Publications

Journal Articles

2019

Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells

E. A. Alharbi; A. Y. Alyamani; D. J. Kubicki; A. R. Uhl; B. J. Walder et al. 

Nature Communications. 2019-07-08. Vol. 10, p. 3008. DOI : 10.1038/s41467-019-10985-5.

Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions

W. Tress; K. Domanski; B. Carlsen; A. Agarwalla; E. A. Alharbi et al. 

Nature Energy. 2019-07-01. Vol. 4, num. 7, p. 568-574. DOI : 10.1038/s41560-019-0400-8.

Power output stabilizing feature in perovskite solar cells at operating condition: Selective contact-dependent charge recombination dynamics

H-S. Kim; J-Y. Seo; S. Akin; E. Simon; M. Fleischer et al. 

Nano Energy. 2019-07-01. Vol. 61, p. 126-131. DOI : 10.1016/j.nanoen.2019.04.051.

Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%

Y. Liu; S. Akin; L. Pan; R. Uchida; N. Arora et al. 

Science Advances. 2019-06-01. Vol. 5, num. 6, p. eaaw2543. DOI : 10.1126/sciadv.aaw2543.

Electrochemical Characterization of CuSCN Hole-Extracting Thin Films for Perovskite Photovoltaics

L. Kavan; Z. V. Zivcova; P. Hubik; N. Arora; M. I. Dar et al. 

Acs Applied Energy Materials. 2019-06-01. Vol. 2, num. 6, p. 4264-4273. DOI : 10.1021/acsaem.9b00496.

Supramolecular Engineering for Formamidinium-Based Layered 2D Perovskite Solar Cells: Structural Complexity and Dynamics Revealed by Solid-State NMR Spectroscopy

J. V. Milic; J-H. Im; D. J. Kubicki; A. Ummadisingu; J-Y. Seo et al. 

Advanced Energy Materials. 2019-05-23. Vol. 9, num. 20, p. 1900284. DOI : 10.1002/aenm.201900284.

Dual effect of humidity on cesium lead bromide: enhancement and degradation of perovskite films

D. Di Girolamo; M. I. Dar; D. Dini; L. Gontrani; R. Caminiti et al. 

Journal Of Materials Chemistry A. 2019-05-21. Vol. 7, num. 19, p. 12292-12302. DOI : 10.1039/c9ta00715f.

A tandem redox system with a cobalt complex and 2-azaadamantane-N-oxyl for fast dye regeneration and open circuit voltages exceeding 1 V

N. Flores-Diaz; H-w. Bahng; N. Vlachopoulos; J-E. Moser; S. M. Zakeeruddin et al. 

Journal Of Materials Chemistry A. 2019-05-14. Vol. 7, num. 18, p. 10998-11006. DOI : 10.1039/c9ta00490d.

Influence of Alkoxy Chain Length on the Properties of Two-Dimensionally Expanded Azulene-Core-Based Hole-Transporting Materials for Efficient Perovskite Solar Cells

M. A. Truong; J. Lee; T. Nakamura; J-Y. Seo; M. Jung et al. 

Chemistry-A European Journal. 2019-05-10. Vol. 25, num. 27, p. 6741-6752. DOI : 10.1002/chem.201806317.

Toward an alternative approach for the preparation of low-temperature titanium dioxide blocking underlayers for perovskite solar cells

S. H. Aung; L. Zhao; K. Nonomura; T. Z. Oo; S. M. Zakeeruddin et al. 

Journal Of Materials Chemistry A. 2019-05-07. Vol. 7, num. 17, p. 10729-10738. DOI : 10.1039/c8ta04246b.

Perovskite Solar Cells Based on Oligotriarylamine Hexaarylbenzene as Hole-Transporting Materials

M. Shasti; S. F. Volker; S. Collavini; S. Valero; F. Ruiperez et al. 

Organic Letters. 2019-05-03. Vol. 21, num. 9, p. 3261-3264. DOI : 10.1021/acs.orglett.9b00988.

SnS Quantum Dots as Hole Transporter of Perovskite Solar Cells

Y. Li; Z. Wang; D. Ren; Y. Liu; A. Zheng et al. 

Acs Applied Energy Materials. 2019-05-01. Vol. 2, num. 5, p. 3822-3829. DOI : 10.1021/acsaem.9b00510.

