Publications

Journal Articles

2020

Formamidinium-Based Dion-Jacobson Layered Hybrid Perovskites: Structural Complexity and Optoelectronic Properties

M. C. Gelvez-Rueda; P. Ahlawat; L. Merten; F. Jahanbakhshi; M. Mladenovic et al. 

Advanced Functional Materials. 2020-07-19.  p. 2003428. DOI : 10.1002/adfm.202003428.

High-Performance Lead-Free Solar Cells Based on Tin-Halide Perovskite Thin Films Functionalized by a Divalent Organic

M. Chen; Q. Dong; F. T. Eickemeyer; Y. Liu; Z. Dai et al. 

Acs Energy Letters. 2020-07-10. Vol. 5, num. 7, p. 2223-2230. DOI : 10.1021/acsenergylett.0c00888.

Hybrid 2D [Pb(CH3NH2)I-2](n) Coordination Polymer Precursor for Scalable Perovskite Deposition

B. Febriansyah; T. M. Koh; P. J. S. Rana; T. J. N. Hooper; Z. Z. Ang et al. 

Acs Energy Letters. 2020-07-10. Vol. 5, num. 7, p. 2305-2312. DOI : 10.1021/acsenergylett.0c00781.

Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells

F. Ansari; E. Shirzadi; M. Salavati-Niasari; T. LaGrange; K. Nonomura et al. 

Journal Of The American Chemical Society. 2020-07-01. Vol. 142, num. 26, p. 11428-11433. DOI : 10.1021/jacs.0c01704.

Stabilization of Highly Efficient and Stable Phase-Pure FAPbI(3)Perovskite Solar Cells by Molecularly Tailored 2D-Overlayers

Y. Liu; S. Akin; A. Hinderhofer; F. T. Eickemeyer; H. Zhu et al. 

Angewandte Chemie-International Edition. 2020-06-22. DOI : 10.1002/anie.202005211.

Guanidinium-Assisted Surface Matrix Engineering for Highly Efficient Perovskite Quantum Dot Photovoltaics

X. Ling; J. Yuan; X. Zhang; Y. Qian; S. M. Zakeeruddin et al. 

Advanced Materials. 2020-05-25.  p. 2001906. DOI : 10.1002/adma.202001906.

Interfacial and bulk properties of hole transporting materials in perovskite solar cells: spiro-MeTAD versus spiro-OMeTAD

X. Sallenave; M. Shasti; E. H. Anaraki; D. Volyniuk; J. V. Grazulevicius et al. 

Journal Of Materials Chemistry A. 2020-05-07. Vol. 8, num. 17, p. 8527-8539. DOI : 10.1039/d0ta00623h.

Photovoltaic Performance of Porphyrin-Based Dye-Sensitized Solar Cells with Binary Ionic Liquid Electrolytes

S. B. Khan; P. K. Yadav; J-D. Decoppet; C. Yi; M. S. A. Al-Ghamdi et al. 

Energy Technology. 2020-04-24.  p. 2000092. DOI : 10.1002/ente.202000092.

Phenanthrene-Fused-Quinoxaline as a Key Building Block for Highly Efficient and Stable Sensitizers in Copper-Electrolyte-Based Dye-Sensitized Solar Cells

H. Jiang; Y. Ren; W. Zhang; Y. Wu; E. C. Socie et al. 

Angewandte Chemie-International Edition. 2020-04-02. DOI : 10.1002/anie.202000892.

A Blue Photosensitizer Realizing Efficient and Stable Green Solar Cells via Color Tuning by the Electrolyte

Y. Ren; Y. Cao; D. Zhang; S. M. Zakeeruddin; A. Hagfeldt et al. 

Advanced Materials. 2020-04-01. Vol. 32, num. 17, p. 2000193. DOI : 10.1002/adma.202000193.

Black phosphorus quantum dots in inorganic perovskite thin films for efficient photovoltaic application

X. Gong; L. Guan; Q. Li; Y. Li; T. Zhang et al. 

Science Advances. 2020-04-01. Vol. 6, num. 15, p. eaay5661. DOI : 10.1126/sciadv.aay5661.

Electron-Selective Layers for Dye-Sensitized Solar Cells Based on TiO2 and SnO2

L. Kavan; Z. V. Zivcova; M. Zlamalova; S. M. Zakeeruddin; M. Graetzel 

Journal Of Physical Chemistry C. 2020-03-26. Vol. 124, num. 12, p. 6512-6521. DOI : 10.1021/acs.jpcc.9b11883.

