Publications

2024

Performance polyamides built on a sustainable carbohydrate core

L. P. Manker; M. A. C. Hedou; C. Broggi; M. J. F. Jones; K. Kortsen et al. 

Nature Sustainability. 2024-03-13. DOI : 10.1038/s41893-024-01298-7.

Prioritizing Mentorship as Scientific Leaders

J. M. Deng; S. E. Ahmed; E. Awoonor-Williams; P. Banerjee; M. H. Barecka et al. 

Acs Central Science. 2024-01-10. Vol. 10, num. 2, p. 209-213. DOI : 10.1021/acscentsci.3c00500.

2023

Synergistic interactions between PtRu catalyst and nitrogen-doped carbon support boost hydrogen oxidation

W. Ni; J. L. Meibom; N. Ul Hassan; M. Chang; Y-C. Chu et al. 

Nature Catalysis. 2023-08-31. Vol. 6, p. 773–783. DOI : 10.1038/s41929-023-01007-1.

Mg-incorporated sorbent for efficient removal of trace CO from H2 gas

G. Bang; S. Jin; H. Kim; K-M. Kim; C-H. Lee 

Nature Communications. 2023-11-03. Vol. 14, num. 1, p. 7045. DOI : 10.1038/s41467-023-42871-6.

Sustainable Materials: Production Methods and End-of-life Strategies

A. Ghosh; R. Buser; F. Heroguel; J. Luterbacher 

Chimia. 2023-12-01. Vol. 77, num. 12, p. 848-857. DOI : 10.2533/chimia.2023.848.

Selecting Suitable Near-Native Lignins for Research

M. Chen; J. Ralph; J. S. Luterbacher; Q-S. Shi; X. Xie 

Journal Of Agricultural And Food Chemistry. 2023-12-08. Vol. 71, num. 51, p. 20751-20761. DOI : 10.1021/acs.jafc.3c04973.

Integrated Conversion of Lignocellulosic Biomass to Bio-Based Amphiphiles using a Functionalization-Defunctionalization Approach

S. Sun; G. De Angelis; S. Bertella; M. J. F. Jones; G. R. Dick et al. 

Angewandte Chemie-International Edition. 2023-12-21. Vol. 63, num. 5. DOI : 10.1002/anie.202312823.

Tuning the Mechanical Properties of Poly(butylene xylosediglyoxylate) via Compounding Strategies

M. Vieli; M. A. C. Hedou; P. B. V. Scholten; A. Demongeot; L. P. Manker et al. 

Acs Applied Polymer Materials. 2023-11-07. Vol. 5, num. 12, p. 9732-9741. DOI : 10.1021/acsapm.3c01219.

Kinetic Network Modeling of the Catalytic Upgrading of Biomass’s Acetate Fraction to Aromatics

A. M. I. Elkhaiary; B. Rozmyslowicz; J. H. Yeap; M. H. Studer; J. S. Luterbacher 

Energy & Fuels. 2023-10-05. Vol. 37, num. 20, p. 16172-16180. DOI : 10.1021/acs.energyfuels.3c02300.

Lignin Hydrogenolysis: Phenolic Monomers from Lignin and Associated Phenolates across Plant Clades

M. Chen; Y. Li; F. Lu; J. S. S. Luterbacher; J. Ralph 

Acs Sustainable Chemistry & Engineering. 2023-06-28. Vol. 11, num. 27, p. 10001-10017. DOI : 10.1021/acssuschemeng.3c01320.

Current strategies for industrial plastic production from non-edible biomass

L. P. Manker; M. J. Jones; S. Bertella; J. B. de Bueren; J. S. Luterbacher 

Current Opinion In Green And Sustainable Chemistry. 2023-03-04. Vol. 41, p. 100780. DOI : 10.1016/j.cogsc.2023.100780.

Sinter-Resistant Nickel Catalyst for Lignin Hydrogenolysis Achieved by Liquid Phase Atomic Layer Deposition of Alumina

F. Talebkeikhah; S. Sun; J. S. Luterbacher 

Advanced Energy Materials. 2023-01-22. DOI : 10.1002/aenm.202203377.

Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach

J. Y. Kim; D. Kim; Z. Li; C. Dariva; Y. Cao et al. 

Energy. 2023-01-15. Vol. 263, p. 125900. DOI : 10.1016/j.energy.2022.125900.

High-throughput computational solvent screening for lignocellulosic biomass processing

L. Koenig-Mattern; A. O. Komarova; A. Ghosh; S. Linke; L. K. Rihko-Struckmann et al. 

Chemical Engineering Journal. 2023-01-15. Vol. 452, p. 139476. DOI : 10.1016/j.cej.2022.139476.