A partially-planarised hole-transporting quart-p-phenylene for perovskite solar cells

J. P. Mora-Fuentes; D. Cortizo-Lacalle; S. Collavini; K. Strutynski; W. R. Tress et al. 

Journal Of Materials Chemistry C. 2019-04-21. Vol. 7, num. 15, p. 4332-4335. DOI : 10.1039/c9tc01076a.

Boosting the efficiency of aqueous solar cells: A photoelectrochemical estimation on the effectiveness of TiCl4 treatment

F. Bella; S. Galliano; G. Piana; G. Giacona; G. Viscardi et al. 

Electrochimica Acta. 2019-04-10. Vol. 302, p. 31-37. DOI : 10.1016/j.electacta.2019.01.180.

Multifunctional Molecular Modulation for Efficient and Stable Hybrid Perovskite Solar Cells

J. V. Milic; D. J. Kubicki; L. Emsley; M. Gratzel 

Chimia. 2019-04-01. Vol. 73, num. 4, p. 317-323. DOI : 10.2533/chimia.2019.317.

Dopant-Free Hole-Transporting Polymers for Efficient and Stable Perovskite Solar Cells

S. Valero; S. Collavini; S. F. Volker; M. Saliba; W. R. Tress et al. 

Macromolecules. 2019-03-26. Vol. 52, num. 6, p. 2243-2254. DOI : 10.1021/acs.macromol.9b00165.

An ultrathin cobalt-iron oxide catalyst for water oxidation on nanostructured hematite photoanodes

L. Liardet; J. E. Katz; J. Luo; M. Gratzel; X. Hu 

Journal Of Materials Chemistry A. 2019-03-21. Vol. 7, num. 11, p. 6012-6020. DOI : 10.1039/c8ta12295d.

Engineering of Perovskite Materials Based on Formamidinium and Cesium Hybridization for High-Efficiency Solar Cells

D. Prochowicz; R. Runjhun; M. M. Tavakoli; P. Yadav; M. Saski et al. 

Chemistry Of Materials. 2019-03-12. Vol. 31, num. 5, p. 1620-1627. DOI : 10.1021/acs.chemmater.8b04871.

Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites (vol 10, 484, 2019)

B. Wu; H. Yuan; Q. Xu; J. A. Steele; D. Giovanni et al. 

Nature Communications. 2019-03-05. Vol. 10, p. 1145. DOI : 10.1038/s41467-019-09172-3.

Site-selective Synthesis of -[70]PCBM-like Fullerenes: Efficient Application in Perovskite Solar Cells

S. Vidal; M. Izquierdo; S. Filippone; I. Fernandez; S. Akin et al. 

Chemistry-A European Journal. 2019-03-01. Vol. 25, num. 13, p. 3224-3228. DOI : 10.1002/chem.201806053.

Design, synthesis and characterization of 1,8-naphthalimide based fullerene derivative as electron transport material for inverted perovskite solar cells

G. Sivakumar; A. H. Bertoni; H-S. Kim; P. E. Marchezi; D. R. Bernardo et al. 

Synthetic Metals. 2019-03-01. Vol. 249, p. 25-30. DOI : 10.1016/j.synthmet.2019.01.014.

Photoelectrocatalytic arene C–H amination

L. Zhang; L. Liardet; J. Luo; D. Ren; M. Grätzel et al. 

Nature Catalysis. 2019-02-18. Vol. 2, num. 4, p. 366-373. DOI : 10.1038/s41929-019-0231-9.

Doping and phase segregation in Mn2+- and Co2+-doped lead halide perovskites from Cs-133 and H-1 NMR relaxation enhancement

D. J. Kubicki; D. Prochowicz; A. Pinon; G. Stevanato; A. Hofstetter et al. 

Journal of Materials Chemistry A. 2019-02-07. Vol. 7, num. 5, p. 2326-2333. DOI : 10.1039/c8ta11457a.

Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices

M. Abdi-Jalebi; M. I. Dar; S. P. Senanayak; A. Sadhanala; Z. Andaji-Garmaroudi et al. 

Science Advances. 2019-02-01. Vol. 5, num. 2, p. eaav2012. DOI : 10.1126/sciadv.aav2012.