Liquid State and Zombie Dye Sensitized Solar Cells with Copper Bipyridine Complexes Functionalized with Alkoxy Groups

Y. Saygili; M. Stojanovic; H-S. Kim; J. Teuscher; R. Scopelliti et al. 

The Journal of Physical Chemistry. 2020-03-09. Vol. C124, num. 13, p. 7071-7081. DOI : 10.1021/acs.jpcc.0c00671.

Solution-based heteroepitaxial growth of stable mixed cation/anion hybrid perovskite thin film under ambient condition via a scalable crystal engineering approach

N. Y. Nia; F. Giordano; M. Zendehdel; L. Cina; A. L. Palma et al. 

Nano Energy. 2020-03-01. Vol. 69, p. 104441. DOI : 10.1016/j.nanoen.2019.104441.

A water-based and metal-free dye solar cell exceeding 7% efficiency using a cationic poly(3,4-ethylenedioxythiophene) derivative

F. Bella; L. Porcarelli; D. Mantione; C. Gerbaldi; C. Barolo et al. 

Chemical Science. 2020-02-14. Vol. 11, num. 6, p. 1485-1493. DOI : 10.1039/c9sc05596g.

Suppressing recombination in perovskite solar cells via surface engineering of TiO2 ETL

D. Prochowicz; M. M. Tavakoli; M. Wolska-Pietkiewicz; M. Jedrzejewska; S. Trivedi et al. 

Solar Energy. 2020-02-01. Vol. 197, p. 50-57. DOI : 10.1016/j.solener.2019.12.070.

Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting

L. Pan; Y. Liu; L. Yao; D. Ren; K. Sivula et al. 

Nature Communications. 2020-01-16. Vol. 11, num. 1, p. 318. DOI : 10.1038/s41467-019-13987-5.

Intermediate Phase Enhances Inorganic Perovskite and Metal Oxide Interface for Efficient Photovoltaics

J. Zhang; Z. Wang; A. Mishra; M. Yu; M. Shasti et al. 

Joule. 2020-01-15. Vol. 4, num. 1, p. 222-234. DOI : 10.1016/j.joule.2019.11.007.

Supramolecular Modulation of Hybrid Perovskite Solar Cells via Bifunctional Halogen Bonding Revealed by Two-Dimensional 19F Solid-State NMR Spectroscopy

M. A. Ruiz Preciado; D. J. Kubicki; A. Hofstetter; L. McGovern; M. H. Futscher et al. 

Journal of the American Chemical Society. 2020-01-08. Vol. 142, num. 3, p. 1645-1654. DOI : 10.1021/jacs.9b13701.

Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures

M. V. Khenkin; E. A. Katz; A. Abate; G. Bardizza; J. J. Berry et al. 

Nature Energy. 2020-01-01. Vol. 5, num. 1, p. 35-49. DOI : 10.1038/s41560-019-0529-5.

Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT

C. A. Mesa; L. Francas; K. R. Yang; P. Garrido-Barros; E. Pasto et al. 

Nature Chemistry. 2020-01-01. Vol. 12, num. 1, p. 82-89. DOI : 10.1038/s41557-019-0347-1.

Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency

H. Zhu; Y. Liu; F. T. Eickemeyer; L. Pan; D. Ren et al. 

Advanced Materials. 2020. DOI : 10.1002/adma.201907757.

2019

Solar Water Splitting with Perovskite/Silicon Tandem Cell and TiC-Supported Pt Nanocluster Electrocatalyst

J. Gao; F. Sahli; C. Liu; D. Ren; X. Guo et al. 

Joule. 2019-12-18. Vol. 3, num. 12, p. 2930-2941. DOI : 10.1016/j.joule.2019.10.002.

Guanine‐Stabilized Formamidinium Lead Iodide Perovskites

L. Hong; J. Milic; P. Ahlawat; M. Mladenovic; D. J. Kubicki et al. 

Angewandte Chemie. 2019-12-17. Vol. 49. DOI : 10.1002/anie.201912051.

Guanine‐Stabilized Formamidinium Lead Iodide Perovskites

L. Hong; J. V. Milic; P. Ahlawat; M. Mladenovic; D. J. Kubicki et al. 

Angewandte Chemie. 2019-12-17. DOI : 10.1002/anie.201912051.

