. Vol. 12, num. 32, p. 7701-7707. DOI : 10.1021/acs.jpclett.1c01987.Invariance principles in the theory and computation of transport coefficients
The European Physical Journal. 2021-08-03. Vol. B94, num. 8, p. 160. DOI : 10.1140/epjb/s10051-021-00152-5.Quantum vibronic effects on the electronic properties of solid and molecular carbon
Physical Review Materials. 2021-07-26. Vol. 5, num. 7, p. L070801. DOI : 10.1103/PhysRevMaterials.5.L070801.Chemical physics software
Journal Of Chemical Physics. 2021-07-07. Vol. 155, num. 1, p. 010401. DOI : 10.1063/5.0059886.Modeling the Ga/As binary system across temperatures and compositions from first principles
Physical Review Materials. 2021-06-22. Vol. 5, num. 6, p. 063804. DOI : 10.1103/PhysRevMaterials.5.063804.Global Free-Energy Landscapes as a Smoothly Joined Collection of Local Maps
Journal Of Chemical Theory And Computation. 2021-06-08. Vol. 17, num. 6, p. 3292-3308. DOI : 10.1021/acs.jctc.0c01177.The role of feature space in atomistic learning
Machine Learning-Science And Technology. 2021-06-01. Vol. 2, num. 2, p. 025028. DOI : 10.1088/2632-2153/abdaf7.Machine learning for metallurgy III: A neural network potential for Al-Mg-Si
Physical Review Materials. 2021-05-26. Vol. 5, num. 5, p. 053805. DOI : 10.1103/PhysRevMaterials.5.053805.Machine learning meets chemical physics
Journal Of Chemical Physics. 2021-04-28. Vol. 154, num. 16, p. 160401. DOI : 10.1063/5.0051418.Origins of structural and electronic transitions in disordered silicon
Nature. 2021-01-06. Vol. 589, num. 7840, p. 59-64. DOI : 10.1038/s41586-020-03072-z.Local invertibility and sensitivity of atomic structure-feature mappings
Open Research Europe. 2021. Vol. 1, p. 1-22, 126. DOI : 10.12688/openreseurope.14156.1.Transferable machine-learning models of complex materials: the case of GaAs
Lausanne, EPFL, 2021.Structure-Property Relationships in Complex Materials by Combining Supervised and Unsupervised Machine Learning
Lausanne, EPFL, 2021.Physics-enhanced machine learning with symmetry-adapted and long-range representations
Lausanne, EPFL, 2021.Finite-temperature materials modeling from the quantum nuclei to the hot electron regime
Physical Review Materials. 2021. Vol. 5, num. 4, p. 043802. DOI : 10.1103/PhysRevMaterials.5.043802.A general and efficient framework for atomistic machine learning
Lausanne, EPFL, 2021.Uncertainty estimation for molecular dynamics and sampling
The Journal of Chemical Physics. 2021. Vol. 154, num. 7, p. 074102. DOI : 10.1063/5.0036522.Efficient implementation of atom-density representations
The Journal of Chemical Physics. 2021. Vol. 154, num. 11, p. 114109. DOI : 10.1063/5.0044689.Simulating the ghost: quantum dynamics of the solvated electron
Nature Communications. 2021. Vol. 12, num. 1, p. 766. DOI : 10.1038/s41467-021-20914-0.Multi-scale approach for the prediction of atomic scale properties
Chemical Science. 2021. Vol. 12, num. 6, p. 2078-2090. DOI : 10.1039/D0SC04934D.Learning the electronic density of states in condensed matter
Physical Review B. 2020-12-14. Vol. 102, num. 23, p. 235130. DOI : 10.1103/PhysRevB.102.235130.Oxidation States, Thouless’ Pumps, and Nontrivial Ionic Transport in Nonstoichiometric Electrolytes
Physical Review X. 2020-11-12. Vol. 10, num. 4, p. 041031. DOI : 10.1103/PhysRevX.10.041031.Incompleteness of Atomic Structure Representations
Physical Review Letters. 2020-10-12. Vol. 125, num. 16, p. 166001. DOI : 10.1103/PhysRevLett.125.166001.Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets
Nature Materials. 2020-10-05. Vol. 20, num. 3, p. 362-369. DOI : 10.1038/s41563-020-00822-2.DUBS: A Framework for Developing Directory of Useful Benchmarking Sets for Virtual Screening
Journal Of Chemical Information And Modeling. 2020-09-28. Vol. 60, num. 9, p. 4137-4143. DOI : 10.1021/acs.jcim.0c00122.Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics: Application to Materials and Biological Systems
