Publications

See our publications in:

2024

Toxin:antitoxin ratio sensing autoregulation of the Vibrio cholerae parDE2 module

G. Garcia Rodriguez; Y. Girardin; R. Singh; A. Volkov; G. Muruganandam et al. 

Science Advances. 2024. Vol. 10, num. 1. DOI : 10.1126/sciadv.adj2403.

2023

Centriole elimination during Caenorhabditis elegans oogenesis initiates with loss of the central tube protein SAS-1

M. Pierron; A. Woglar; C. Busso; K. Jha; T. Mikeladze-Dvali et al. 

Embo Journal. 2023. Vol. 42, num. 24. DOI : 10.15252/embj.2023115076.

Towards understanding centriole elimination

N. Kalbfuss; P. Goenczy 

Open Biology. 2023. Vol. 13, num. 11, p. 230222. DOI : 10.1098/rsob.230222.

Mapping of centriolar proteins onto the post-embryonic lineage of C. elegans

N. Kalbfuss; A. Berger; P. Gonczy 

Developmental Biology. 2023. Vol. 502, p. 68 – 76. DOI : 10.1016/j.ydbio.2023.07.001.

Disparate roles for C. elegans DNA translocase paralogs RAD-54.L and RAD-54.B in meiotic prophase germ cells

K. Yamaya; B. Wang; N. Memar; A. S. Odiba; A. Woglar et al. 

Nucleic Acids Research. 2023. DOI : 10.1093/nar/gkad638.

Chemical Probe for Imaging of Polo-like Kinase 4 and Centrioles

A. Salim; P. Werther; G. N. Hatzopoulos; L. Reymond; R. Wombacher et al. 

Jacs Au. 2023. DOI : 10.1021/jacsau.3c00271.

Tubulin engineering by semi-synthesis reveals that polyglutamylation directs detyrosination

E. Ebberink; S. Fernandes; G. Hatzopoulos; N. Agashe; P-H. Chang et al. 

Nature Chemistry. 2023. DOI : 10.1038/s41557-023-01228-8.

Extensive programmed centriole elimination unveiled in C. elegans embryos

N. Kalbfuss; P. Gonczy 

Science Advances. 2023. Vol. 9, num. 22, p. eadg8682. DOI : 10.1126/sciadv.adg8682.

The nuclear-to-cytoplasmic ratio drives cellularization in the close animal relative Sphaeroforma arctica

M. Olivetta; O. Dudin 

Current Biology. 2023. Vol. 33, num. 8, p. 1597 – +. DOI : 10.1016/j.cub.2023.03.019.

Sperm-contributed centrioles segregate stochastically into blastomeres of 4-cell stage Caenorhabditis elegans embryos

P. Gonczy; F. R. Balestra 

Genetics. 2023. DOI : 10.1093/genetics/iyad048.

CenFind: a deep-learning pipeline for efficient centriole detection in microscopy datasets

L. Burgy; M. Weigert; G. Hatzopoulos; M. Minder; A. Journe et al. 

Bmc Bioinformatics. 2023. Vol. 24, num. 1, p. 120. DOI : 10.1186/s12859-023-05214-2.

Grand canonical Brownian dynamics simulations of adsorption and self-assembly of SAS-6 rings on a surface

S. G. Melo; D. Woerthmueller; P. Gonczy; N. Banterle; U. S. Schwarz 

Journal Of Chemical Physics. 2023. Vol. 158, num. 8, p. 085102. DOI : 10.1063/5.0135349.

Cellularization across eukaryotes: Conserved mechanisms and novel strategies

B. McCartney; O. Dudin 

Current Opinion In Cell Biology. 2023. Vol. 80, p. 102157. DOI : 10.1016/j.ceb.2023.102157.

2022

Molecular architecture of the C. elegans centriole

A. Woglar; M. Pierron; F. Z. Schneider; K. Jha; C. Busso et al. 

Plos Biology. 2022. Vol. 20, num. 9, p. e3001784. DOI : 10.1371/journal.pbio.3001784.

Atypical and distinct microtubule radial symmetries in the centriole and the axoneme of Lecudina tuzetae

A. Bezler; A. Woglar; F. Schneider; F. Douma; L. Buergy et al. 

Molecular Biology Of The Cell. 2022. Vol. 33, num. 8, p. ar75. DOI : 10.1091/mbc.E22-04-0123.

Robust designation of meiotic crossover sites by CDK-2 through phosphorylation of the MutS gamma complex

J. Haversat; A. Woglar; K. Klatt; C. C. Akerib; V. Roberts et al. 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2022. Vol. 119, num. 21, p. e2117865119. DOI : 10.1073/pnas.2117865119.

Structures of SAS-6 coiled coil hold implications for the polarity of the centriolar cartwheel

A. L. Kantsadi; G. N. Hatzopoulos; P. Gonczy; I. Vakonakis 

Structure. 2022. Vol. 30, num. 5, p. 671 – 684.e5. DOI : 10.1016/j.str.2022.02.005.

Regulation of sedimentation rate shapes the evolution of multicellularity in a close unicellular relative of animals

O. Dudin; S. Wielgoss; A. M. New; I. Ruiz-Trillo 

Plos Biology. 2022. Vol. 20, num. 3, p. e3001551. DOI : 10.1371/journal.pbio.3001551.

2021

Kinetic and structural roles for the surface in guiding SAS-6 self-assembly to direct centriole architecture

N. Banterle; A. P. Nievergelt; S. de Buhr; G. N. Hatzopoulos; C. Brillard et al. 

Nature Communications. 2021. Vol. 12, num. 1, p. 6180. DOI : 10.1038/s41467-021-26329-1.