PbZrTiO3 ferroelectric oxide as an electron extraction material for stable halide perovskite solar cells

A. Perez-Tomas; H. Xie; Z. Wang; H-S. Kim; I. Shirley et al. 

Sustainable Energy & Fuels. 2019-02-01. Vol. 3, num. 2, p. 382-389. DOI : 10.1039/c8se00451j.

Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites

B. Wu; H. Yuan; Q. Xu; J. A. Steele; D. Giovanni et al. 

Nature Communications. 2019-01-29. Vol. 10, p. 484. DOI : 10.1038/s41467-019-08326-7.

A peri-Xanthenoxanthene Centered Columnar-Stacking Organic Semiconductor for Efficient, Photothermally Stable Perovskite Solar Cells

N. Xu; Y. Li; R. Wu; R. Zhu; J. Zhang et al. 

Chemistry-A European Journal. 2019-01-18. Vol. 25, num. 4, p. 945-948. DOI : 10.1002/chem.201806015.

Synergistic Crystal and Interface Engineering for Efficient and Stable Perovskite Photovoltaics

M. M. Tavakoli; M. Saliba; P. Yadav; P. Holzhey; A. Hagfeldt et al. 

Advanced Energy Materials. 2019-01-03. Vol. 9, num. 1, p. 1802646. DOI : 10.1002/aenm.201802646.

Bifunctional Organic Spacers for Formamidinium-Based Hybrid Dion-Jacobson Two-Dimensional Perovskite Solar Cells

Y. Li; J. V. Milic; A. Ummadisingu; J-Y. Seo; J-H. Im et al. 

Nano Letters. 2019-01-01. Vol. 19, num. 1, p. 150-157. DOI : 10.1021/acs.nanolett.8b03552.

Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics

I. Turkevych; S. Kazaoui; N. A. Belich; A. Y. Grishko; S. A. Fateev et al. 

Nature Nanotechnology. 2019-01-01. Vol. 14, num. 1, p. 57-63. DOI : 10.1038/s41565-018-0304-y.

2018

Kinetics of Ion-Exchange Reactions in Hybrid Organic-Inorganic Perovskite Thin Films Studied by In Situ Real-Time X-ray Scattering

A. Greco; A. Hinderhofer; M. I. Dar; N. Arora; J. Hagenlocher et al. 

Journal Of Physical Chemistry Letters. 2018-12-06. Vol. 9, num. 23, p. 6750-6754. DOI : 10.1021/acs.jpclett.8b02916.

High Open Circuit Voltage for Perovskite Solar Cells with S,Si-Heteropentacene-Based Hole Conductors

M. I. Dar; N. Arora; C. Steck; A. Mishra; M. H. Alotaibi et al. 

European Journal Of Inorganic Chemistry. 2018-11-08. num. 41, p. 4573-4578. DOI : 10.1002/ejic.201800680.

Hydrothermally processed CuCrO2 nanoparticles as an inorganic hole transporting material for low-cost perovskite solar cells with superior stability

S. Akin; Y. Liu; M. I. Dar; S. M. Zakeeruddin; M. Gratzel et al. 

Journal Of Materials Chemistry A. 2018-11-07. Vol. 6, num. 41, p. 20327-20337. DOI : 10.1039/c8ta07368f.

Illumination Time Dependent Learning in Dye Sensitized Solar Cells

H. N. Tsao; M. Gratzel 

Acs Applied Materials & Interfaces. 2018-10-31. Vol. 10, num. 43, p. 36602-36607. DOI : 10.1021/acsami.8b12027.

Electron-Affinity-Triggered Variations on the Optical and Electrical Properties of Dye Molecules Enabling Highly Efficient Dye-Sensitized Solar Cells

Y. Liu; Y. Cao; W. Zhang; M. Stojanovic; M. I. Dar et al. 

Angewandte Chemie-International Edition. 2018-10-22. Vol. 57, num. 43, p. 14125-14128. DOI : 10.1002/anie.201808609.