Journal Of Chemical Theory And Computation. 2020-08-11. Vol. 16, num. 8, p. 4757-4775. DOI : 10.1021/acs.jctc.0c00355.Simulating Solvation and Acidity in Complex Mixtures with First-Principles Accuracy: The Case of CH3SO3H and H2O2 in Phenol
Journal Of Chemical Theory And Computation. 2020-08-11. Vol. 16, num. 8, p. 5139-5149. DOI : 10.1021/acs.jctc.0c00362.3D Ordering at the Liquid-Solid Polar Interface of Nanowires
Advanced Materials. 2020-08-06. Vol. 32, num. 38, p. 2001030. DOI : 10.1002/adma.202001030.Heat and charge transport in H2O at ice-giant conditions from ab initio molecular dynamics simulations
Nature Communications. 2020-07-17. Vol. 11, num. 1, p. 3605. DOI : 10.1038/s41467-020-17275-5.Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles
Journal Of Chemical Physics. 2020-07-14. Vol. 153, num. 2, p. 024113. DOI : 10.1063/5.0009106.Quantum kinetic energy and isotope fractionation in aqueous ionic solutions
Physical Chemistry Chemical Physics. 2020-05-21. Vol. 22, num. 19, p. 10490-10499. DOI : 10.1039/c9cp06483d.Inexpensive modeling of quantum dynamics using path integral generalized Langevin equation thermostats
Journal Of Chemical Physics. 2020-03-31. Vol. 152, num. 12, p. 124104. DOI : 10.1063/1.5141950.Structural Screening and Design of Platinum Nanosamples for Oxygen Reduction
Acs Catalysis. 2020-03-20. Vol. 10, num. 6, p. 3911-3920. DOI : 10.1021/acscatal.9b05202.Understanding How Ligand Functionalization Influences CO2 and N-2 Adsorption in a Sodalite Metal-Organic Framework
Chemistry Of Materials. 2020-02-25. Vol. 32, num. 4, p. 1526-1536. DOI : 10.1021/acs.chemmater.9b04631.Accurate Description of Nuclear Quantum Effects with High-Order Perturbed Path Integrals (HOPPI)
Journal Of Chemical Theory And Computation. 2020-02-01. Vol. 16, num. 2, p. 1128-1135. DOI : 10.1021/acs.jctc.9b00881.Classical nucleation theory predicts the shape of the nucleus in homogeneous solidification
Journal Of Chemical Physics. 2020-01-31. Vol. 152, num. 4, p. 044103. DOI : 10.1063/1.5134461.Identifying and Tracking Defects in Dynamic Supramolecular Polymers
Journal Of Physical Chemistry B. 2020-01-23. Vol. 124, num. 3, p. 589-599. DOI : 10.1021/acs.jpcb.9b11015.Structure-property maps with Kernel principal covariates regression
Machine Learning: Science and Technology. 2020. Vol. 1, num. 4, p. 045021. DOI : 10.1088/2632-2153/aba9ef.Characterising Structure and Stability of Materials using Machine Learning
Lausanne, EPFL, 2020.Evidence for supercritical behaviour of high-pressure liquid hydrogen
Nature. 2020. Vol. 585, num. 7824, p. 217-220. DOI : 10.1038/s41586-020-2677-y.Chemiscope: interactive structure-property explorer for materials and molecules
Journal of Open Source Software. 2020. Vol. 5, num. 51, p. 2117. DOI : 10.21105/joss.02117.Recursive evaluation and iterative contraction of N-body equivariant features
The Journal of Chemical Physics. 2020. Vol. 153, num. 12, p. 121101. DOI : 10.1063/5.0021116.Machine-Learning of Atomic-Scale Properties Based on Physical Principles
Machine Learning Meets Quantum Physics; Springer International Publishing, 2020.Nuclear Quantum Effects: Fast and Accurate
Lausanne, EPFL, 2020.Machine Learning-Guided Approach for Studying Solvation Environments
Journal Of Chemical Theory And Computation. 2020-01-01. Vol. 16, num. 1, p. 633-642. DOI : 10.1021/acs.jctc.9b00605.Iterative Unbiasing of Quasi-Equilibrium Sampling
Journal Of Chemical Theory And Computation. 2020-01-01. Vol. 16, num. 1, p. 100-107. DOI : 10.1021/acs.jctc.9b00907.Atomistic modeling of the solid-liquid interface of metals and alloys
Lausanne, EPFL, 2020.Representations and descriptors unifying the study of molecular and bulk systems
International Journal Of Quantum Chemistry. 2019-12-27. p. e26151. DOI : 10.1002/qua.26151.Determination and evaluation of the nonadditivity in wetting of molecularly heterogeneous surfaces
Proceedings of the National Academy of Sciences. 2019-12-17. Vol. 116, num. 51, p. 25516-25523. DOI : 10.1073/pnas.1916180116.Phonon Lifetimes Throughout the Brillouin Zone at Elevated Temperatures from Experiment and ab initio
Physical Review Letters. 2019-12-02. Vol. 123, num. 23, p. 235501. DOI : 10.1103/PhysRevLett.123.235501.Machine Learning at the Atomic Scale
Chimia. 2019-12-01. Vol. 73, num. 12, p. 972-982. DOI : 10.2533/chimia.2019.972.Multi-Scale Electrolyte Transport Simulations for Lithium Ion Batteries
Journal Of The Electrochemical Society. 2019-11-22. Vol. 167, num. 1, p. 013522. DOI : 10.1149/2.0222001JES.Electron density learning of non-covalent systems
Chemical Science. 2019-11-07. Vol. 10, num. 41, p. 9424-9432. DOI : 10.1039/c9sc02696g.Thermal Engineering of Metal-Organic Frameworks for Adsorption Applications: A Molecular Simulation Perspective
Acs Applied Materials & Interfaces. 2019-10-23. Vol. 11, num. 42, p. 38697-38707. DOI : 10.1021/acsami.9b12533.Correlating Oxygen Reduction Reaction Activity and Structural Rearrangements in MgO-Supported Platinum Nanoparticles
Chemphyschem. 2019-09-03. Vol. 20, num. 22, p. 3037-3044. DOI : 10.1002/cphc.201900564.Learning (from/about) the ground-state electron density
2019-08-25. Fall National Meeting and Exposition of the American-Chemical-Society (ACS), San Diego, CA, Aug 25-29, 2019.Quantum mechanical static dipole polarizabilities in the QM7b and AlphaML showcase databases
Scientific Data. 2019-08-19. Vol. 6, p. 152. DOI : 10.1038/s41597-019-0157-8.Path-integral dynamics of water using curvilinear centroids
Journal of Chemical Physics. 2019-08-07. Vol. 151, num. 5, p. 054109. DOI : 10.1063/1.5100587.Energy Relaxation and Thermal Diffusion in Infrared Pump-Probe Spectroscopy of Hydrogen-Bonded Liquids
Journal Of Physical Chemistry Letters. 2019-06-20. Vol. 10, num. 12, p. 3447-3452. DOI : 10.1021/acs.jpclett.9b01272.Modeling Superlattices of Dipolar and Polarizable Semiconducting Nanoparticles
Nano Letters. 2019-06-01. Vol. 19, num. 6, p. 3912-3917. DOI : 10.1021/acs.nanolett.9b01142.Chemical machine learning with kernels: The impact of loss functions
International Journal Of Quantum Chemistry. 2019-05-05. Vol. 119, num. 9, p. e25872. DOI : 10.1002/qua.25872.Data Science Based Mg Corrosion Engineering
Frontiers In Materials. 2019-04-05. Vol. 6, p. 53. DOI : 10.3389/fmats.2019.00053.Equation of State of Fluid Methane from First Principles with Machine Learning Potentials
Journal Of Chemical Theory And Computation. 2019-04-01. Vol. 15, num. 4, p. 2574-2586. DOI : 10.1021/acs.jctc.8b01242.Physics-based machine learning for materials and molecules
2019-03-31. National Meeting of the American-Chemical-Society (ACS), Orlando, FL, Mar 31-Apr 04, 2019.i-PI 2.0: A universal force engine for advanced molecular simulations
Computer Physics Communications. 2019-03-01. Vol. 236, p. 214-223. DOI : 10.1016/j.cpc.2018.09.020.Transferable Machine-Learning Model of the Electron Density
Acs Central Science. 2019-01-23. Vol. 5, num. 1, p. 57-64. DOI : 10.1021/acscentsci.8b00551.Ab initio thermodynamics of liquid and solid water
Proceedings Of The National Academy Of Sciences Of The United States Of America. 2019-01-22. Vol. 116, num. 4, p. 1110-1115. DOI : 10.1073/pnas.1815117116.Atomic-Scale Representation and Statistical Learning of Tensorial Properties
Machine Learning in Chemistry: Data-Driven Algorithms, Learning Systems, and Predictions; Cornell University, 2019. p. 1-21.Incorporating long-range physics in atomic-scale machine learning
The Journal of Chemical Physics. 2019. Vol. 151, num. 20, p. 204105. DOI : 10.1063/1.5128375.Assessment of Approximate Methods for Anharmonic Free Energies