TRIM37: a critical orchestrator of centrosome function

A. Dominguez-Calvo; P. Gonczy; A. J. Holland; F. R. Balestra 

Cell Cycle. 2021. Vol. 20, num. 23, p. 2443 – 2451. DOI : 10.1080/15384101.2021.1988289.

Pulchelloid A, a sesquiterpene lactone from the Canadian prairie plant Gaillardia aristata inhibits mitosis in human cells

A. Bosco; L. Molina; S. M. Kerneis; G. Hatzopoulos; T. Favez et al. 

Molecular Biology Reports. 2021. Vol. 48, num. 7, p. 5459 – 5471. DOI : 10.1007/s11033-021-06554-z.

Alternative dimerization is required for activity and inhibition of the HEPN ribonuclease RnlA

G. Garcia-Rodriguez; D. Charlier; D. Wilmaerts; J. Michiels; R. Loris 

Nucleic Acids Research. 2021. Vol. 49, num. 12, p. 7164 – 7178. DOI : 10.1093/nar/gkab513.

Tuning SAS-6 architecture with monobodies impairs distinct steps of centriole assembly

G. N. Hatzopoulos; T. Kuekenshoener; N. Banterle; T. Favez; I. Flueckiger et al. 

Nature Communications. 2021. Vol. 12, num. 1, p. 3805. DOI : 10.1038/s41467-021-23897-0.

Physically asymmetric division of the C. elegans zygote ensures invariably successful embryogenesis

R. Jankele; R. Jelier; P. Goenczy 

Elife. 2021. Vol. 10, p. e61714. DOI : 10.7554/eLife.61714.

TRIM37 prevents formation of centriolar protein assemblies by regulating Centrobin

F. R. Balestra; A. Dominguez-Calvo; B. Wolf; C. Busso; A. Buff et al. 

Elife. 2021. Vol. 10, p. e62640. DOI : 10.7554/eLife.62640.

2020

Integrin-Mediated Adhesion in the Unicellular Holozoan Capsaspora owczarzaki

H. Parra-Acero; M. Harcet; N. Sanchez-Pons; E. Casacuberta; N. H. Brown et al. 

Current Biology. 2020. Vol. 30, num. 21, p. 4270 – +. DOI : 10.1016/j.cub.2020.08.015.

Novel features of centriole polarity and cartwheel stacking revealed by cryo-tomography

S. Nazarov; A. Bezler; G. N. Hatzopoulos; V. Nemcikova Villimova; D. Demurtas et al. 

Embo Journal. 2020.  p. e106249. DOI : 10.15252/embj.2020106249.

Spatial control of nucleoporin condensation by fragile X-related proteins

A. Agote-Aran; S. Schmucker; K. Jerabkova; I. J. Boyer; A. Berto et al. 

Embo Journal. 2020.  p. e104467. DOI : 10.15252/embj.2020104467.

Homogeneous multifocal excitation for high-throughput super-resolution imaging

D. Mahecic; D. Gambarotto; K. M. Douglass; D. Fortun; N. Banterle et al. 

Nature Methods. 2020. Vol. 17, p. 726 – 733. DOI : 10.1038/s41592-020-0859-z.

Centriole foci persist in starfish oocytes despite Polo-like kinase 1 inactivation or loss of microtubule nucleation activity

M. Pierron; N. Kalbfuss; J. Borrego-Pinto; P. Lenart; P. Gonczy 

Molecular Biology Of The Cell. 2020. Vol. 31, num. 9, p. 873 – 880. DOI : 10.1091/mbc.E19-06-0346.

2019

Live imaging screen reveals that TYRO3 and GAK ensure accurate spindle positioning in human cells

B. Wolf; C. Busso; P. Goenczy 

Nature Communications. 2019. Vol. 10, p. 2859. DOI : 10.1038/s41467-019-10446-z.

Aurora A depletion reveals centrosome-independent polarization mechanism in Caenorhabditis elegans

K. Klinkert; N. Levernier; P. Gross; C. Gentili; L. von Tobel et al. 

Elife. 2019. Vol. 8, p. e44552. DOI : 10.7554/eLife.44552.

Small-Molecule Fluorescent Probes for Live-Cell Super-Resolution Microscopy

L. Wang; M. S. Frei; A. Salim; K. Johnsson 

Journal Of The American Chemical Society. 2019. Vol. 141, num. 7, p. 2770 – 2781. DOI : 10.1021/jacs.8b11134.

Multicolor Single-Particle Reconstruction of Protein Complexes

C. Sieben; N. Banterle; K. M. Douglass; P. Gönczy; S. Manley 

2019. 63rd Annual Meeting of the Biophysical-Society, Baltimore, MD, Mar 02-06, 2019. p. 25A – 25A. DOI : 10.1016/j.bpj.2018.11.177.

Centriole assembly at a glance

P. Gönczy; G. Hatzopoulos 

Journal Of Cell Science. 2019. Vol. 132, num. 4, p. jcs228833. DOI : 10.1242/jcs.228833.

Tissue- and sex-specific small RNAomes reveal sex differences in response to the environment

A. Bezler; F. Braukmann; S. M. West; A. Duplan; R. Conconi et al. 

Plos Genetics. 2019. Vol. 15, num. 2, p. e1007905. DOI : 10.1371/journal.pgen.1007905.

2018

Multicolor single-particle reconstruction of protein complexes

C. Sieben; N. Banterle; P. Gönczy; K. M. Douglass; S. Manley 

Nature Methods. 2018. Vol. 15, num. 10, p. 777 – 780. DOI : 10.1038/s41592-018-0140-x.