Low-Cost and Highly Efficient Carbon-Based Perovskite Solar Cells Exhibiting Excellent Long-Term Operational and UV Stability

N. Arora; M. I. Dar; S. Akin; R. Uchida; T. Baumeler et al. 

Small. 2019-12-06. Vol. 15, num. 49, p. 1904746. DOI : 10.1002/smll.201904746.

Thermochemical Stability of Hybrid Halide Perovskites

A. Senocrate; G. Y. Kim; M. Gratzel; J. Maier 

Acs Energy Letters. 2019-12-01. Vol. 4, num. 12, p. 2859-2870. DOI : 10.1021/acsenergylett.9b01605.

Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design

C. Zhang; S. Wang; H. Zhang; Y. Feng; W. Tian et al. 

Energy & Environmental Science. 2019-12-01. Vol. 12, num. 12, p. 3585-3594. DOI : 10.1039/c9ee02391g.

Selective C-C Coupling in Carbon Dioxide Electroreduction via Efficient Spillover of Intermediates As Supported by Operando Raman Spectroscopy

J. Gao; H. Zhang; X. Guo; J. Luo; S. M. Zakeeruddin et al. 

Journal Of The American Chemical Society. 2019-11-27. Vol. 141, num. 47, p. 18704-18714. DOI : 10.1021/jacs.9b07415.

Efficient Perovskite Solar Cell Modules with High Stability Enabled by Iodide Diffusion Barriers

E. Bi; W. Tang; H. Chen; Y. Wang; J. Barbaud et al. 

Joule. 2019-11-20. Vol. 3, num. 11, p. 2748-2760. DOI : 10.1016/j.joule.2019.07.030.

How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers

M. Yavari; F. Ebadi; S. Meloni; Z. S. Wang; T. C-J. Yang et al. 

Journal Of Materials Chemistry A. 2019-11-07. Vol. 7, num. 41, p. 23838-23853. DOI : 10.1039/c9ta01744e.

Bimetallic Electrocatalysts for Carbon Dioxide Reduction

D. Ren; J. Gao; S. M. Zakeeruddin; M. Graetzel 

Chimia. 2019-11-01. Vol. 73, num. 11, p. 928-935. DOI : 10.2533/chimia.2019.928.

Molecular Engineering of Simple Metal-Free Organic Dyes Derived from Triphenylamine for Dye-Sensitized Solar Cell Applications

P. Ferdowsi; Y. Saygili; F. Jazaeri; T. Edvinsson; J. Mokhtari et al. 

Chemsuschem. 2019-10-21. DOI : 10.1002/cssc.201902245.

Charge Accumulation, Recombination, and Their Associated Time Scale in Efficient (GUA)(x)(MA)(1-x)PbI3-Based Perovskite Solar Cells

D. Prochowicz; M. M. Tavakoli; A. Q. Alanazi; S. Trivedi; H. T. Dastjerdi et al. 

ACS Omega. 2019-10-15. Vol. 4, num. 16, p. 16840-16846. DOI : 10.1021/acsomega.9b01701.

Ba-induced phase segregation and band gap reduction in mixed-halide inorganic perovskite solar cells

W. Xiang; Z. Wang; D. J. Kubicki; X. Wang; W. Tress et al. 

Nature Communications. 2019-10-15. Vol. 10, p. 4686. DOI : 10.1038/s41467-019-12678-5.

Atomic-Level Microstructure of Efficient Formamidinium-Based Perovskite Solar Cells Stabilized by 5-Ammonium Valeric Acid Iodide Revealed by Multinuclear and Two-Dimensional Solid-State NMR

A. Q. M. Alanazi; D. J. Kubicki; D. Prochowicz; E. A. R. Alharbi; M. E. F. Bouduban et al. 

Journal of the American Chemical Society. 2019-10-08. Vol. 141, num. 44, p. 17659-17669. DOI : 10.1021/jacs.9b07381.

A chain is as strong as its weakest link – Stability study of MAPbI(3) under light and temperature

P. Holzhey; P. Yadav; S-H. Turren-Cruz; A. Ummadisingu; M. Graetzel et al. 

Materials Today. 2019-10-01. Vol. 29, p. 10-19. DOI : 10.1016/j.mattod.2018.10.017.