2022

From Non-edible Biomass to Performance Thermoplastics with Sustainable End-of-life

L. P. Manker; J. S. Luterbacher 

Chimia. 2022-10-01. Vol. 76, num. 10, p. 864-864. DOI : 10.2533/chimia.2022.864.

Understanding Your Support System: The Design of a Stable Metal-Organic Framework/Polyazoamine Support for Biomass Conversion

V. V. Karve; N. A. Nekrasova; M. Asgari; O. Trukhina; I. Kochetygov et al. 

Chemistry Of Materials. 2022-11-04. DOI : 10.1021/acs.chemmater.2c01731.

Lignin: A Sustainable Antiviral Coating Material

A. Boarino; H. Wang; F. Olgiati; F. Artusio; M. Ozkan et al. 

Acs Sustainable Chemistry & Engineering. 2022-10-13. DOI : 10.1021/acssuschemeng.2c04284.

Thermodynamic modelling of hydrogen production in sorbent-enhanced biochar-direct chemical looping process

L. B. Cheng; J. Y. Kim; A. Ebneyamini; Z. J. Li; C. J. Lim et al. 

Canadian Journal Of Chemical Engineering. 2022-06-26. DOI : 10.1002/cjce.24482.

Sustainable polyesters via direct functionalization of lignocellulosic sugars

L. P. Manker; G. R. Dick; A. Demongeot; M. A. Hedou; C. Rayroud et al. 

Nature Chemistry. 2022-06-23. Vol. 14, p. 976–984. DOI : 10.1038/s41557-022-00974-5.

Competing Effects of Hydration and Cation Complexation in Single-Chain Alginate

Z. J. Li; S. Srebnik; O. J. Rojas 

Biomacromolecules. 2022-05-09. Vol. 23, num. 5, p. 1949-1957. DOI : 10.1021/acs.biomac.1c01591.

Extraction and Surfactant Properties of Glyoxylic Acid-Functionalized Lignin

S. Bertella; M. B. Figueiredo; G. De Angelis; M. Mourez; C. Bourmaud et al. 

Chemsuschem. 2022-06-07.  p. e202200270. DOI : 10.1002/cssc.202200270.

Restructuring Ni/Al2O3 by addition of Ga to shift product selectivity in CO2 hydrogenation: The role of hydroxyl groups

A. M. Bahmanpour; R. J. G. Nuguid; L. M. Savereide; M. D. Mensi; D. Ferri et al. 

Journal Of Co2 Utilization. 2022-02-01. Vol. 56, p. 101881. DOI : 10.1016/j.jcou.2021.101881.

Atom-by-Atom Synthesis of Multiatom-Supported Catalytic Clusters by Liquid-Phase Atomic Layer Deposition

B. P. Le Monnier; L. Savereide; M. Kilic; R. Schnyder; M. D. Mensi et al. 

Acs Sustainable Chemistry & Engineering. 2022-03-21. Vol. 10, num. 11, p. 3455-3465. DOI : 10.1021/acssuschemeng.1c07056.

Dynamic CO2 sorption on MgO-based sorbent in the presence of CO and H2O at elevated pressures

G. Bang; K-M. Kim; S. Jin; C-H. Lee 

Chemical Engineering Journal. 2022-04-01. Vol. 433, p. 134607. DOI : 10.1016/j.cej.2022.134607.

An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells

W. Ni; T. Wang; F. Heroguel; A. Krammer; S. Lee et al. 

Nature Materials. 2022-04-04. DOI : 10.1038/s41563-022-01221-5.

Controlling lignin solubility and hydrogenolysis selectivity by acetal-mediated functionalization

G. R. Dick; A. O. Komarova; J. S. Luterbacher 

Green Chemistry. 2022. Vol. 24, num. 3, p. 1285-1293. DOI : 10.1039/d1gc02575a.

2021

Ternary Alloys Enable Efficient Production of Methoxylated Chemicals via Selective Electrocatalytic Hydrogenation of Lignin Monomers

T. Peng; T. Zhuang; Y. Yan; J. Qian; G. R. Dick et al. 

Journal Of The American Chemical Society. 2021-10-20. Vol. 143, num. 41, p. 17226-17235. DOI : 10.1021/jacs.1c08348.

Revisiting Cation Complexation and Hydrogen Bonding of Single-Chain Polyguluronate Alginate

Z. J. Li; S. Srebnik; O. J. Rojas 

Biomacromolecules. 2021-09-13. Vol. 22, num. 9, p. 4027-4036. DOI : 10.1021/acs.biomac.1c00840.