Stable and Efficient Organic Dye-Sensitized Solar Cell Based on Ionic Liquid Electrolyte

P. Wang; L. Yang; H. Wu; Y. Cao; J. Zhang et al. 

Joule. 2018-10-17. Vol. 2, num. 10, p. 2145-2153. DOI : 10.1016/j.joule.2018.07.023.

Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals

M. Li; R. Begum; J. Fu; Q. Xu; T. M. Koh et al. 

Nature Communications. 2018-10-10. Vol. 9, p. 4197. DOI : 10.1038/s41467-018-06596-1.

Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells

F. Zhang; D. Bi; N. Pellet; C. Xiao; Z. Li et al. 

Energy & Environmental Science. 2018-10-08. Vol. 11, num. 12, p. 3480-3490. DOI : 10.1039/C8EE02252F.

Novel p-dopant toward highly efficient and stable perovskite solar cells

J-Y. Seo; H-S. Kim; S. Akin; M. Stojanovic; E. Simon et al. 

Energy & Environmental Science. 2018-10-01. Vol. 11, num. 10, p. 2985-2992. DOI : 10.1039/c8ee01500g.

Slow CH3NH3+ Diffusion in CH3NH3PbI3 under Light Measured by Solid-State NMR and Tracer Diffusion

A. Senocrate; I. Moudrakovski; T. Acartuerk; R. Merkle; G. Y. Kim et al. 

Journal Of Physical Chemistry C. 2018-09-27. Vol. 122, num. 38, p. 21803-21806. DOI : 10.1021/acs.jpcc.8b06814.

Insights about the Absence of Rb Cation from the 3D Perovskite Lattice: Effect on the Structural, Morphological, and Photophysical Properties and Photovoltaic Performance

R. Uchida; S. Binet; N. Arora; G. Jacopin; M. H. Alotaibi et al. 

Small. 2018-09-06. Vol. 14, num. 36, p. UNSP 1802033. DOI : 10.1002/smll.201802033.

Template synthesis of methylammonium lead iodide in the matrix of anodic titanium dioxide via the direct conversion of electrodeposited elemental lead

N. A. Belich; A. S. Tychinina; V. V. Kuznetsov; E. A. Goodilin; M. Gratzel et al. 

Mendeleev Communications. 2018-09-01. Vol. 28, num. 5, p. 487-489. DOI : 10.1016/j.mencom.2018.09.011.

How the formation of interfacial charge causes hysteresis in perovskite solar cells

S. A. L. Weber; I. M. Hermes; S-H. Turren-Cruz; C. Gort; V. W. Bergmann et al. 

Energy & Environmental Science. 2018-09-01. Vol. 11, num. 9, p. 2404-2413. DOI : 10.1039/c8ee01447g.

Understanding the effect of chlorobenzene and isopropanol anti-solvent treatments on the recombination and interfacial charge accumulation in efficient planar perovskite solar cells

D. Prochowicz; M. M. Tavakoli; A. Solanki; T. W. Goh; K. Pandey et al. 

Journal Of Materials Chemistry A. 2018-08-07. Vol. 6, num. 29, p. 14307-14314. DOI : 10.1039/c8ta03782e.

Greener, Nonhalogenated Solvent Systems for Highly Efficient Perovskite Solar Cells

M. Yavari; M. Mazloum-Ardakani; S. Gholipour; M. M. Tavakoli; S-H. Turren-Cruz et al. 

Advanced Energy Materials. 2018-07-25. Vol. 8, num. 21, p. 1800177. DOI : 10.1002/aenm.201800177.

Formation of Stable Mixed Guanidinium–Methylammonium Phases with Exceptionally Long Carrier Lifetimes for High-Efficiency Lead Iodide-Based Perovskite Photovoltaics

D. J. Kubicki; D. Prochowicz; A. Hofstetter; M. Saski; P. Yadav et al. 

Journal of the American Chemical Society. 2018-02-21. Vol. 140, num. 9, p. 3345-3351. DOI : 10.1021/jacs.7b12860.

Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices

L. Pan; J. H. Kim; M. T. Mayer; M-K. Son; A. Ummadisingu et al. 

Nature Catalysis. 2018. Vol. 1, num. 6, p. 412-420. DOI : 10.1038/s41929-018-0077-6.

Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability

D. Bi; X. Li; J. V. Milić; D. J. Kubicki; N. Pellet et al. 

Nature Communications. 2018. Vol. 9, num. 1, p. 4482. DOI : 10.1038/s41467-018-06709-w.

Ti/Co-S catalyst covered amorphous Si-based photocathodes with high photovoltage for the HER in non-acid environments

Q. Zhang; T. Li; J. Luo; B. Liu; J. Liang et al. 

JOURNAL OF MATERIALS CHEMISTRY A. 2018. Vol. 6, num. 3, p. 811-816. DOI : 10.1039/c7ta09569d.

Temperature dependent two-photon photoluminescence of CH3NH3PbBr3: structural phase and exciton to free carrier transition

H. Linnenbank; M. Saliba; L. Gui; B. Metzger; S. Tikhodeev et al. 

OPTICAL MATERIALS EXPRESS. 2018. Vol. 8, num. 3, p. 511-521. DOI : 10.1364/OME.8.000511.

Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells

K. Domanski; E. Alharbi; A. Hagfeldt; M. Gratzel; W. Tress 

NATURE ENERGY. 2018. Vol. 3, num. 1, p. 61-67. DOI : 10.1038/s41560-017-0060-5.

Solution-Processed Cu2S Photocathodes for Photoelectrochemical Water Splitting

Y. Yu; L. Pan; M. Son; M. Mayer; W. Zhang et al. 

ACS ENERGY LETTERS. 2018. Vol. 3, num. 4, p. 760-766. DOI : 10.1021/acsenergylett.7b01326.

Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade

X. Chin; A. Perumal; A. Bruno; N. Yantara; S. Veldhuis et al. 

ENERGY AND ENVIRONMENTAL SCIENCE. 2018. Vol. 11, num. 7, p. 1770-1778. DOI : 10.1039/c8ee00293b.

Revealing the detailed path of sequential deposition for metal halide perovskite formation

A. Ummadisingu; M. Gratzel 

SCIENCE ADVANCES. 2018. Vol. 4, num. 2. DOI : 10.1126/sciadv.1701402.

Quantum Chemical Study of the Water Exchange Mechanism of the Neptunyl(VI) and -(V) Aqua Ions

F. Rotzinger 

Inorganic Chemistry. 2018. Vol. 57, num. 5, p. 2425-2431. DOI : 10.1021/acs.inorgchem.7b02373.

Poly(ethylene glycol)-[60]Fullerene-Based Materials for Perovskite Solar Cells with Improved Moisture Resistance and Reduced Hysteresis

S. Collavini; M. Saliba; W. Tress; P. Holzhey; S. Volker et al. 

CHEMSUSCHEM. 2018. Vol. 11, num. 6, p. 1032-1039. DOI : 10.1002/cssc.201702265.

Planar Perovskite Solar Cells with High Open-Circuit Voltage Containing a Supramolecular Iron Complex as Hole Transport Material Dopant

Y. Saygili; S. Turren-Cruz; S. Olthof; B. Saes; I. Pehlivan et al. 

CHEMPHYSCHEM. 2018. Vol. 19, num. 11, p. 1363-1370. DOI : 10.1002/cphc.201800032.

Phase Segregation in Potassium-Doped Lead Halide Perovskites from K-39 Solid-State NMR at 21.1 T

D. Kubicki; D. Prochowicz; A. Hofstetter; S. Zakeeruddin; M. Gratzel et al. 

Journal of the American Chemical Society. 2018. Vol. 140, num. 23, p. 7232-7238. DOI : 10.1021/jacs.8b03191.

Perovskite Solar Cells: From the Laboratory to the Assembly Line

A. Abate; J. Correa-Baena; M. Saliba; M. Su'ait; F. Bella 

Chemistry-A European Journal. 2018. Vol. 24, num. 13, p. 3083-3100. DOI : 10.1002/chem.201704507.

Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance

M. Saliba; J. Correa-Baena; M. Gratzel; A. Hagfeldt; A. Abate 

Angewandte Chemie-International Edition. 2018. Vol. 57, num. 10, p. 2554-2569. DOI : 10.1002/anie.201703226.