Elucidation of photovoltage origin and charge transport in Cu2O heterojunctions for solar energy conversion (vol 3, pg 2633, 2019)

P. Cendula; M. T. Mayer; J. Luo; M. Graetzel 

Sustainable Energy & Fuels. 2019-10-01. Vol. 3, num. 10, p. 2873-2874. DOI : 10.1039/c9se90042j.

Elucidation of photovoltage origin and charge transport in Cu2O heterojunctions for solar energy conversion

P. Cendula; M. T. Mayer; J. Luo; M. Gratzel 

Sustainable Energy & Fuels. 2019-10-01. Vol. 3, num. 10, p. 2633-2641. DOI : 10.1039/c9se00385a.

Atomic Layer Deposition of ZnO on CuO Enables Selective and Efficient Electroreduction of Carbon Dioxide to Liquid Fuels

D. Ren; J. Gao; L. Pan; Z. Wang; J. Luo et al. 

Angewandte Chemie-International Edition. 2019-09-10. DOI : 10.1002/anie.201909610.

In situ observation of picosecond polaron self-localisation in alpha-Fe2O3 photoelectrochemical cells

E. Pastor; J-S. Park; L. Steier; S. Kim; M. Gratzel et al. 

Nature Communications. 2019-09-03. Vol. 10, p. 3962. DOI : 10.1038/s41467-019-11767-9.

Thermodynamically stabilized beta-CsPbI3-based perovskite solar cells with efficiencies > 18%

Y. Wang; M. I. Dar; L. K. Ono; T. Zhang; M. Kan et al. 

Science. 2019-08-09. Vol. 365, num. 6453, p. 591-595. DOI : 10.1126/science.aav8680.

Halide Versus Nonhalide Salts: The Effects of Guanidinium Salts on the Structural, Morphological, and Photovoltaic Performances of Perovskite Solar Cells

M. H. Alotaibi; Y. A. Alzahrani; N. Arora; A. Alyamani; A. Albadri et al. 

Solar Rrl. 2019-07-26.  p. 1900234. DOI : 10.1002/solr.201900234.

Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells

E. A. Alharbi; A. Y. Alyamani; D. J. Kubicki; A. R. Uhl; B. J. Walder et al. 

Nature Communications. 2019-07-08. Vol. 10, p. 3008. DOI : 10.1038/s41467-019-10985-5.

Sequential catalysis enables enhanced C-C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts

J. Gao; D. Ren; X. Guo; S. M. Zakeeruddin; M. Graetzel 

Faraday Discussions. 2019-07-01. Vol. 215, p. 282-296. DOI : 10.1039/c8fd00219c.

Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions

W. Tress; K. Domanski; B. Carlsen; A. Agarwalla; E. A. Alharbi et al. 

Nature Energy. 2019-07-01. Vol. 4, num. 7, p. 568-574. DOI : 10.1038/s41560-019-0400-8.

Power output stabilizing feature in perovskite solar cells at operating condition: Selective contact-dependent charge recombination dynamics

H-S. Kim; J-Y. Seo; S. Akin; E. Simon; M. Fleischer et al. 

Nano Energy. 2019-07-01. Vol. 61, p. 126-131. DOI : 10.1016/j.nanoen.2019.04.051.

Ruddlesden–Popper Phases of Methylammonium-Based Two-Dimensional Perovskites with 5-Ammonium Valeric Acid AVA2MAn–1PbnI3n+1 with n = 1, 2, and 3

N. Ashari Astani; F. Jahanbakhshi; M. Mladenovic; A. Q. M. Alanazi; I. Ahmadabadi et al. 

Journal of Physical Chemistry Letters. 2019-06-10. Vol. 10, p. 3543-3549. DOI : 10.1021/acs.jpclett.9b01111.

Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%

Y. Liu; S. Akin; L. Pan; R. Uchida; N. Arora et al. 

Science Advances. 2019-06-01. Vol. 5, num. 6, p. eaaw2543. DOI : 10.1126/sciadv.aaw2543.

Electrochemical Characterization of CuSCN Hole-Extracting Thin Films for Perovskite Photovoltaics

L. Kavan; Z. V. Zivcova; P. Hubik; N. Arora; M. I. Dar et al. 

Acs Applied Energy Materials. 2019-06-01. Vol. 2, num. 6, p. 4264-4273. DOI : 10.1021/acsaem.9b00496.