Techno-economic analysis and life cycle assessment of a biorefinery utilizing reductive catalytic fractionation

A. W. Bartling; M. L. Stone; R. J. Hanes; A. Bhatt; Y. Zhang et al. 

Energy & Environmental Science. 2021-07-08. Vol. 14, num. 8, p. 4147-4168. DOI : 10.1039/d1ee01642c.

Dual Valorization of Lignin as a Versatile and Renewable Matrix for Enzyme Immobilization and (Flow) Bioprocess Engineering

A. I. Benitez-Mateos; S. Bertella; J. Behaghel de Bueren; J. S. Luterbacher; F. Paradisi 

Chemsuschem. 2021-07-05. Vol. 14, num. 15, p. 3198-3207. DOI : 10.1002/cssc.202100926.

Diformylxylose as a new polar aprotic solvent produced from renewable biomass

J. S. Luterbacher; A. O. Komarova; G. R. Dick 

Green Chemistry. 2021-05-28. Vol. 23, num. 9, p. 3459-3467. DOI : 10.1039/D1GC00641J.

Energy and techno-economic analysis of bio-based carboxylic acid recovery by adsorption

P. O. Saboe; L. P. Manker; H. R. Monroe; W. E. Michener; S. Haugen et al. 

Green Chemistry. 2021-06-02. Vol. 23, num. 12, p. 4386-4402. DOI : 10.1039/d1gc01002f.

Increasing the activity of the Cu/CuAl2O4/Al2O3 catalyst for the RWGS through preserving the Cu2+ ions

A. M. Bahmanpour; B. P. Le Monnier; Y-P. Du; F. Heroguel; J. S. Luterbacher et al. 

Chemical Communications. 2021-01-28. Vol. 57, num. 9, p. 1153-1156. DOI : 10.1039/d0cc07142k.

Investigating the effects of substrate morphology and experimental conditions on the enzymatic hydrolysis of lignocellulosic biomass through modeling

J. C. Rohrbach; J. S. Luterbacher 

Biotechnology For Biofuels. 2021-04-26. Vol. 14, num. 1, p. 103. DOI : 10.1186/s13068-021-01920-2.

Simultaneous extraction and controlled chemical functionalization of hardwood lignin for improved phenolation

S. Bertella; J. S. Luterbacher 

Green Chemistry. 2021-04-21. Vol. 23, num. 9, p. 3459-3467. DOI : 10.1039/d1gc00358e.

Fe-57-Enrichment effect on the composition and performance of Fe-based O-2-reduction electrocatalysts

K. Ebner; L. Ni; V. A. Saveleva; B. P. Le Monnier; A. H. Clark et al. 

Physical Chemistry Chemical Physics. 2021-03-24. Vol. 23, num. 15, p. 9147-9157. DOI : 10.1039/d1cp00707f.

Guidelines for performing lignin-first biorefining

M. M. Abu-Omar; K. Barta; G. T. Beckham; J. S. Luterbacher; J. Ralph et al. 

Energy & Environmental Science. 2021-01-01. Vol. 14, num. 1, p. 262-292. DOI : 10.1039/d0ee02870c.

Continuous hydrogenolysis of acetal-stabilized lignin in flow

W. Lan; Y. P. Du; S. Sun; J. B. de Bueren; F. Heroguel et al. 

Green Chemistry. 2021-01-07. Vol. 23, num. 1, p. 320-327. DOI : 10.1039/d0gc02928a.

2020

Aldehyde-Assisted Fractionation Enhances Lignin Valorization in Endocarp Waste Biomass

J. B. de Bueren; F. Heroguel; C. Wegmann; G. R. Dick; R. Buser et al. 

Acs Sustainable Chemistry & Engineering. 2020-11-16. Vol. 8, num. 45, p. 16737-16745. DOI : 10.1021/acssuschemeng.0c03360.

Engineering the ZrO2–Pd Interface for Selective CO2 Hydrogenation by Overcoating an Atomically Dispersed Pd Precatalyst

Y-P. Du; A. M. Bahmanpour; L. Milošević; F. Héroguel; M. D. Mensi et al. 

ACS Catalysis. 2020-09-26. Vol. 10, num. 20, p. 12058-12070. DOI : 10.1021/acscatal.0c02146.

Aldehyde-Assisted Lignocellulose Fractionation Provides Unique Lignin Oligomers for the Design of Tunable Polyurethane Bioresins

R. Vendamme; J. B. de Bueren; J. Gracia-Vitoria; F. Isnard; M. M. Mulunda et al. 

Biomacromolecules. 2020-10-01. Vol. 21, num. 10, p. 4135-4148. DOI : 10.1021/acs.biomac.0c00927.

A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose

R. L. Shahab; S. