Journal Articles


Durable Perovskite Solar Cells with 24.5% Average Efficiency: The Role of Rigid Conjugated Core in Molecular Semiconductors

M. Ren; L. Fang; Y. Zhang; F. T. Eickemeyer; Y. Yuan et al. 

Advanced Materials. 2024-04-23. DOI : 10.1002/adma.202403403.

Methylammonium Nitrate-Mediated Crystal Growth and Defect Passivation in Lead Halide Perovskite Solar Cells

S-J. Kim; I. H. Cho; T-D. Nguyen; Y-K. Hong; Y. Kim et al. 

Acs Energy Letters. 2024-04-12. DOI : 10.1021/acsenergylett.4c00154.

High-Performance Perovskite Solar Cells with Zwitterion-Capped-ZnO Quantum Dots as Electron Transport Layer and NH4X (X = F, Cl, Br) Assisted Interfacial Engineering

R. Runjhun; E. A. Alharbi; Z. Druzynski; A. Krishna; M. Wolska-Pietkiewicz et al. 

Energy & Environmental Materials. 2024-03-04.  p. e12720. DOI : 10.1002/eem2.12720.

Modulation of Ionically Generated Space Charge Effects at Hybrid Perovskite and Oxide Interfaces via Surface Modification

M. Jung; M. Almalki; M. Graetzel; D. Moia; J. Maier 

Advanced Materials Interfaces. 2024-02-08. DOI : 10.1002/admi.202300874.

Infrared-reflective ultrathin-metal-film-based transparent electrode with ultralow optical loss for high efficiency in solar cells

G. Perrakis; A. C. Tasolamprou; G. Kakavelakis; K. Petridis; M. Graetzel et al. 

Scientific Reports. 2024-01-04. Vol. 14, num. 1, p. 548. DOI : 10.1038/s41598-023-50988-3.


High-Work-Function 2D Perovskites as Passivation Agents in Perovskite Solar Cells

E. Shirzadi; F. Ansari; H. Jinno; S. Tian; O. Ouellette et al. 

Acs Energy Letters. 2023-08-29. Vol. 8, num. 9, p. 3955-3961. DOI : 10.1021/acsenergylett.3c01326.

Conference on Artificial Photosynthesis and Green Catalysis

J. Gao; L. Pfeifer; P. Dias; A. Mendes; M. Graetzel 

Chimia. 2023-12-01. Vol. 77, num. 12, p. 881-882. DOI : 10.2533/chimia.2023.881.

Molecular engineering of low-cost, efficient, and stable photosensitizers for dye-sensitized solar cells

Z. Shen; F. T. Eickemeyer; J. Gao; L. Pfeifer; D. Bradford et al. 

Chem. 2023-12-14. Vol. 9, num. 12. DOI : 10.1016/j.chempr.2023.08.013.

Efficient Cu2O Photocathodes for Aqueous Photoelectrochemical CO2 Reduction to Formate and Syngas

M. Xia; L. Pan; Y. Liu; J. Gao; J. Li et al. 

Journal Of The American Chemical Society. 2023-12-13. Vol. 145, num. 51, p. 27939-27949. DOI : 10.1021/jacs.3c06146.

Indoor Self-Powered Perovskite Optoelectronics with Ultraflexible Monochromatic Light Source

H. Jinno; S. B. Shivarudraiah; R. Asbjorn; G. Vagli; T. Marcato et al. 

Advanced Materials. 2023-12-05. Vol. 36, num. 5. DOI : 10.1002/adma.202304604.

Understanding and decoupling the role of wavelength and defects in light-induced degradation of metal-halide perovskites

J. Hieulle; A. Krishna; A. Boziki; J-N. Audinot; M. U. Farooq et al. 

Energy & Environmental Science. 2023-12-01. Vol. 17, num. 1, p. 284-295. DOI : 10.1039/d3ee03511e.

Interfacial Modulation through Mixed-Dimensional Heterostructures for Efficient and Hole Conductor-Free Perovskite Solar Cells

M. Almalki; M. H. Alotaibi; A. Q. M. Alanazi; F. T. Eickemeyer; S. M. Alenzi et al. 

Advanced Functional Materials. 2023-11-13. DOI : 10.1002/adfm.202309789.

Low-loss contacts on textured substrates for inverted perovskite solar cells

S. M. Park; M. Wei; N. Lempesis; W. Yu; T. Hossain et al. 

Nature. 2023-10-23. Vol. 624, p. 289–294. DOI : 10.1038/s41586-023-06745-7.

Tautomeric mixture coordination enables efficient lead-free perovskite LEDs

D. Han; J. Wang; L. Agosta; Z. Zang; B. Zhao et al. 

Nature. 2023-08-09. Vol. 622, p. 493–498. DOI : 10.1038/s41586-023-06514-6.

Buried Interface Engineering Enables Efficient and 1,960‐hour Isos‐L‐2i Stable Inverted Perovskite Solar Cells

L. Li; M. Wei; V. Carnevali; H. Zeng; m. Zeng et al. 

Advanced Materials. 2023-08-26. DOI : 10.1002/adma.202303869.

Mitigating the Heterointerface Driven Instability in Perovskite Photovoltaics

A. Krishna; V. Skorjanc; M. Dankl; J. Hieulle; H. Phirke et al. 

Acs Energy Letters. 2023-08-01. Vol. 8, num. 8, p. 3604-3613. DOI : 10.1021/acsenergylett.3c01029.

2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells

H. Li; C. Zhang; C. Gong; D. Zhang; H. Zhang et al. 

Nature Energy. 2023-07-06. DOI : 10.1038/s41560-023-01295-8.

Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells

S. M. Park; M. Wei; J. Xu; H. R. Atapattu; F. T. Eickemeyer et al. 

Science. 2023. Vol. 381, num. 6654, p. 209-215. DOI : 10.1126/science.adi4107.

Ion-Dipole Interaction Enabling Highly Efficient CsPbI3 Perovskite Indoor Photovoltaics

K-L. Wang; H. Lu; M. Li; C-H. Chen; D-B. Zhang et al. 

Advanced Materials. 2023-06-28. Vol. 35, num. 31, p. 2210106. DOI : 10.1002/adma.202210106.

Lead immobilization for environmentally sustainable perovskite solar cells

H. Zhang; J-W. Lee; G. Nasti; R. Handy; A. Abate et al. 

Nature. 2023-05-25. Vol. 617, num. 7962, p. 687-695. DOI : 10.1038/s41586-023-05938-4.

The Impact of Spacer Size on Charge Transfer Excitons in Dion–Jacobson and Ruddlesden–Popper Layered Hybrid Perovskites

G. C. Fish; A. T. Terpstra; A. Ducinskas; M. Almalki; L. C. Carbone et al. 

The Journal of Physical Chemistry Letters. 2023. Vol. 14, p. 6248-6254. DOI : 10.1021/acs.jpclett.3c01125.

Suppressed phase segregation for triple-junction perovskite solar cells

Z. Wang; L. Zeng; T. Zhu; H. Chen; B. Chen et al. 

Nature. 2023-03-28. Vol. 618, p. 74–79. DOI : 10.1038/s41586-023-06006-7.

Nanocrystalline Flash Annealed Nickel Oxide for Large Area Perovskite Solar Cells

E. Ochoa-Martinez; S. Bijani-Chiquero; M. d. V. M. de Yuso; S. Sarkar; H. Diaz-Perez et al. 

Advanced Science. 2023-05-31. DOI : 10.1002/advs.202302549.

Stabilization of FAPbI(3) with Multifunctional Alkali-Functionalized Polymer

C. Zhao; H. Zhang; M. Almalki; J. Xu; A. Krishna et al. 

Advanced Materials. 2023-05-28. DOI : 10.1002/adma.202211619.

Molecularly Tailored Surface Defect Modifier for Efficient and Stable Perovskite Solar Cells

Y. Wu; Q. Liang; H. Zhu; X. Dai; B-B. Yu et al. 

Advanced Functional Materials. 2023-05-21. DOI : 10.1002/adfm.202302404.

Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells

S. You; F. T. Eickemeyer; J. Gao; J-H. Yum; X. Zheng et al. 

Nature Energy. 2023-04-17. DOI : 10.1038/s41560-023-01249-0.

Surface Passivation of FAPbI3-Rich Perovskite with Cesium Iodide Outperforms Bulk Incorporation

T. P. Baumeler; E. A. R. Alharbi; G. Kakavelakis; G. C. Fish; M. T. Aldosari et al. 

ACS Energy Letters. 2023-05-04. Vol. 8, num. 5, p. 2456-2462. DOI : 10.1021/acsenergylett.3c00609.

Cooperative passivation of perovskite solar cells by alkyldimethylammonium halide amphiphiles

E. A. R. Alharbi; A. Krishna; N. Lempesis; M. Dankl; I. Mosquera-Lois et al. 

Joule. 2023. Vol. 7, num. 1, p. 183-200. DOI : 10.1016/j.joule.2022.11.013.

CsPbBr3 Quantum Dots-Sensitized Mesoporous TiO2 Electron Transport Layers for High-Efficiency Perovskite Solar Cells

L. Duan; H. Zhang; F. T. Eickemeyer; J. Gao; S. M. Zakeeruddin et al. 

Solar Rrl. 2023-04-07. DOI : 10.1002/solr.202300072.

Electrochemical synthesis of propylene from carbon dioxide on copper nanocrystals

J. Gao; A. Bahmanpour; O. Krocher; S. M. Zakeeruddin; D. Ren et al. 

Nature Chemistry. 2023-04-06. DOI : 10.1038/s41557-023-01163-8.

Architecture-Controllable Single-Crystal Helical Self-assembly of Small-Molecule Disulfides with Dynamic Chirality

Q. Zhang; R. Toyoda; L. Pfeifer; B. L. Feringa 

Journal Of The American Chemical Society. 2023-03-29. Vol. 145, num. 12, p. 6976-6985. DOI : 10.1021/jacs.3c00586.

Regulated CO adsorption by the electrode with OH− repulsive property for enhancing C–C coupling

Qixing Zhang; D. Ren; J. Gao; Zhongke Wang; Juan Wang et al. 

Green Chemical Engineering. 2023. Vol. 4, num. 3, p. 331-337. DOI : 10.1016/j.gce.2022.07.007.

Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules

S. You; H. Zeng; Y. Liu; B. Han; M. Li et al. 

Science. 2023-01-20. Vol. 379, num. 6629, p. 288-294. DOI : 10.1126/science.add8786.

Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells

C. Ma; F. T. Eickemeyer; S-H. Lee; D-H. Kang; S. J. Kwon et al. 

Science. 2023-01-13. Vol. 379, num. 6628, p. 173-178. DOI : 10.1126/science.adf3349.

Exfoliated 2D Layered and Nonlayered Metal Phosphorous Trichalcogenides Nanosheets as Promising Electrocatalysts for CO2 Reduction

H. Wang; Y. Jiao; B. Wu; D. Wang; Y. Hu et al. 

Angewandte Chemie-International Edition. 2023-02-27. DOI : 10.1002/anie.202217253.

Photoelectrochemical CO2 Reduction at a Direct CuInGaS2/Electrolyte Junction

Y. Liu; M. Xia; D. Ren; S. Nussbaum; J-H. Yum et al. 

Acs Energy Letters. 2023-03-02. DOI : 10.1021/acsenergylett.3c00022.

Combined Vacuum Evaporation and Solution Process for High-Efficiency Large-Area Perovskite Solar Cells with Exceptional Reproducibility

L. Tan; J. Zhou; X. Zhao; S. Wang; M. Li et al. 

Advanced Materials. 2023-02-17. Vol. 35, num. 13, p. 2205027. DOI : 10.1002/adma.202205027.