Organic dyes containing fused acenes as building blocks: Optical, electrochemical and photovoltaic properties

P. Gao; H. Tsao; J. Teuscher; M. Gratzel 

CHINESE CHEMICAL LETTERS. 2018. Vol. 29, num. 2, p. 289-292. DOI : 10.1016/j.cclet.2017.09.056.

One-step mechanochemical incorporation of an insoluble cesium additive for high performance planar heterojunction solar cells

D. Prochowicz; P. Yadav; M. Saliba; D. Kubicki; M. Tavakoli et al. 

NANO ENERGY. 2018. Vol. 49, p. 523-528. DOI : 10.1016/j.nanoen.2018.05.010.

Molecular Design of Efficient Organic D-A-pi-A Dye Featuring Triphenylamine as Donor Fragment for Application in Dye-Sensitized Solar Cells

P. Ferdowsi; Y. Saygili; W. Zhang; T. Edvinson; L. Kavan et al. 

CHEMSUSCHEM. 2018. Vol. 11, num. 2, p. 494-502. DOI : 10.1002/cssc.201701949.

Methodologies toward Highly Efficient Perovskite Solar Cells

S. Seok; M. Gratzel; N. Park 

SMALL. 2018. Vol. 14, num. 20, p. 1704177. DOI : 10.1002/smll.201704177.

Metal-Halide Perovskites for Gate Dielectrics in Field-Effect Transistors and Photodetectors Enabled by PMMA Lift-Off Process

A. Daus; C. Roldan-Carmona; K. Domanski; S. Knobelspies; G. Cantarella et al. 

ADVANCED MATERIALS. 2018. Vol. 30, num. 23, p. 1707412. DOI : 10.1002/adma.201707412.

Mesoscopic Oxide Double Layer as Electron Specific Contact for Highly Efficient and UV Stable Perovskite Photovoltaics

M. Tavakoli; F. Giordano; S. Zakeeruddin; M. Gratzel 

NANO LETTERS. 2018. Vol. 18, num. 4, p. 2428-2434. DOI : 10.1021/acs.nanolett.7b05469.

Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells

E. Anaraki; A. Kermanpur; M. Mayer; L. Steier; T. Ahmed et al. 

ACS ENERGY LETTERS. 2018. Vol. 3, num. 4, p. 773-778. DOI : 10.1021/acsenergylett.8b00055.

Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells

N. Shlenskaya; N. Belich; M. Gratzel; E. Goodilin; A. Tarasov 

JOURNAL OF MATERIALS CHEMISTRY A. 2018. Vol. 6, num. 4, p. 1780-1786. DOI : 10.1039/c7ta10217h.

Large-Grain Tin-Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique

M. Tavakoli; S. Zakeeruddin; M. Gratzel; Z. Fan 

ADVANCED MATERIALS. 2018. Vol. 30, num. 11. DOI : 10.1002/adma.201705998.

Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition

G. Kim; A. Senocrate; T. Yang; G. Gregori; M. Gratzel et al. 

NATURE MATERIALS. 2018. Vol. 17, num. 5, p. 445-+. DOI : 10.1038/s41563-018-0038-0.

Correction: Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells (vol 11, pg 151, 2018)

W. Tress; M. Yavari; K. Domanski; P. Yadav; B. Niesen et al. 

ENERGY AND ENVIRONMENTAL SCIENCE. 2018. Vol. 11, num. 3, p. 715-715. DOI : 10.1039/c8ee90011f.

Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells

W. Tress; M. Yavari; K. Domanski; P. Yadav; B. Niesen et al. 

ENERGY AND ENVIRONMENTAL SCIENCE. 2018. Vol. 11, num. 1, p. 151-165. DOI : 10.1039/c7ee02415k.

Interaction of oxygen with halide perovskites

A. Senocrate; T. Acarturk; G. Kim; R. Merkle; U. Starke et al. 

JOURNAL OF MATERIALS CHEMISTRY A. 2018. Vol. 6, num. 23, p. 10847-10855. DOI : 10.1039/c8ta04537b.

Influence of the Nature of A Cation on Dynamics of Charge Transfer Processes in Perovskite Solar Cells

P. Yadav; M. Alotaibi; N. Arora; M. Dar; S. Zakeeruddin et al. 

ADVANCED FUNCTIONAL MATERIALS. 2018. Vol. 28, num. 8. DOI : 10.1002/adfm.201706073.