Interaction between the Caenorhabditis elegans centriolar protein SAS-5 and microtubules facilitates organelle assembly

S. Bianchi; K. Rogala; N. Dynes; M. Hilbert; S. Leidel et al. 

MOLECULAR BIOLOGY OF THE CELL. 2018. Vol. 29, num. 6, p. 722 – 735. DOI : 10.1091/mbc.E17-06-0412.

The Rise of the Cartwheel: Seeding the Centriole Organelle

P. Guichard; V. Hamel; P. Gönczy 

Bioessays. 2018. Vol. 40, num. 4, p. 1700241. DOI : 10.1002/bies.201700241.

PI(4,5)P-2 forms dynamic cortical structures and directs actin distribution as well as polarity in Caenorhabditis elegans embryos

M. Scholze; K. Barbieux; A. De Simone; M. Boumasmoud; C. Suess et al. 

Development. 2018. Vol. 145, num. 11, p. dev164988. DOI : 10.1242/dev.164988.

Integrated Microfluidic Device for Drug Studies of Early C. Elegans Embryogenesis

L. Dong; R. Jankele; M. Cornaglia; T. Lehnert; P. Gönczy et al. 

Advanced Science. 2018. Vol. 5, num. 5, p. 1700751. DOI : 10.1002/advs.201700751.

ZYG-1 promotes limited centriole amplification in the C. elegans seam lineage

B. Wolf; F. Balestra; A. Spahr; P. Gönczy 

DEVELOPMENTAL BIOLOGY. 2018. Vol. 434, num. 2, p. 221 – 230. DOI : 10.1016/j.ydbio.2018.01.001.

Membrane protein insertion through a mitochondrial beta-barrel gate

A. Hohr; C. Lindau; C. Wirth; J. Qiu; D. Stroud et al. 

Science. 2018. Vol. 359, num. 6373, p. 289. DOI : 10.1126/science.aah6834.

Uncovering the balance of forces driving microtubule aster migration in C. elegans zygotes

A. De Simone; A. Spahr; C. Busso; P. Gönczy 

Nature Communications. 2018. Vol. 9, p. 938. DOI : 10.1038/s41467-018-03118-x.

2017

Centriole Biogenesis: From Identifying the Characters to Understanding the Plot

N. Banterle; P. Gönczy 

Annual Review Of Cell And Developmental Biology; Palo Alto: Annual Reviews, 2017. p. 23 – 49.

Zika virus causes supernumerary foci with centriolar proteins and impaired spindle positioning

B. Wolf; F. Diop; P. Ferraris; S. Wichit; C. Busso et al. 

Open biology. 2017. Vol. 7, num. 1. DOI : 10.1098/rsob.160231.

Computer simulations reveal mechanisms that organize nuclear dynein forces to separate centrosomes

A. De Simone; P. Gönczy 

Molecular Biology Of The Cell. 2017. Vol. 28, num. 23, p. 3165 – 3170. DOI : 10.1091/mbc.E16-12-0823.

TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis

O. Burri; B. Wolf; A. Seitz; P. Gönczy 

Plos One. 2017. Vol. 12, num. 7, p. e0179752. DOI : 10.1371/journal.pone.0179752.

Cell-free reconstitution reveals centriole cartwheel assembly mechanisms

P. Guichard; V. Hamel; M. Le Guennec; N. Banterle; I. Iacovache et al. 

Nature Communications. 2017. Vol. 8, p. 14813. DOI : 10.1038/ncomms14813.

Identification of Chlamydomonas Central Core Centriolar Proteins Reveals a Role for Human WDR90 in Ciliogenesis

V. Hamel; E. Steib; R. Hamelin; F. Armand; S. Borgers et al. 

Current Biology. 2017. Vol. 27, num. 16, p. 2486 – +. DOI : 10.1016/j.cub.2017.07.011.

An Integrated Microfluidic Device For C-Elegans Early Embryogenesis Studies And Drug Assays

L. Dong; R. Jankele; J. Zhang; M. Cornaglia; T. Lehnert et al. 

2017. 30th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, JAN 22-26, 2017. p. 1244 – 1247. DOI : 10.1109/MEMSYS.2017.7863642.

2016

Basal body structure in Trichonympha

P. Guichard; P. Gönczy 

Cilia. 2016. Vol. 5, p. 9. DOI : 10.1186/s13630-016-0031-7.

The Human Centriolar Protein CEP135 Contains a Two-Stranded Coiled-Coil Domain Critical for Microtubule Binding

S. Kraatz; P. Guichard; J. Obbineni; N. Olieric; G. Hatzopoulos et al. 

Structure. 2016. Vol. 24, num. 8, p. 1358 – 1371. DOI : 10.1016/j.str.2016.06.011.

Distinct mechanisms eliminate mother and daughter centrioles in meiosis of starfish oocytes

J. Borrego-Pinto; K. Somogyi; M. A. Karreman; J. Koenig; T. Mueller-Reichert et al. 

Journal Of Cell Biology. 2016. Vol. 212, num. 7, p. 815 – 827. DOI : 10.1083/jcb.201510083.

Chemical Genetic Screen Identifies Natural Products that Modulate Centriole Number

M. Graciotti; Z. Fang; K. Johnsson; P. Gönczy 

ChemBioChem. 2016. Vol. 17, num. 21, p. 2063 – 2074. DOI : 10.1002/cbic.201600327.

Dynein Transmits Polarized Actomyosin Cortical Flows to Promote Centrosome Separation

A. De Simone; F. Nédélec; P. Gönczy 

Cell Reports. 2016. Vol. 14, num. 9, p. 2250 – 2262. DOI : 10.1016/j.celrep.2016.01.077.