Double Layer Composite Electrode Strategy for Efficient Perovskite Solar Cells with Excellent Reverse-Bias Stability (vol 15, 12, 2022)

C. Jiang; J. Zhou; H. Li; L. Tan; M. Li et al. 

Nano-Micro Letters. 2023-12-01. Vol. 15, num. 1, p. 43. DOI : 10.1007/s40820-023-01012-w.

Investigation of nickel iron layered double hydroxide for water oxidation in different pH electrolytes

Q. Xie; D. Ren; L. Bai; R. Ge; W. Zhou et al. 

Chinese Journal Of Catalysis. 2023-01-01. Vol. 44, p. 127-138. DOI : 10.1016/S1872-2067(22)64190-1.

Coupled Rotary and Oscillatory Motion in a Second-Generation Molecular Motor Pd Complex

L. Pfeifer; C. N. Stindt; B. L. Feringa 

Journal Of The American Chemical Society. 2023-01-05. DOI : 10.1021/jacs.2c08267.

A Molecularly Tailored Photosensitizer with an Efficiency of 13.2% for Dye-Sensitized Solar Cells

A. Grobelny; Z. Shen; F. T. Eickemeyer; N. F. Antariksa; S. Zapotoczny et al. 

Advanced Materials. 2023. Vol. 35, num. 5, p. 2207785. DOI : 10.1002/adma.202207785.

A Complete Picture of Cation Dynamics in Hybrid Perovskite Materials from Solid-State NMR Spectroscopy

A. Mishra; M. A. Hope; M. Gratzel; L. Emsley 

Journal Of The American Chemical Society. 2023. Vol. 145, num. 2, p. 978–990. DOI : 10.1021/jacs.2c10149.

Double Layer Composite Electrode Strategy for Efficient Perovskite Solar Cells with Excellent Reverse-Bias Stability

C. Jiang; J. Zhou; H. Li; L. Tan; M. Li et al. 

Nano-Micro Letters. 2023-12-01. Vol. 15, num. 1, p. 12. DOI : 10.1007/s40820-022-00985-4.

Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells

Y. Ren; D. Zhang; J. Suo; Y. Cao; F. T. Eickemeyer et al. 

Nature. 2023. Vol. 613, p. 60–65. DOI : 10.1038/s41586-022-05460-z.


Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23%

S. Wang; P. Wang; B. Chen; R. Li; N. Ren et al. 

Escience. 2022-05-01. Vol. 2, num. 3, p. 339-346. DOI : 10.1016/j.esci.2022.04.001.

Dual-function artificial molecular motors performing rotation and photoluminescence

L. Pfeifer; N. V. Hoang; S. Crespi; M. S. Pshenichnikov; B. L. Feringa 

Science Advances. 2022-11-02. Vol. 8, num. 44, p. eadd0410. DOI : 10.1126/sciadv.add0410.

Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids

L. Zhao; P. Tang; D. Luo; M. I. Dar; F. T. Eickemeyer et al. 

Science Advances. 2022-09-02. Vol. 8, num. 35. DOI : 10.1126/sciadv.abo3733.

Facet Engineering for Stable, Efficient Perovskite Solar Cells

C. Ma; M. Gratzel; N-G. Park 

Acs Energy Letters. 2022-09-09. Vol. 7, num. 9, p. 3120-3128. DOI : 10.1021/acsenergylett.2c01623.

Formate as Anti-Oxidation Additives for Pb-Free FASnI(3) Perovskite Solar Cells

H. Jang; H. Y. Lim; Y. J. Yoon; J. Seo; C. B. Park et al. 

Solar Rrl. 2022-10-17.  p. 2200789. DOI : 10.1002/solr.202200789.

Solar reduction of carbon dioxide on copper-tin electrocatalysts with energy conversion efficiency near 20%

J. Gao; J. Li; Y. Liu; M. Xia; Y. Z. Finfrock et al. 

Nature Communications. 2022-10-06. Vol. 13, num. 1, p. 5898. DOI : 10.1038/s41467-022-33049-7.