Influence of redox electrolyte on the device performance of phenothiazine based dye sensitized solar cells

R. El-Shishtawy; J. Decoppet; F. Al-Zahrani; Y. Cao; S. Khan et al. 

NEW JOURNAL OF CHEMISTRY. 2018. Vol. 42, num. 11, p. 9045-9050. DOI : 10.1039/c8nj00803e.

Improving the stability and performance of perovskite solar cells via off-the-shelf post-device ligand treatment

H. Zhang; X. Ren; X. Chen; J. Mao; J. Cheng et al. 

ENERGY AND ENVIRONMENTAL SCIENCE. 2018. Vol. 11, num. 8, p. 2253-2262. DOI : 10.1039/c8ee00580j.

Impact of Peripheral Groups on Phenothiazine-Based Hole-Transporting Materials for Perovskite Solar Cells

F. Zhang; S. Wang; H. Zhu; X. Liu; H. Liu et al. 

ACS ENERGY LETTERS. 2018. Vol. 3, num. 5, p. 1145-1152. DOI : 10.1021/acsenergylett.8b00395.

Highly Efficient Perovskite Solar Cells with Gradient Bilayer Electron Transport Materials

X. Gong; Q. Sun; S. Liu; P. Liao; Y. Shen et al. 

NANO LETTERS. 2018. Vol. 18, num. 6, p. 3969-3977. DOI : 10.1021/acs.nanolett.8b01440.

Finely tuning electrolytes and photoanodes in aqueous solar cells by experimental design

S. Galliano; F. Bella; G. Piana; G. Giacona; G. Viscardi et al. 

SOLAR ENERGY. 2018. Vol. 163, p. 251-255. DOI : 10.1016/j.solener.2018.02.009.

Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells

S. Turren-Cruz; M. Saliba; M. Mayer; H. Juarez-Santiesteban; X. Mathew et al. 

ENERGY AND ENVIRONMENTAL SCIENCE. 2018. Vol. 11, num. 1, p. 78-86. DOI : 10.1039/c7ee02901b.

Elucidation of Charge Recombination and Accumulation Mechanism in Mixed Perovskite Solar Cells

P. Yadav; S. Turren-Cruz; D. Prochowicz; M. Tavakoli; K. Pandey et al. 

JOURNAL OF PHYSICAL CHEMISTRY C. 2018. Vol. 122, num. 27, p. 15149-15154. DOI : 10.1021/acs.jpcc.8b03948.

Effect of Rubidium for Thermal Stability of Triple-cation Perovskite Solar Cells

T. Matsui; T. Yokoyama; T. Negami; T. Sekiguchi; M. Saliba et al. 

CHEMISTRY LETTERS. 2018. Vol. 47, num. 6, p. 814-816. DOI : 10.1246/cl.180211.

Effect of Cation Composition on the Mechanical Stability of Perovskite Solar Cells

N. Rolston; A. Printz; J. Tracy; H. Weerasinghe; D. Vak et al. 

ADVANCED ENERGY MATERIALS. 2018. Vol. 8, num. 9. DOI : 10.1002/aenm.201702116.

Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics

Y. Cao; Y. Liu; S. Zakeeruddin; A. Hagfeldt; M. Gratzel 

JOULE. 2018. Vol. 2, num. 6, p. 1108-1117. DOI : 10.1016/j.joule.2018.03.017.

Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations

M. Abdi-Jalebi; M. Pazoki; B. Philippe; M. Dar; M. Alsari et al. 

ACS NANO. 2018. Vol. 12, num. 7, p. 7301-7311. DOI : 10.1021/acsnano.8b03586.

Charge carrier chemistry in methylammonium lead iodide

A. Senocrate; T. Yang; G. Gregori; G. Kim; M. Gratzel et al. 

SOLID STATE IONICS. 2018. Vol. 321, p. 69-74. DOI : 10.1016/j.ssi.2018.03.029.

Carbon Nanoparticles in High-Performance Perovskite Solar Cells

M. Yavari; M. Mazloum-Ardakani; S. Gholipour; N. Marinova; J. Delgado et al. 

ADVANCED ENERGY MATERIALS. 2018. Vol. 8, num. 12. DOI : 10.1002/aenm.201702719.