Computational support for a scaffolding mechanism of centriole assembly

H. C. R. Klein; P. Guichard; V. Hamel; P. Gönczy; U. S. Schwarz 

Scientific Reports. 2016. Vol. 6, p. 27075. DOI : 10.1038/srep27075.

SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centriole architecture

M. Hilbert; A. Noga; D. Frey; V. Hamel; P. Guichard et al. 

Nature Cell Biology. 2016. Vol. 18, num. 4, p. 393 – 403. DOI : 10.1038/ncb3329.

Aurora A kinase regulates proper spindle positioning in C-elegans and in human cells

S. Kotak; K. Afshar; C. Busso; P. Gönczy 

Journal Of Cell Science. 2016. Vol. 129, num. 15, p. 3015 – 3025. DOI : 10.1242/jcs.184416.

Discovery of a Selective Aurora A Kinase Inhibitor by Virtual Screening

F. Kilchmann; M. J. Marcaida; S. Kotak; T. Schick; S. D. Boss et al. 

Journal Of Medicinal Chemistry. 2016. Vol. 59, num. 15, p. 7188 – 7211. DOI : 10.1021/acs.jmedchem.6b00709.

Centriolar CPAP/SAS-4 Imparts Slow Processive Microtubule Growth

A. Sharma; A. Aher; N. J. Dynes; D. Frey; E. A. Katrukha et al. 

Developmental Cell. 2016. Vol. 37, num. 4, p. 362 – 376. DOI : 10.1016/j.devcel.2016.04.024.

KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification

M. Fournier; M. Orpinell; C. Grauffel; E. Scheer; J-M. Garnier et al. 

Nature Communications. 2016. Vol. 7, p. 13227. DOI : 10.1038/ncomms13227.

2015

Cellular hallmarks reveal restricted aerobic metabolism at thermal limits

A. Neves; C. Busso; P. Gönczy 

eLife. 2015. Vol. 4, p. e04810. DOI : 10.7554/elife.04810.

Quantitative Analysis and Modeling Probe Polarity Establishment in C. elegans Embryos

S. Blanchoud; C. Busso; F. Naef; P. Gönczy 

Biophysical journal. 2015. Vol. 108, num. 4, p. 799 – 809. DOI : 10.1016/j.bpj.2014.12.022.

The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation

K. B. Rogala; N. J. Dynes; G. N. Hatzopoulos; J. Yan; S. K. Pong et al. 

eLife. 2015. Vol. 4, p. e07410. DOI : 10.7554/eLife.07410.

Isolation, cryotomography, and three-dimensional reconstruction of centrioles

P. Guichard; V. Hamel; A. Neves; P. Gönczy 

Centrosome & Centriole; Elsevier, 2015. p. 191 – 209.

Polarity-Dependent Asymmetric Distribution and MEX-5/6-Mediated Translational Activation of the Era-1 mRNA in C. elegans Embryos

Z. Spiró; P. Gönczy 

PloS One. 2015. Vol. 10, num. 3, p. e0120984. DOI : 10.1371/journal.pone.0120984.

Centrosomes and cancer: revisiting a long-standing relationship

P. Gönczy 

Nature Reviews Cancer. 2015. Vol. 15, num. 11, p. 639 – 652. DOI : 10.1038/nrc3995.

Paternally contributed centrioles exhibit exceptional persistence in C-elegans embryos

F. R. Balestra; L. Von Tobel; P. Gönczy 

Cell Research. 2015. Vol. 25, num. 5, p. 642 – 644. DOI : 10.1038/cr.2015.49.

Cortical Dynein Powered by Polarized Actomyosin Contractions and Pronuclear Dynein Separate Centrosomes

A. De Simone; P. Gönczy 

2015.  p. 180A – 180A. DOI : 10.1016/j.bpj.2014.11.994.

Polarity establishment, asymmetric division and segregation of fate determinants in early C. elegans embryos

L. Rose; P. Gönczy 

WormBook. 2015. DOI : 10.1895/wormbook.1.30.2.

2014

SAS-1 Is a C2 Domain Protein Critical for Centriole Integrity in C. elegans

L. von Tobel; T. Mikeladze-Dvali; M. Delattre; F. R. Balestra; S. Blanchoud et al. 

Plos Genetics. 2014. Vol. 10, num. 11, p. e1004777. DOI : 10.1371/journal.pgen.1004777.

A missense mutation in the PISA domain of HsSAS-6 causes autosomal recessive primary microcephaly in a large consanguineous Pakistani family

M. A. Khan; V. M. Rupp; M. Orpinell; M. S. Hussain; J. Altmüller et al. 

Human molecular genetics. 2014. Vol. 23, num. 22, p. 5940 – 5949. DOI : 10.1093/hmg/ddu318.

NuMA interacts with phosphoinositides and links the mitotic spindle with the plasma membrane

S. Kotak; C. Busso; P. Gönczy 

Embo Journal. 2014. Vol. 33, num. 16, p. 1815 – 1830. DOI : 10.15252/embj.201488147.

NuMA phosphorylation dictates dynein-dependent spindle positioning

S. Kotak; P. Goenczy 

Cell Cycle. 2014. Vol. 13, num. 2, p. 177 – 178. DOI : 10.4161/cc.27040.

Clathrin regulates centrosome positioning by promoting acto-myosin cortical tension in C. elegans embryos

Z. Spiró; K. Thyagarajan; A. De Simone; S. Träger; K. Afshar et al. 

Development (Cambridge, England). 2014. Vol. 141, num. 13, p. 2712 – 23. DOI : 10.1242/dev.107508.

Multiciliogenesis: multicilin directs transcriptional activation of centriole formation

F. R. Balestra; P. Gönczy 

Current biology : CB. 2014. Vol. 24, num. 16, p. R746 – 9. DOI : 10.1016/j.cub.2014.07.006.