Dynamic Nuclear Polarization Enables NMR of Surface Passivating Agents on Hybrid Perovskite Thin Films

A. Mishra; M. A. Hope; M. Almalki; L. Pfeifer; S. M. Zakeeruddin et al. 

Journal Of The American Chemical Society. 2022-08-24. Vol. 144, num. 33, p. 15175-15184. DOI : 10.1021/jacs.2c05316.

Visible light activated BINOL-derived chiroptical switches based on boron integrated hydrazone complexes

S. van Vliet; G. Alachouzos; F. de Vries; L. Pfeifer; B. L. Feringa 

Chemical Science. 2022-08-10. Vol. 13, num. 33, p. 9713-9718. DOI : 10.1039/d2sc03518a.

Revealing fundamentals of charge extraction in photovoltaic devices through potentiostatic photoluminescence imaging

L. Wagner; P. Schygulla; J. P. Herterich; M. Elshamy; D. Bogachuk et al. 

Matter. 2022-07-06. Vol. 5, num. 7. DOI : 10.1016/j.matt.2022.05.024.

Thermally controlled growth of photoactive FAPbI(3) films for highly stable perovskite solar cells

S. Sanchez; S. Cacovich; G. Vidon; J-F. Guillemoles; F. Eickemeyer et al. 

Energy & Environmental Science. 2022-07-07. Vol. 15, num. 9, p. 3862-3876. DOI : 10.1039/d2ee01196d.

Mechanistic Insight into Supramolecular Polymerization in Water Tunable by Molecular Geometry

F. Xu; S. Crespi; L. Pfeifer; M. C. A. Stuart; B. L. Feringa 

Ccs Chemistry. 2022-07-01. Vol. 4, num. 7, p. 2212-2220. DOI : 10.31635/ccschem.022.202201821.

Thiocyanate-Mediated Dimensionality Transformation of Low- Dimensional Perovskites for Photovoltaics

L. Hong; Z. Wang; J. V. Milic; C. E. Avalos; W. Zhang et al. 

Chemistry Of Materials. 2022-07-08. Vol. 34, num. 14, p. 6331-6338. DOI : 10.1021/acs.chemmater.2c00760.

Kidney-Specific CAP1/Prss8-Deficient Mice Maintain ENaC-Mediated Sodium Balance through an Aldosterone Independent Pathway

E. Ehret; Y. Jaeger; C. Sergi; A-M. Merillat; T. Peyrollaz et al. 

International Journal Of Molecular Sciences. 2022-06-01. Vol. 23, num. 12, p. 6745. DOI : 10.3390/ijms23126745.

Maltose as an Ecofriendly Modifier of the Buried Interface for Efficient and Stable Inverted Perovskite Solar Cells

B. Yang; Y. Pan; Y. Ding; D. Ouyang; H. Zhang 

Energy Technology. 2022-07-05.  p. 2200488. DOI : 10.1002/ente.202200488.

Over 24% efficient MA-free Cs(x)FA(1-x)PbX(3) perovskite solar cells

S. Wang; L. Tan; J. Zhou; M. Li; X. Zhao et al. 

Joule. 2022-06-15. Vol. 6, num. 6, p. 1344-1356. DOI : 10.1016/j.joule.2022.05.002.

Covalent Organic Framework Nanoplates Enable Solution-Processed Crystalline Nanofilms for Photoelectrochemical Hydrogen Evolution

L. Yao; A. Rodriguez-Camargo; M. Xia; D. Mucke; R. Guntermann et al. 

Journal Of The American Chemical Society. 2022-06-15. Vol. 144, num. 23, p. 10291-10300. DOI : 10.1021/jacs.2c0143310291.

Perovskite Materials and Devices

J. Lewinski; E. Deleporte; S. M. Zakeeruddin 

European Journal Of Inorganic Chemistry. 2022-05-31.  p. e202200268. DOI : 10.1002/ejic.202200268.

Molecularly Engineered Low-Cost Organic Hole-Transporting Materials for Perovskite Solar Cells: The Substituent Effect on Non-fused Three-Dimensional Systems

D. Molina; E. Sheibani; B. Yang; H. Mohammadi; M. Ghiasabadi et al. 

Acs Applied Energy Materials. 2022-03-28. Vol. 5, num. 3, p. 3156-3165. DOI : 10.1021/acsaem.1c03775.