Dry-pressed anodized titania nanotube/CH3NH3PbI3 single crystal heterojunctions: The beneficial role of N doping

J. Vujancevic; P. Andricevic; A. Bjelajac; V. Dokic; M. Popovic et al. 

Ceramics International. 2019-06-01. Vol. 45, num. 8, p. 10013-10020. DOI : 10.1016/j.ceramint.2019.02.045.

An Oxa[5]helicene-Based Racemic Semiconducting Glassy Film for Photothermally Stable Perovskite Solar Cells

N. Xu; Y. Li; D. Ricciarelli; J. Wang; E. Mosconi et al. 

Iscience. 2019-05-31. Vol. 15, p. 234-+. DOI : 10.1016/j.isci.2019.04.031.

Supramolecular Engineering for Formamidinium-Based Layered 2D Perovskite Solar Cells: Structural Complexity and Dynamics Revealed by Solid-State NMR Spectroscopy

J. V. Milic; J-H. Im; D. J. Kubicki; A. Ummadisingu; J-Y. Seo et al. 

Advanced Energy Materials. 2019-05-23. Vol. 9, num. 20, p. 1900284. DOI : 10.1002/aenm.201900284.

Dual effect of humidity on cesium lead bromide: enhancement and degradation of perovskite films

D. Di Girolamo; M. I. Dar; D. Dini; L. Gontrani; R. Caminiti et al. 

Journal Of Materials Chemistry A. 2019-05-21. Vol. 7, num. 19, p. 12292-12302. DOI : 10.1039/c9ta00715f.

A tandem redox system with a cobalt complex and 2-azaadamantane-N-oxyl for fast dye regeneration and open circuit voltages exceeding 1 V

N. Flores-Diaz; H-w. Bahng; N. Vlachopoulos; J-E. Moser; S. M. Zakeeruddin et al. 

Journal Of Materials Chemistry A. 2019-05-14. Vol. 7, num. 18, p. 10998-11006. DOI : 10.1039/c9ta00490d.

Influence of Alkoxy Chain Length on the Properties of Two-Dimensionally Expanded Azulene-Core-Based Hole-Transporting Materials for Efficient Perovskite Solar Cells

M. A. Truong; J. Lee; T. Nakamura; J-Y. Seo; M. Jung et al. 

Chemistry-A European Journal. 2019-05-10. Vol. 25, num. 27, p. 6741-6752. DOI : 10.1002/chem.201806317.

Toward an alternative approach for the preparation of low-temperature titanium dioxide blocking underlayers for perovskite solar cells

S. H. Aung; L. Zhao; K. Nonomura; T. Z. Oo; S. M. Zakeeruddin et al. 

Journal Of Materials Chemistry A. 2019-05-07. Vol. 7, num. 17, p. 10729-10738. DOI : 10.1039/c8ta04246b.

Perovskite Solar Cells Based on Oligotriarylamine Hexaarylbenzene as Hole-Transporting Materials

M. Shasti; S. F. Volker; S. Collavini; S. Valero; F. Ruiperez et al. 

Organic Letters. 2019-05-03. Vol. 21, num. 9, p. 3261-3264. DOI : 10.1021/acs.orglett.9b00988.

SnS Quantum Dots as Hole Transporter of Perovskite Solar Cells

Y. Li; Z. Wang; D. Ren; Y. Liu; A. Zheng et al. 

Acs Applied Energy Materials. 2019-05-01. Vol. 2, num. 5, p. 3822-3829. DOI : 10.1021/acsaem.9b00510.

A partially-planarised hole-transporting quart-p-phenylene for perovskite solar cells

J. P. Mora-Fuentes; D. Cortizo-Lacalle; S. Collavini; K. Strutynski; W. R. Tress et al. 

Journal Of Materials Chemistry C. 2019-04-21. Vol. 7, num. 15, p. 4332-4335. DOI : 10.1039/c9tc01076a.

Boosting the efficiency of aqueous solar cells: A photoelectrochemical estimation on the effectiveness of TiCl4 treatment

F. Bella; S. Galliano; G. Piana; G. Giacona; G. Viscardi et al. 

Electrochimica Acta. 2019-04-10. Vol. 302, p. 31-37. DOI : 10.1016/j.electacta.2019.01.180.

Multifunctional Molecular Modulation for Efficient and Stable Hybrid Perovskite Solar Cells

J. V. Milic; D. J. Kubicki; L. Emsley; M. Gratzel 

Chimia. 2019-04-01. Vol. 73, num. 4, p. 317-323. DOI : 10.2533/chimia.2019.317.

Dopant-Free Hole-Transporting Polymers for Efficient and Stable Perovskite Solar Cells

S. Valero; S. Collavini; S. F. Volker; M. Saliba; W. R. Tress et al. 

Macromolecules. 2019-03-26. Vol. 52, num. 6, p. 2243-2254. DOI : 10.1021/acs.macromol.9b00165.

An ultrathin cobalt-iron oxide catalyst for water oxidation on nanostructured hematite photoanodes

L. Liardet; J. E. Katz; J. Luo; M. Gratzel; X. Hu 

Journal Of Materials Chemistry A. 2019-03-21. Vol. 7, num. 11, p. 6012-6020. DOI : 10.1039/c8ta12295d.

Engineering of Perovskite Materials Based on Formamidinium and Cesium Hybridization for High-Efficiency Solar Cells

D. Prochowicz; R. Runjhun; M. M. Tavakoli; P. Yadav; M. Saski et al. 

Chemistry Of Materials. 2019-03-12. Vol. 31, num. 5, p. 1620-1627. DOI : 10.1021/acs.chemmater.8b04871.

Molecular engineering of enamine-based small organic compounds as hole-transporting materials for perovskite solar cells

M. Daskeviciene; S. Paek; A. Magomedov; K. T. Cho; M. Saliba et al. 

Journal Of Materials Chemistry C. 2019-03-07. Vol. 7, num. 9, p. 2717-2724. DOI : 10.1039/c8tc06297h.

Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites (vol 10, 484, 2019)

B. Wu; H. Yuan; Q. Xu; J. A. Steele; D. Giovanni et al. 

Nature Communications. 2019-03-05. Vol. 10, p. 1145. DOI : 10.1038/s41467-019-09172-3.

Site-selective Synthesis of -[70]PCBM-like Fullerenes: Efficient Application in Perovskite Solar Cells

S. Vidal; M. Izquierdo; S. Filippone; I. Fernandez; S. Akin et al. 

Chemistry-A European Journal. 2019-03-01. Vol. 25, num. 13, p. 3224-3228. DOI : 10.1002/chem.201806053.

Design, synthesis and characterization of 1,8-naphthalimide based fullerene derivative as electron transport material for inverted perovskite solar cells

G. Sivakumar; A. H. Bertoni; H-S. Kim; P. E. Marchezi; D. R. Bernardo et al. 

Synthetic Metals. 2019-03-01. Vol. 249, p. 25-30. DOI : 10.1016/j.synthmet.2019.01.014.

Photoelectrocatalytic arene C–H amination

L. Zhang; L. Liardet; J. Luo; D. Ren; M. Grätzel et al. 

Nature Catalysis. 2019-02-18. Vol. 2, num. 4, p. 366-373. DOI : 10.1038/s41929-019-0231-9.

Effects of Se Incorporation in La5Ti2CuS5O7 by Annealing on Physical Properties and Photocatalytic H-2 Evolution Activity

S. Nandy; T. Hisatomi; S. Sun; M. Katayama; T. Minegishi et al. 

Acs Applied Materials & Interfaces. 2019-02-13. Vol. 11, num. 6, p. 5595-5601. DOI : 10.1021/acsami.8b02909.

Doping and phase segregation in Mn2+- and Co2+-doped lead halide perovskites from Cs-133 and H-1 NMR relaxation enhancement

D. J. Kubicki; D. Prochowicz; A. Pinon; G. Stevanato; A. Hofstetter et al. 

Journal of Materials Chemistry A. 2019-02-07. Vol. 7, num. 5, p. 2326-2333. DOI : 10.1039/c8ta11457a.

Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices

M. Abdi-Jalebi; M. I. Dar; S. P. Senanayak; A. Sadhanala; Z. Andaji-Garmaroudi et al. 

Science Advances. 2019-02-01. Vol. 5, num. 2, p. eaav2012. DOI : 10.1126/sciadv.aav2012.

PbZrTiO3 ferroelectric oxide as an electron extraction material for stable halide perovskite solar cells

A. Perez-Tomas; H. Xie; Z. Wang; H-S. Kim; I. Shirley et al. 

Sustainable Energy & Fuels. 2019-02-01. Vol. 3, num. 2, p. 382-389. DOI : 10.1039/c8se00451j.

Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites

B. Wu; H. Yuan; Q. Xu; J. A. Steele; D. Giovanni et al. 

Nature Communications. 2019-01-29. Vol. 10, p. 484. DOI : 10.1038/s41467-019-08326-7.

A peri-Xanthenoxanthene Centered Columnar-Stacking Organic Semiconductor for Efficient, Photothermally Stable Perovskite Solar Cells

N. Xu; Y. Li; R. Wu; R. Zhu; J. Zhang et al. 

Chemistry-A European Journal. 2019-01-18. Vol. 25, num. 4, p. 945-948. DOI : 10.1002/chem.201806015.

Europium-Doped CsPbI2Br for Stable and Highly Efficient Inorganic Perovskite Solar Cells

W. Xiang; Z. Wang; D. J. Kubicki; W. Tress; J. Luo et al. 

Joule. 2019-01-16. Vol. 3, num. 1, p. 205-214. DOI : 10.1016/j.joule.2018.10.008.

Synergistic Crystal and Interface Engineering for Efficient and Stable Perovskite Photovoltaics

M. M. Tavakoli; M. Saliba; P. Yadav; P. Holzhey; A. Hagfeldt et al. 

Advanced Energy Materials. 2019-01-03. Vol. 9, num. 1, p. 1802646. DOI : 10.1002/aenm.201802646.

Perovskite Solar Cells Yielding Reproducible Photovoltage of 1.20 V

E. A. Alharbi; M. I. Dar; N. Arora; M. H. Alotaibi; Y. A. Alzhrani et al. 

Research. 2019-01-01. Vol. 2019, p. 8474698. DOI : 10.34133/2019/8474698.

Bifunctional Organic Spacers for Formamidinium-Based Hybrid Dion-Jacobson Two-Dimensional Perovskite Solar Cells

Y. Li; J. V. Milic; A. Ummadisingu; J-Y. Seo; J-H. Im et al. 

Nano Letters. 2019-01-01. Vol. 19, num. 1, p. 150-157. DOI : 10.1021/acs.nanolett.8b03552.

Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics

I. Turkevych; S. Kazaoui; N. A. Belich; A. Y. Grishko; S. A. Fateev et al. 

Nature Nanotechnology. 2019-01-01. Vol. 14, num. 1, p. 57-63. DOI : 10.1038/s41565-018-0304-y.

2018

Kinetics of Ion-Exchange Reactions in Hybrid Organic-Inorganic Perovskite Thin Films Studied by In Situ Real-Time X-ray Scattering

A. Greco; A. Hinderhofer; M. I. Dar; N. Arora; J. Hagenlocher et al. 

Journal Of Physical Chemistry Letters. 2018-12-06. Vol. 9, num. 23, p. 6750-6754. DOI : 10.1021/acs.jpclett.8b02916.

Ionic liquid containing electron-rich, porous polyphosphazene nanoreactors catalyze the transformation of CO2 to carbonates

Z. Huang; J. G. Uranga; S. Zhou; H. Jia; Z. Fei et al. 

Journal Of Materials Chemistry A. 2018-11-14. Vol. 6, num. 42, p. 20916-20925. DOI : 10.1039/c8ta08856j.

High Open Circuit Voltage for Perovskite Solar Cells with S,Si-Heteropentacene-Based Hole Conductors

M. I. Dar; N. Arora; C. Steck; A. Mishra; M. H. Alotaibi et al. 

European Journal Of Inorganic Chemistry. 2018-11-08. num. 41, p. 4573-4578. DOI : 10.1002/ejic.201800680.

Hydrothermally processed CuCrO2 nanoparticles as an inorganic hole transporting material for low-cost perovskite solar cells with superior stability

S. Akin; Y. Liu; M. I. Dar; S. M. Zakeeruddin; M. Gratzel et al. 

Journal Of Materials Chemistry A. 2018-11-07. Vol. 6, num. 41, p. 20327-20337. DOI : 10.1039/c8ta07368f.

Addition of adamantylammonium iodide to hole transport layers enables highly efficient and electroluminescent perovskite solar cells

M. M. Tavakoli; W. Tress; J. V. Milic; D. Kubicki; L. Emsley et al. 

Energy & Environmental Science. 2018-11-01. Vol. 11, num. 11, p. 3310-3320. DOI : 10.1039/c8ee02404a.