NuMA links the mitotic spindle with plasma membrane lipids

S. Kotak; C. Busso; P. Gönczy 

2014. ASCB/IFCB Meeting.

Correlative multicolor 3D SIM and STORM microscopy

V. Hamel; P. Guichard; M. Fournier; R. Guiet; I. Flückiger et al. 

Biomedical Optics Express. 2014. Vol. 5, num. 10, p. 3326 – 3336. DOI : 10.1364/BOE.5.003326.

Mechanisms of HsSAS-6 assembly promoting centriole formation in human cells

D. Keller; M. Orpinell; N. Olivier; M. Wachsmuth; R. Mahen et al. 

The Journal of cell biology. 2014. Vol. 204, num. 5, p. 697 – 712. DOI : 10.1083/jcb.201307049.

Centrosomes back in the limelight

M. Bornens; P. Gönczy 

Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 2014. Vol. 369, num. 1650, p. 20130452. DOI : 10.1098/rstb.2013.0452.

Stereotyped distribution of midbody remnants in early C. elegans embryos requires cell death genes and is dispensable for development

G. Ou; C. Gentili; P. Gönczy 

Cell Research. 2014. Vol. 24, num. 2, p. 251 – 253. DOI : 10.1038/cr.2013.140.

2013

Mechanisms of spindle positioning: cortical force generators in the limelight

S. Kotak; P. Gönczy 

Current Opinion In Cell Biology. 2013. Vol. 25, num. 6, p. 741 – 748. DOI : 10.1016/j.ceb.2013.07.008.

NuMA phosphorylation by CDK1 couples mitotic progression with cortical dynein function

S. Kotak; C. Busso; P. Gönczy 

The EMBO journal. 2013. Vol. 32, num. 18, p. 2517 – 2529. DOI : 10.1038/emboj.2013.172.

Selective Chemical Crosslinking Reveals a Cep57-Cep63-Cep152 Centrosomal Complex

G. Lukinavičius; D. Lavogina; M. Orpinell; K. Umezawa; L. Reymond et al. 

Current Biology. 2013. Vol. 23, num. 3, p. 265 – 270. DOI : 10.1016/j.cub.2012.12.030.

Discovering Regulators of Centriole Biogenesis through siRNA-Based Functional Genomics in Human Cells

F. R. Balestra; P. Strnad; I. Flückiger; P. Gönczy 

Developmental cell. 2013. Vol. 25, num. 6, p. 555 – 571. DOI : 10.1016/j.devcel.2013.05.016.

Caenorhabditis elegans centriolar protein SAS-6 forms a spiral that is consistent with imparting a ninefold symmetry

M. Hilbert; M. C. Erat; V. Hachet; P. Guichard; I. D. Blank et al. 

Proceedings of the National Academy of Sciences. 2013. Vol. 110, num. 28, p. 11373 – 11378. DOI : 10.1073/pnas.1302721110.

MISP is a novel Plk1 substrate required for proper spindle orientation and mitotic progression

M. Zhu; F. Settele; S. Kotak; L. Sanchez-Pulido; L. Ehret et al. 

The Journal of cell biology. 2013. Vol. 200, num. 6, p. 773 – 87. DOI : 10.1083/jcb.201207050.

Native Architecture of the Centriole Proximal Region Reveals Features Underlying Its 9-Fold Radial Symmetry

P. Guichard; V. Hachet; N. Majubu; A. Neves; D. Demurtas et al. 

Current Biology. 2013. Vol. 23, num. 17, p. 1620 – 1628. DOI : 10.1016/j.cub.2013.06.061.

Resolution Doubling in 3D-STORM Imaging through Improved Buffers

N. Olivier; D. Keller; P. Gönczy; S. Manley 

PloS One. 2013. Vol. 8, num. 7, p. e69004. DOI : 10.1371/journal.pone.0069004.

Simple buffers for 3D STORM microscopy

N. Olivier; D. Keller; V. S. Rajan; P. Gönczy; S. Manley 

Biomedical optics express. 2013. Vol. 4, num. 6, p. 885 – 99. DOI : 10.1364/BOE.4.000885.

2012

Cortical dynein is critical for proper spindle positioning in human cells

S. Kotak; C. Busso; P. Gönczy 

The Journal of Cell Biology. 2012. Vol. 199, num. 1, p. 97 – 110. DOI : 10.1083/jcb.201203166.

Analysis of centriole elimination during C. elegans oogenesis

T. Mikeladze-Dvali; L. von Tobel; P. Strnad; G. Knott; H. Leonhardt et al. 

Development. 2012. Vol. 139, num. 9, p. 1670 – 1679. DOI : 10.1242/dev.075440.

Towards a molecular architecture of centriole assembly

P. Gönczy 

Nature Reviews Molecular Cell Biology. 2012. Vol. 13, num. 7, p. 425 – 435. DOI : 10.1038/nrm3373.

The nucleoporin Nup205/NPP-3 is lost near centrosomes at mitotic onset and can modulate the timing of this process in Caenorhabditis elegans embryos

V. Hachet; C. Busso; M. Toya; A. Sugimoto; P. Askjaer et al. 

Molecular biology of the cell. 2012. Vol. 23, num. 16, p. 3111 – 21. DOI : 10.1091/mbc.E12-03-0204.

Cartwheel Architecture of Trichonympha Basal Body

P. Guichard; A. Desfosses; A. Maheshwari; V. Hachet; C. Dietrich et al. 

Science. 2012. Vol. 337, num. 6094, p. 553 – 553. DOI : 10.1126/science.1222789.

2011

Spindle positioning in human cells relies on proper centriole formation and on the microcephaly proteins CPAP and STIL

D. Kitagawa; G. Kohlmaier; D. Keller; P. Strnad; F. R. Balestra et al. 

Journal Of Cell Science. 2011. Vol. 124, num. 22, p. 3884 – 3893. DOI : 10.1242/jcs.089888.

The SCF-FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication

A. Puklowski; Y. Homsi; D. Keller; M. May; S. Chauhan et al. 

Nature Cell Biology. 2011. Vol. 13, num. 8, p. 1004 – U291. DOI : 10.1038/ncb2282.

Structural Basis of the 9-Fold Symmetry of Centrioles

D. Kitagawa; I. Vakonakis; N. Olieric; M. Hilbert; D. Keller et al. 

Cell. 2011. Vol. 144, num. 3, p. 364 – 375. DOI : 10.1016/j.cell.2011.01.008.

PP2A Phosphatase Acts upon SAS-5 to Ensure Centriole Formation in C. elegans Embryos

D. Kitagawa; I. Flueckiger; J. Polanowska; D. Keller; J. Reboul et al. 

Developmental Cell. 2011. Vol. 20, num. 4, p. 550 – 562. DOI : 10.1016/j.devcel.2011.02.005.

2010

Mutual Antagonism Between the Anaphase Promoting Complex and the Spindle Assembly Checkpoint Contributes to Mitotic Timing in Caenorhabditis elegans

A. Bezler; P. Gönczy 

Genetics. 2010. Vol. 186, num. 4, p. 1271 – U339. DOI : 10.1534/genetics.110.123133.

ASSET: A robust algorithm for the automated segmentation and standardization of early Caenorhabditis elegans embryos

S. Blanchoud; Y. Budirahardja; F. Naef; P. Gönczy 

Developmental dynamics. 2010. Vol. 239, num. 12, p. 3285 – 96. DOI : 10.1002/dvdy.22486.

Regulation of cortical contractility and spindle positioning by the protein phosphatase 6 PPH-6 in one-cell stage C. elegans embryos

K. Afshar; M. E. Werner; Y. C. Tse; M. Glotzer; P. Gönczy 

Development. 2010. Vol. 137, num. 2, p. 237 – 47. DOI : 10.1242/dev.042754.

2009

Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP

G. Kohlmaier; J. Loncarek; X. Meng; B. F. McEwen; M. M. Mogensen et al. 

Current biology. 2009. Vol. 19, num. 12, p. 1012 – 8. DOI : 10.1016/j.cub.2009.05.018.

NuMA-related LIN-5, ASPM-1, calmodulin and dynein promote meiotic spindle rotation independently of cortical LIN-5/GPR/Galpha

M. van der Voet; C. W. H. Berends; A. Perreault; T. Nguyen-Ngoc; P. Gönczy et al. 

Nature cell biology. 2009. Vol. 11, num. 3, p. 269 – 77. DOI : 10.1038/ncb1834.

Phosphorylation of SAS-6 by ZYG-1 is critical for centriole formation in C. elegans embryos

D. Kitagawa; C. Busso; I. Fluckiger; P. Gönczy 

Developmental cell. 2009. Vol. 17, num. 6, p. 900 – 7. DOI : 10.1016/j.devcel.2009.11.002.

Coupling the cell cycle to development

Y. Budirahardja; P. Gönczy 

Development. 2009. Vol. 136, num. 17, p. 2861 – 72. DOI : 10.1242/dev.021931.

2008

Structural determinants underlying the temperature-sensitive nature of a Galpha mutant in asymmetric cell division of Caenorhabditis elegans

C. A. Johnston; K. Afshar; J. T. Snyder; G. G. Tall; P. Gönczy et al. 

The Journal of biological chemistry. 2008. Vol. 283, num. 31, p. 21550 – 21558. DOI : 10.1074/jbc.M803023200.

Mechanisms of asymmetric cell division: flies and worms pave the way

P. Gönczy 

Nature reviews. Molecular cell biology. 2008. Vol. 9, num. 5, p. 355 – 366. DOI : 10.1038/nrm2388.

PLK-1 asymmetry contributes to asynchronous cell division of C. elegans embryos

Y. Budirahardja; P. Gönczy 

Development. 2008. Vol. 135, num. 7, p. 1303 – 1313. DOI : 10.1242/dev.019075.

Mechanisms of procentriole formation

P. Strnad; P. Gönczy 

Trends in cell biology. 2008. Vol. 18, num. 8, p. 389 – 96. DOI : 10.1016/j.tcb.2008.06.004.

2007

Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle

P. Strnad; S. Leidel; T. Vinogradova; U. Euteneuer; A. Khodjakov et al. 

Developmental Cell. 2007. Vol. 13, num. 2, p. 203 – 213. DOI : 10.1016/j.devcel.2007.07.004.

Coupling of cortical dynein and Galpha proteins mediates spindle positioning in Caenorhabditis elegans

T. Nguyen-Ngoc; K. Afshar; P. Gönczy 

Nature Cell Biology. 2007. Vol. 9, num. 11, p. 1294 – 1302. DOI : 10.1038/ncb1649.

ZYG-9, TAC-1 and ZYG-8 together ensure correct microtubule function throughout the cell cycle of C. elegans embryos

J. M. Bellanger; J. C. Carter; J. B. Phillips; C. Canard; B. Bowerman et al. 

Journal of Cell Science. 2007. Vol. 120, num. Pt 16, p. 2963 – 2973. DOI : 10.1242/jcs.004812.

Centrosomes promote timely mitotic entry in C. elegans embryos

V. Hachet; C. Canard; P. Gönczy 

Developmental cell. 2007. Vol. 12, num. 4, p. 531 – 41. DOI : 10.1016/j.devcel.2007.02.015.

2006

Sequential Protein Recruitment in C. elegans Centriole Formation

M. Delattre; C. Canard; P. Gönczy 

Current Biology. 2006. Vol. 16, num. 18, p. 1844 – 1849. DOI : 10.1016/j.cub.2006.07.059.

2005

Centrosome duplication and nematodes: recent insights from an old relationship

S. Leidel; P. Gönczy 

Developmental cell. 2005. Vol. 9, num. 3, p. 317 – 25. DOI : 10.1016/j.devcel.2005.08.004.

Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans

B. Sonnichsen; L. B. Koski; A. Walsh; P. Marschall; B. Neumann et al. 

Nature. 2005. Vol. 434, num. 7032, p. 462 – 469. DOI : 10.1038/nature03353.

SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells

S. Leidel; M. Delattre; L. Cerutti; K. Baumer; P. Gönczy 

Nature Cell Biology. 2005. Vol. 7, num. 2, p. 115 – 25. DOI : 10.1038/ncb1220.

Cortical localization of the Galpha protein GPA-16 requires RIC-8 function during C. elegans asymmetric cell division

K. Afshar; F. S. Willard; K. Colombo; D. P. Siderovski; P. Gönczy 

Development. 2005. Vol. 132, num. 20, p. 4449 – 59. DOI : 10.1242/dev.02039.

Asymmetric cell division and axis formation in the embryo

P. Gönczy; L. Rose 

WormBook; 2005.

2004

The arithmetic of centrosome biogenesis

M. Delattre; P. Gönczy 

Journal of cell science. 2004. Vol. 117, num. Pt 9, p. 1619 – 30. DOI : 10.1242/jcs.01128.

Centriolar SAS-5 is required for centrosome duplication in C. elegans

M. Delattre; S. Leidel; K. Wani; K. Baumer; J. Bamat et al. 

Nature Cell Biology. 2004. Vol. 6, num. 7, p. 656 – 64. DOI : 10.1038/ncb1146.

Myosin assembly: the power of multiubiquitylation

P. Gönczy 

Cell. 2004. Vol. 118, num. 3, p. 272 – 274. DOI : 10.1016/j.cell.2004.07.020.

Centrosomes: hooked on the nucleus

P. Gönczy 

Current Biology. 2004. Vol. 14, num. 7, p. R268 – R270. DOI : 10.1016/j.cub.2004.03.020.

RIC-8 is required for GPR-1/2-dependent Galpha function during asymmetric division of C. elegans embryos

K. Afshar; F. S. Willard; K. Colombo; C. A. Johnston; C. R. McCudden et al. 

Cell. 2004. Vol. 119, num. 2, p. 219 – 30. DOI : 10.1016/j.cell.2004.09.026.

lis-1 is required for dynein-dependent cell division processes in C. elegans embryos

M. M. Cockell; K. Baumer; P. Gönczy 

Journal of Cell Science. 2004. Vol. 117, num. 19, p. 4571 – 82. DOI : 10.1242/jcs.01344.

Zyg-11 and cul-2 regulate progression through meiosis II and polarity establishment in C. elegans

R. Sonneville; P. Gönczy 

Development. 2004. Vol. 131, num. 15, p. 3527 – 43. DOI : 10.1242/dev.01244.

2003

SAS-4 is essential for centrosome duplication in C elegans and is recruited to daughter centrioles once per cell cycle

S. Leidel; P. Gönczy 

Developmental Cell. 2003. Vol. 4, num. 3, p. 431 – 9. DOI : 10.1016/S1534-5807(03)00062-5.

Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos

K. Colombo; S. W. Grill; R. J. Kimple; F. S. Willard; D. P. Siderovski et al. 

Science. 2003. Vol. 300, num. 5627, p. 1957 – 61. DOI : 10.1126/science.1084146.

TAC-1 and ZYG-9 form a complex that promotes microtubule assembly in C. elegans embryos

J. M. Bellanger; P. Gönczy 

Current Biology. 2003. Vol. 13, num. 17, p. 1488 – 98. DOI : 10.1016/S0960-9822(03)00582-7.

Mécanismes de division cellulaire : leçons d’un nématode [Mechanisms of cell division: lessons from a nematode]

P. Gönczy 

Médecine/sciences. 2003. Vol. 19, num. 6-7, p. 735 – 742. DOI : 10.1051/medsci/20031967735.

Differential activation of the DNA replication checkpoint contributes to asynchrony of cell division in C. elegans embryos

M. Brauchle; K. Baumer; P. Gönczy 

Current Biology. 2003. Vol. 13, num. 10, p. 819 – 27. DOI : 10.1016/S0960-9822(03)00295-1.

2002

Cytoskeletal regulation by the Nedd8 ubiquitin-like protein modification pathway

T. Kurz; L. Pintard; J. H. Willis; D. R. Hamill; P. Gönczy et al. 

Science. 2002. Vol. 295, num. 5558, p. 1294 – 8. DOI : 10.1126/science.1067765.

Nuclear envelope: torn apart at mitosis

P. Gönczy 

Current Biology. 2002. Vol. 12, num. 7, p. R242 – R244. DOI : 10.1016/S0960-9822(02)00781-9.

Mechanisms of spindle positioning: focus on flies and worms

P. Gönczy 

Trends in Cell Biology. 2002. Vol. 12, num. 7, p. 332 – 9. DOI : 10.1016/S0962-8924(02)02306-1.