Boosting the Efficiency of Perovskite Solar Cells with CsBr-Modified Mesoporous TiO2 Beads as Electron-Selective Contact

J. Seo; R. Uchida; H. Kim; Y. Saygili; J. Luo et al. 

ADVANCED FUNCTIONAL MATERIALS. 2018. Vol. 28, num. 15. DOI : 10.1002/adfm.201705763.

An investigation of the roles furan versus thiophene t -bridges play in donor -a -acceptor porphyrin based DSSCst

M. Cariello; S. Abdalhadi; P. Yadav; J. Decoppet; S. Zakeeruddin et al. 

Dalton Transactions. 2018. Vol. 47, num. 18, p. 6549-6556. DOI : 10.1039/c8dt00413g.

Alternative bases to 4-tert-butylpyridine for dye-sensitized solar cells employing copper redox mediator

P. Ferdowsi; Y. Saygili; S. Zakeeruddin; J. Mokhtari; M. Gratzel et al. 

ELECTROCHIMICA ACTA. 2018. Vol. 265, p. 194-201. DOI : 10.1016/j.electacta.2018.01.142.

Adamantanes Enhance the Photovoltaic Performance and Operational Stability of Perovskite Solar Cells by Effective Mitigation of Interfacial Defect States

M. Tavakoli; D. Bi; L. Pan; A. Hagfeldt; S. Zakeeruddin et al. 

ADVANCED ENERGY MATERIALS. 2018. Vol. 8, num. 19. DOI : 10.1002/aenm.201800275.

A Stable Blue Photosensitizer for Color Palette of Dye-Sensitized Solar Cells Reaching 12.6% Efficiency

Y. Ren; D. Sun; Y. Cao; H. Tsao; Y. Yuan et al. 

Journal of the American Chemical Society. 2018. Vol. 140, num. 7, p. 2405-2408. DOI : 10.1021/jacs.7b12348.

A Promising Beginning for Perovskite Nanocrystals: A Nano Letters Virtual Issue

S. Brittman; J. Luo 

NANO LETTERS. 2018. Vol. 18, num. 5, p. 2747-2750. DOI : 10.1021/acs.nanolett.8b01420.

Conference Papers

2018

From Organics to Photochemistry - GDCh-Meetings in September

T. Bach; M. Gratzel 

2018. 

Reviews

2019

Metal Coordination Complexes as Redox Mediators in Regenerative Dye-Sensitized Solar Cells

Y. Saygili; M. Stojanovic; N. Flores-Diaz; S. M. Zakeeruddin; N. Vlachopoulos et al. 

Inorganics. 2019-02-26. Vol. 7, num. 3, p. 30. DOI : 10.3390/inorganics7030030.

2018

Reduced Graphene Oxide as a Stabilizing Agent in Perovskite Solar Cells

J. V. Milic; N. Arora; M. I. Dar; S. M. Zakeeruddin; M. Gratzel 

Advanced Materials Interfaces. 2018-11-23. Vol. 5, num. 22, p. 1800416. DOI : 10.1002/admi.201800416.

Theses

2018

Defect chemistry of methylammonium lead iodide

A. Senocrate / J. Maier; M. Graetzel (Dir.)  

Lausanne: EPFL, 2018. DOI : 10.5075/epfl-thesis-7292.

Composition and Interface Engineering of Organic-Inorganic Hybrid Perovskites to Improve Photovoltaic Performance and Stability

K. T. Cho / M. K. Nazeeruddin; M. Graetzel (Dir.)  

Lausanne: EPFL, 2018. DOI : 10.5075/epfl-thesis-9071.

Molecular Engineering Towards High Efficiency Perovskite Solar Cells

J. Seo / M. Graetzel; S. M. Zakeeruddin (Dir.)  

Lausanne: EPFL, 2018. DOI : 10.5075/epfl-thesis-8625.

Compositional Characterization of Organo-Lead tri-Halide Perovskite Solar Cells

P. Gratia / M. K. Nazeeruddin; M. Graetzel (Dir.)  

Lausanne: EPFL, 2018. DOI : 10.5075/epfl-thesis-8410.