Journal of Chemical Theory and Computation. 2019. Vol. 15, num. 11, p. 5845-5857. DOI : 10.1021/acs.jctc.9b00596.A Bayesian approach to NMR crystal structure determination
Physical Chemistry Chemical Physics. 2019. Vol. 21, num. 42, p. 23385-23400. DOI : 10.1039/C9CP04489B.A new kind of atlas of zeolite building blocks
The Journal of Chemical Physics. 2019. Vol. 151, num. 15, p. 154112. DOI : 10.1063/1.5119751.Atomic Motif Recognition in (Bio)Polymers: Benchmarks From the Protein Data Bank
Frontiers in Molecular Biosciences. 2019. Vol. 6, p. 24. DOI : 10.3389/fmolb.2019.00024.Barely porous organic cages for hydrogen isotope separation
Science. 2019. Vol. 366, num. 6465, p. 613-620. DOI : 10.1126/science.aax7427.Unsupervised machine learning in atomistic simulations, between predictions and understanding
The Journal of Chemical Physics. 2019. Vol. 150, num. 15, p. 150901. DOI : 10.1063/1.5091842.An In-Situ Neutron Diffraction and DFT Study of Hydrogen Adsorption in a Sodalite-Type Metal-Organic Framework, Cu-BTTri
European Journal of Inorganic Chemistry. 2019. Vol. 2019, num. 8, p. 1147-1154. DOI : 10.1002/ejic.201801253.Atom-density representations for machine learning
The Journal of Chemical Physics. 2019. Vol. 150, num. 15, p. 154110. DOI : 10.1063/1.5090481.Fast and Accurate Uncertainty Estimation in Chemical Machine Learning
Journal of Chemical Theory and Computation. 2019. Vol. 15, num. 2, p. 906-915. DOI : 10.1021/acs.jctc.8b00959.Using Gaussian process regression to simulate the vibrational Raman spectra of molecular crystals
New Journal of Physics. 2019. Vol. 21, num. 10, p. 105001. DOI : 10.1088/1367-2630/ab4509.Modeling the Structural and Thermal Properties of Loaded Metal–Organic Frameworks. An Interplay of Quantum and Anharmonic Fluctuations
Journal of Chemical Theory and Computation. 2019. Vol. 15, num. 5, p. 3237-3249. DOI : 10.1021/acs.jctc.8b01297.Accurate molecular polarizabilities with coupled cluster theory and machine learning
Proceedings of the National Academy of Sciences. 2019. Vol. 116, num. 9, p. 3401-3406. DOI : 10.1073/pnas.1816132116.Predicting homogeneous nucleation rate from atomistic simulations
Lausanne, EPFL, 2019.Theoretical prediction of the homogeneous ice nucleation rate: disentangling thermodynamics and kinetics
Physical Chemistry Chemical Physics. 2018-12-07. Vol. 20, num. 45, p. 28732-28740. DOI : 10.1039/c8cp04561e.Comment on “Water- water correlations in electrolyte solutions probed by hyper-Rayleigh scattering” [J. Chem. Phys. 147, 214505 (2017)]
Journal Of Chemical Physics. 2018-10-28. Vol. 149, num. 16, p. 167101. DOI : 10.1063/1.5023579.Data-driven many-body representations with chemical accuracy for molecular simulations from the gas to the condensed phase
2018-08-19. 256th National Meeting and Exposition of the American-Chemical-Society (ACS) – Nanoscience, Nanotechnology and Beyond, Boston, MA, Aug 19-23, 2018.Machine learning across the periodic table
2018-08-19. 256th National Meeting and Exposition of the American-Chemical-Society (ACS) – Nanoscience, Nanotechnology and Beyond, Boston, MA, Aug 19-23, 2018.Analyzing Fluxional Molecules Using DORI
Journal of Chemical Theory and Computation. 2018-03-24. Vol. 14, num. 5, p. 2370-2379. DOI : 10.1021/acs.jctc.7b01176.Nuclear Quantum Effects in Sodium Hydroxide Solutions from Neural Network Molecular Dynamics Simulations
The Journal of Physical Chemistry B. 2018. Vol. 122, num. 44, p. 10158-10171. DOI : 10.1021/acs.jpcb.8b06433.Large-Scale Computational Screening of Molecular Organic Semiconductors Using Crystal Structure Prediction
Chemistry of Materials. 2018. Vol. 30, num. 13, p. 4361-4371. DOI : 10.1021/acs.chemmater.8b01621.Chemical shifts in molecular solids by machine learning
Nature Communications. 2018. Vol. 9, num. 1, p. 4501. DOI : 10.1038/s41467-018-06972-x.Generalized convex hull construction for materials discovery
Physical Review Materials. 2018. Vol. 2, num. 10, p. 103804. DOI : 10.1103/PhysRevMaterials.2.103804.Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions
The Journal of Chemical Physics. 2018. Vol. 148, num. 24, p. 241725. DOI : 10.1063/1.5024577.Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature
The Journal of Chemical Physics. 2018. Vol. 148, num. 10, p. 102320. DOI : 10.1063/1.5002537.Feature optimization for atomistic machine learning yields a data-driven construction of the periodic table of the elements
Physical Chemistry Chemical Physics. 2018. Vol. 20, num. 47, p. 29661-29668. DOI : 10.1039/C8CP05921G.Approximating Matsubara dynamics using the planetary model: Tests on liquid water and ice
The Journal of Chemical Physics. 2018. Vol. 148, num. 10, p. 102336. DOI : 10.1063/1.5004808.Hydrogen Diffusion and Trapping in α-Iron: The Role of Quantum and Anharmonic Fluctuations
Physical Review Letters. 2018. Vol. 120, num. 22, p. 225901. DOI : 10.1103/PhysRevLett.120.225901.Hydrogen dynamics in solid formic acid: insights from simulations with quantum colored-noise thermostats
2018-01-01. 7th International Workshop on Electron-Volt Neutron Spectroscopy, Rome, ITALY, Nov 07-08, 2017. p. 012003. DOI : 10.1088/1742-6596/1055/1/012003.Revealing the Transient Concentration of CO2 in a Mixed-Matrix Membrane by IR Microimaging and Molecular Modeling
Angewandte Chemie-International Edition. 2018. Vol. 57, num. 18, p. 5156-5160. DOI : 10.1002/anie.201713160.Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives
JOURNAL OF MEMBRANE SCIENCE. 2018. Vol. 558, p. 64-77. DOI : 10.1016/j.memsci.2018.04.040.Applications of machine learning for studying local solvation environments
2018. 255th National Meeting and Exposition of the American-Chemical-Society (ACS) – Nexus of Food, Energy, and Water, New Orleans, LA, Mar 18-22, 2018.Early Stages of Precipitation In Aluminum Alloys by First-Principles and Machine-Learning Atomistic Simulations
Lausanne, EPFL, 2018.Communication: Computing the Tolman length for solid-liquid interfaces
The Journal of Chemical Physics. 2018. Vol. 148, num. 23, p. 231102. DOI : 10.1063/1.5038396.Mapping uncharted territory in ice from zeolite networks to ice structures
Nature Communications. 2018. Vol. 9, num. 1, p. 2173. DOI : 10.1038/s41467-018-04618-6.Anisotropy of the Proton Momentum Distribution in Water
The Journal of Physical Chemistry. 2018. Vol. B122, num. 22, p. 6048-6054. DOI : 10.1021/acs.jpcb.8b03896.Fast-forward Langevin dynamics with momentum flips
The Journal of Chemical Physics. 2018. Vol. 148, num. 18, p. 184109. DOI : 10.1063/1.5029833.Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials
The Journal of Chemical Physics. 2018. Vol. 148, num. 24, p. 241730. DOI : 10.1063/1.5024611.An Automatic, Data-Driven Definition of Atomic-Scale Structural Motifs
Lausanne, EPFL, 2018.Computing the absolute Gibbs free energy in atomistic simulations: Applications to defects in solids
Physical Review B. 2018. Vol. 97, num. 5, p. 054102. DOI : 10.1103/PhysRevB.97.054102.Recognizing Local and Global Structural Motifs at the Atomic Scale
Journal of Chemical Theory and Computation. 2018. Vol. 14, num. 2, p. 486-498. DOI : 10.1021/acs.jctc.7b00993.Machine learning for the structure–energy–property landscapes of molecular crystals
Chemical Science. 2018. Vol. 9, num. 5, p. 1289-1300. DOI : 10.1039/C7SC04665K.Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems
Physical Review Letters. 2018. Vol. 120, num. 3, p. 036002. DOI : 10.1103/PhysRevLett.120.036002.Nuclear quantum effects enter the mainstream
Nature Reviews Chemistry. 2018. Vol. 2, num. 3, p. 0109. DOI : 10.1038/s41570-017-0109.Chemical machine learning with kernels: The key impact of loss functions
2018