In situ growth of graphene on both sides of a Cu-Ni alloy electrode for perovskite solar cells with improved stability

X. Lin; H. Su; S. He; Y. Song; Y. Wang et al. 

Nature Energy. 2022-05-30. DOI : 10.1038/s41560-022-01038-1.

Construction of Fe3O4 bridged Pt/g-C3N4 heterostructure with enhanced solar to fuel conversion

A. M. Asiri; A. Raza; M. K. Shahzad; W. A. Adeosun; S. B. Khan et al. 

Applied Surface Science. 2022-08-01. Vol. 592, p. 153159. DOI : 10.1016/j.apsusc.2022.153159.

Photo De-Mixing in Dion-Jacobson 2D Mixed Halide Perovskites

Y-R. Wang; A. Senocrate; M. Mladenovic; A. Ducinskas; G. Y. Kim et al. 

Advanced Energy Materials. 2022-05-31.  p. 2200768. DOI : 10.1002/aenm.202200768.

Photoelectrochemical Oxygen Evolution on Mesoporous Hematite Films Prepared from Maghemite Nanoparticles

N. C. Verissimo; D. Ren; C. C. C. Kleiner; F. A. B. Hesse; S. M. Zakeeruddin et al. 

Journal Of The Electrochemical Society. 2022-05-01. Vol. 169, num. 5, p. 056522. DOI : 10.1149/1945-7111/ac70fd.

Efficient and stable noble-metal-free catalyst for acidic water oxidation

S. Pan; H. Li; D. Liu; R. Huang; X. Pan et al. 

Nature Communications. 2022-04-28. Vol. 13, num. 1, p. 2294. DOI : 10.1038/s41467-022-30064-6.

Realizing High-Efficiency Perovskite Solar Cells by Passivating Triple-Cation Perovskite Films

Y. Wu; H. Zhu; D. Wang; S. Akin; F. T. Eickemeyer et al. 

Solar Rrl. 2022-05-01. Vol. 6, num. 7, p. 2200115. DOI : 10.1002/solr.202200115.

Kinetics and energetics of metal halide perovskite conversion reactions at the nanoscale

N. Arora; A. Greco; S. Meloni; A. Hinderhofer; A. Mattoni et al. 

Communications Materials. 2022-04-20. Vol. 3, num. 1, p. 22. DOI : 10.1038/s43246-022-00239-1.

Nanosegregation in arene-perfluoroarene pi-systems for hybrid layered Dion-Jacobson perovskites

M. Almalki; A. Ducinskas; L. C. Carbone; L. Pfeifer; L. Piveteau et al. 

Nanoscale. 2022-04-11. Vol. 14, num. 18, p. 6771-6776. DOI : 10.1039/d1nr08311b.

Efficient and Stable Large Bandgap MAPbBr(3) Perovskite Solar Cell Attaining an Open Circuit Voltage of 1.65 V

H. Zhu; L. Pan; F. T. Eickemeyer; M. A. Hope; O. Ouellette et al. 

Acs Energy Letters. 2022-03-11. Vol. 7, num. 3, p. 1112-1119. DOI : 10.1021/acsenergylett.1c02431.

Interface modification to achieve high-efficiency and stable perovskite solar cells

Y. Wu; H. Zhu; B-B. Yu; S. Akin; Y. Liu et al. 

Chemical Engineering Journal. 2022-04-01. Vol. 433, p. 134613. DOI : 10.1016/j.cej.2022.134613.

Reversible Pressure-Dependent Mechanochromism of Dion-Jacobson and Ruddlesden-Popper Layered Hybrid Perovskites

L. A. Muscarella; A. Ducinskas; M. Dankl; M. Andrzejewski; N. P. M. Casati et al. 

Advanced Materials. 2022-03-20.  p. 2108720. DOI : 10.1002/adma.202108720.

CNT-based bifacial perovskite solar cells towards highly efficient 4-terminal tandem photovoltaics

C. Zhang; C. Min; F. Fu; H. Zhu; T. Feurer et al. 

Energy & Environmental Science. 2022-02-08. Vol. 15, num. 4, p. 1536-1544. DOI : 10.1039/d1ee04008a.

Solid-state synthesis of CdFe2O4 binary catalyst for potential application in renewable hydrogen fuel generation

A. M. Asiri; W. A. Adeosun; S. B. Khan; K. A. Alamry; H. M. Marwani et al. 

Scientific Reports. 2022-01-31. Vol. 12, num. 1, p. 1632. DOI : 10.1038/s41598-022-04999-1.

Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells

M. Kim; J. Jeong; H. Lu; T. K. Lee; F. T. Eickemeyer et al. 

Science. 2022-01-21. Vol. 375, num. 6578, p. 302-306. DOI : 10.1126/science.abh1885.

Interfacial engineering from material to solvent: A mechanistic understanding on stabilizing alpha-formamidinium lead triiodide perovskite photovoltaics

J. Suo; B. Yang; J. Jeong; T. Zhang; S. Olthof et al. 

Nano Energy. 2022-04-01. Vol. 94, p. 106924. DOI : 10.1016/j.nanoen.2022.106924.

Revisiting the Impact of Morphology and Oxidation State of Cu on CO2 Reduction Using Electrochemical Flow Cell

A. M. Asiri; J. Gao; S. B. Khan; K. A. Alamry; H. M. Marwani et al. 

Journal Of Physical Chemistry Letters. 2022-01-04. Vol. 13, num. 1, p. 345–351. DOI : 10.1021/acs.jpclett.1c03957.

Solar Water Splitting Using Earth-Abundant Electrocatalysts Driven by High-Efficiency Perovskite Solar Cells

A. M. Asiri; D. Ren; H. Zhang; S. B. Khan; K. A. Alamry et al. 

Chemsuschem. 2022-01-24.  p. e202102471. DOI : 10.1002/cssc.202102471.

Regulating crystallization dynamics and crystal orientation of methylammonium tin iodide enables high-efficiency lead-free perovskite solar cells

L. Ji; T. Zhang; Y. Wang; D. Liu; H. Chen et al. 

Nanoscale. 2022. Vol. 14, num. 4, p. 1219-1225. DOI : 10.1039/d1nr06802d.

A Protocol for Electrocatalyst Stability Evaluation: H2O2 Electrosynthesis for Industrial Wastewater Treatment

D. J. Kim; Q. Zhu; K. Rigby; X. Wu; J. H. Kim et al. 

Environmental Science & Technology. 2022. Vol. 56, num. 2, p. 1365–1375. DOI : 10.1021/acs.est.1c06850.

A universal co-solvent dilution strategy enables facile and cost-effective fabrication of perovskite photovoltaics

H. Zhang; K. Darabi; N. Y. Nia; A. Krishna; P. Ahlawat et al. 

Nature Communications. 2022-01-10. Vol. 13, p. 89. DOI : 10.1038/s41467-021-27740-4.

Molecular Stabilization of Sub-Nanometer Cu Clusters for Selective CO2 Electromethanation

H. Zhang; Y. Yang; Y. Liang; J. Li; A. Zhang et al. 

Chemsuschem. 2022. Vol. 15, num. 1, p. e202102010. DOI : 10.1002/cssc.202102010.


Chemically tailored molecular surface modifiers for efficient and stable perovskite photovoltaics

Y. Liu; B. Dong; A. Hagfeldt; J. Luo; M. Graetzel 

Smartmat. 2021-03-01. Vol. 2, num. 1, p. 33-37. DOI : 10.1002/smm2.1025.

Interfacial Passivation Engineering of Perovskite Solar Cells with Fill Factor over 82% and Outstanding Operational Stability on n-i-p Architecture

B. Yang; J. Suo; F. Di Giacomo; S. Olthof; D. Bogachuk et al. 

Acs Energy Letters. 2021-11-12. Vol. 6, num. 11, p. 3916-3923. DOI : 10.1021/acsenergylett.1c01811.