Are pi-pi Interactions in Ionic Liquids Related to Conductivities?

Z. Fei; Z. Huang; F. F. Tirani; R. Scopelliti; P. J. Dyson 

Helvetica Chimica Acta. 2018-11-01. Vol. 101, num. 11, p. e1800137. DOI : 10.1002/hlca.201800137.

Illumination Time Dependent Learning in Dye Sensitized Solar Cells

H. N. Tsao; M. Gratzel 

Acs Applied Materials & Interfaces. 2018-10-31. Vol. 10, num. 43, p. 36602-36607. DOI : 10.1021/acsami.8b12027.

Electron-Affinity-Triggered Variations on the Optical and Electrical Properties of Dye Molecules Enabling Highly Efficient Dye-Sensitized Solar Cells

Y. Liu; Y. Cao; W. Zhang; M. Stojanovic; M. I. Dar et al. 

Angewandte Chemie-International Edition. 2018-10-22. Vol. 57, num. 43, p. 14125-14128. DOI : 10.1002/anie.201808609.

Stable and Efficient Organic Dye-Sensitized Solar Cell Based on Ionic Liquid Electrolyte

P. Wang; L. Yang; H. Wu; Y. Cao; J. Zhang et al. 

Joule. 2018-10-17. Vol. 2, num. 10, p. 2145-2153. DOI : 10.1016/j.joule.2018.07.023.

Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals

M. Li; R. Begum; J. Fu; Q. Xu; T. M. Koh et al. 

Nature Communications. 2018-10-10. Vol. 9, p. 4197. DOI : 10.1038/s41467-018-06596-1.

Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells

F. Zhang; D. Bi; N. Pellet; C. Xiao; Z. Li et al. 

Energy & Environmental Science. 2018-10-08. Vol. 11, num. 12, p. 3480-3490. DOI : 10.1039/C8EE02252F.

Conference Papers

2019

Solid-state NMR approaches to lead halide perovskites

D. Kubicki; D. Prochowicz; A. Hofstetter; M. Graetzel; L. Emsley 

2019-03-31. National Meeting of the American-Chemical-Society (ACS), Orlando, FL, Mar 31-Apr 04, 2019.

Experimental Generation and Time Multiplexing of Data-Carrying Nyquist Sinc Shaped Channels from a Single Microresonator-based Kerr Frequency Comb

F. Alishahi; A. Fallahpour; K. Zou; Y. Cao; A. Kordts et al. 

2019-01-01. Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, Mar 03-07, 2019.

Reviews

2019

New Strategies for Defect Passivation in High-Efficiency Perovskite Solar Cells

S. Akin; N. Arora; S. M. Zakeeruddin; M. Graetzel; R. H. Friend et al. 

Advanced Energy Materials. 2019-11-19.  p. 1903090. DOI : 10.1002/aenm.201903090.

Mechanoperovskites for Photovoltaic Applications: Preparation, Characterization, and Device Fabrication

D. Prochowicz; M. Saski; P. Yadav; M. Gratzel; J. Lewinski 

Accounts Of Chemical Research. 2019-11-01. Vol. 52, num. 11, p. 3233-3243. DOI : 10.1021/acs.accounts.9b00454.

Review on Recent Progress of All-Inorganic Metal Halide Perovskites and Solar Cells

W. Xiang; W. Tress 

Advanced Materials. 2019-09-03.  p. 1902851. DOI : 10.1002/adma.201902851.

Metal Coordination Complexes as Redox Mediators in Regenerative Dye-Sensitized Solar Cells

Y. Saygili; M. Stojanovic; N. Flores-Diaz; S. M. Zakeeruddin; N. Vlachopoulos et al. 

Inorganics. 2019-02-26. Vol. 7, num. 3, p. 30. DOI : 10.3390/inorganics7030030.

2018

Reduced Graphene Oxide as a Stabilizing Agent in Perovskite Solar Cells

J. V. Milic; N. Arora; M. I. Dar; S. M. Zakeeruddin; M. Gratzel 

Advanced Materials Interfaces. 2018-11-23. Vol. 5, num. 22, p. 1800416. DOI : 10.1002/admi.201800416.

Patents

2019

Crystal defects mitigating agents for high power conversion efficiency and stability of perovskite photovoltaic devices

M. M. Tavakoli; Y. Liu; S. M. Zakeeruddin; M. Graetzel 

WO2019145841; EP3518301.

2019.