The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is gamma-tubulin dependent

E. Hannak; K. Oegema; M. Kirkham; P. Gönczy; B. Habermann et al. 

Journal of Cell Biology. 2002. Vol. 157, num. 4, p. 591 – 602. DOI : 10.1083/jcb.200202047.

2001

zyg-8, a gene required for spindle positioning in C. elegans, encodes a doublecortin-related kinase that promotes microtubule assembly

P. Gönczy; J. M. Bellanger; M. Kirkham; A. Pozniakowski; K. Baumer et al. 

Developmental Cell. 2001. Vol. 1, num. 3, p. 363 – 375. DOI : 10.1016/S1534-5807(01)00046-6.

Spindle positioning during the asymmetric first cell division of Caenorhabditis elegans embryos

P. Gönczy; S. Grill; E. H. Stelzer; M. Kirkham; A. A. Hyman 

Novartis Found Symp. 2001. Vol. 237, p. 164 – 75; discussion 176.

fumble encodes a pantothenate kinase homolog required for proper mitosis and meiosis in Drosophila melanogaster

K. Afshar; P. Gönczy; S. DiNardo; S. A. Wasserman 

Genetics. 2001. Vol. 157, num. 3, p. 1267 – 76.

Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo

S. W. Grill; P. Gönczy; E. H. Stelzer; A. A. Hyman 

Nature. 2001. Vol. 409, num. 6820, p. 630 – 3. DOI : 10.1038/35054572.

2000

OOC-3, a novel putative transmembrane protein required for establishment of cortical domains and spindle orientation in the P(1) blastomere of C. elegans embryos

S. Pichler; P. Gönczy; H. Schnabel; A. Pozniakowski; A. Ashford et al. 

Development. 2000. Vol. 127, num. 10, p. 2063 – 73.

CYK-4: A Rho family gtpase activating protein (GAP) required for central spindle formation and cytokinesis

V. Jantsch-Plunger; P. Gönczy; A. Romano; H. Schnabel; D. Hamill et al. 

Journal of Cell Biology. 2000. Vol. 149, num. 7, p. 1391 – 404. DOI : 10.1083/jcb.149.7.1391.

Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III

P. Gönczy; C. Echeverri; K. Oegema; A. Coulson; S. J. Jones et al. 

Nature. 2000. Vol. 408, num. 6810, p. 331 – 6. DOI : 10.1038/35042526.

1999

Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo

P. Gönczy; S. Pichler; M. Kirkham; A. A. Hyman 

Journal of Cell Biology. 1999. Vol. 147, num. 1, p. 135 – 50. DOI : 10.1083/jcb.147.1.135.

Dissection of cell division processes in the one cell stage Caenorhabditis elegans embryo by mutational analysis

P. Gönczy; H. Schnabel; T. Kaletta; A. D. Amores; T. Hyman et al. 

Journal of Cell Biology. 1999. Vol. 144, num. 5, p. 927 – 46. DOI : 10.1083/jcb.144.5.927.

1998

Mechanisms of nuclear positioning

S. Reinsch; P. Gönczy 

Journal of Cell Science. 1998. Vol. 111, num. 16, p. 2283 – 2295. DOI : 10.1242/jcs.111.16.2283.

1997

punt and schnurri regulate a somatically derived signal that restricts proliferation of committed progenitors in the germline

E. Matunis; J. Tran; P. Gönczy; K. Caldwell; S. DiNardo 

Development. 1997. Vol. 124, num. 21, p. 4383 – 91.

bag-of-marbles and benign gonial cell neoplasm act in the germline to restrict proliferation during Drosophila spermatogenesis

P. Gönczy; E. Matunis; S. DiNardo 

Development. 1997. Vol. 124, num. 21, p. 4361 – 71.

1996

Cortical domains and the mechanisms of asymmetric cell division

P. Gönczy; A. A. Hyman 

Trends in Cell Biology. 1996. Vol. 6, num. 10, p. 382 – 7. DOI : 10.1016/0962-8924(96)10035-0.

The germ line regulates somatic cyst cell proliferation and fate during Drosophila spermatogenesis

P. Gönczy; S. DiNardo 

Development. 1996. Vol. 122, num. 8, p. 2437 – 47.

1994

roughex is a dose-dependent regulator of the second meiotic division during Drosophila spermatogenesis

P. Gönczy; B. J. Thomas; S. DiNardo 

Cell. 1994. Vol. 77, num. 7, p. 1015 – 25. DOI : 10.1016/0092-8674(94)90441-3.

1993

Toward a molecular genetic analysis of spermatogenesis in Drosophila melanogaster: characterization of male-sterile mutants generated by single P element mutagenesis

D. H. Castrillon; P. Gönczy; S. Alexander; R. Rawson; C. G. Eberhart et al. 

Genetics. 1993. Vol. 135, num. 2, p. 489 – 505.

1992

Probing spermatogenesis in Drosophila with P-element enhancer detectors

P. Gönczy; S. Viswanathan; S. DiNardo 

Development. 1992. Vol. 114, num. 1, p. 89 – 98.

1989

A single amino acid can determine the DNA binding specificity of homeodomain proteins

J. Treisman; P. Gönczy; M. Vashishtha; E. Harris; C. Desplan 

Cell. 1989. Vol. 59, num. 3, p. 553 – 562. DOI : 10.1016/0092-8674(89)90038-X.

Inherited immunodeficiency with a defect in a major histocompatibility complex class II promoter-binding protein differs in the chromatin structure of the HLA-DRA gene

P. Gönczy; W. Reith; E. Barras; B. Lisowska-Grospierre; C. Griscelli et al. 

Molecular and Cellular Biology. 1989. Vol. 9, num. 1, p. 296 – 302. DOI : 10.1128/MCB.9.1.296.