Ti-1-graphene single-atom material for improved energy level alignment in perovskite solar cells

C. Zhang; S. Liang; W. Liu; F. T. Eickemeyer; X. Cai et al. 

Nature Energy. 2021-12-01. Vol. 6, num. 12, p. 1154-1163. DOI : 10.1038/s41560-021-00944-0.

Ligand Engineering in Nickel Phthalocyanine to Boost the Electrocatalytic Reduction of CO2

K. Chen; M. Cao; Y. Lin; J. Fu; H. Liao et al. 

Advanced Functional Materials. 2021-12-01.  p. 2111322. DOI : 10.1002/adfm.202111322.



A critical perspective for emerging ultra-thin solar cells with ultra-high power-per-weight outputs

A. Panagiotopoulos; T. Maksudov; G. Kakavelakis; G. Perrakis; E. A. Alharbi et al. 

Applied Physics Reviews. 2023-12-01. Vol. 10, num. 4, p. 041303. DOI : 10.1063/5.0169185.

Champion Device Architectures for Low-Cost and Stable Single-Junction Perovskite Solar Cells

T. Baumeler; A. A. A. Saleh; T. A. A. Wani; S. Huang; X. Jia et al. 

Acs Materials Letters. 2023-08-08. DOI : 10.1021/acsmaterialslett.3c00337.

Tailoring passivators for highly efficient and stable perovskite solar cells

H. Zhang; L. Pfeifer; S. M. Zakeeruddin; J. Chu; M. Gratzel 

Nature Reviews Chemistry. 2023-07-18. DOI : 10.1038/s41570-023-00510-0.

Updates on Hydrogen Value Chain: A Strategic Roadmap

J. Garcia-Navarro; M. A. Isaacs; M. Favaro; D. Ren; W-J. Ong et al. 

Global Challenges. 2023-07-08. DOI : 10.1002/gch2.202300073.


Solid-state dye-sensitized solar cells using polymeric hole conductors

N. Vlachopoulos; M. Gratzel; A. Hagfeldt 

Rsc Advances. 2021-12-13. Vol. 11, num. 62, p. 39570-39581. DOI : 10.1039/d1ra05911d.



Interface and structural engineering of perovskite solar cells towards enhanced stability and performance

M. H. S. Almalki / M. Graetzel; S. M. Zakeeruddin (Dir.)  

Lausanne, EPFL, 2023. 


Bulk and surface engineering to improve performance and stability of perovskite solar cells

T. P. Baumeler / M. Graetzel; S. M. Zakeeruddin (Dir.)  

Lausanne, EPFL, 2022. 

Structure-property relationships and mixed conductivity in layered hybrid perovskites based on phenyl-derived spacers

A. Ducinskas / M. Graetzel; J. Maier (Dir.)  

Lausanne, EPFL, 2022. 

Luminescent and electronic properties of perovskite solar cells

B. I. Carlsen / M. Graetzel; W. R. Tress (Dir.)  

Lausanne, EPFL, 2022. 

Compositional and interfacial optimization for enhancement of perovskite solar cells performance

E. A. R. Alharbi / M. Graetzel; S. M. Zakeeruddin (Dir.)  

Lausanne, EPFL, 2022. 



Buried Interface Engineering Enables Efficient and 1,960-hour Isos-L-2i Stable Inverted Perovskite Solar Cells

L. Li; M. Wei; V. Carnevali; H. Zeng; M. Zeng et al. 


Low-loss contacts on textured substrates for inverted perovskite solar cells

So Min Park; Mingyang Wei; Nikolaos Lempesis; Wenjin Yu; Tareq Hossain et al. 


Dataset of “The Impact of Spacer Size on Charge Transfer Excitons in Dion-Jacobson and Ruddlesden-Popper Layered Hybrid Perovskites”

G. C. Fish; A. T. Terpstra; M. Almalki; L. Pfeifer; M. Graetzel et al.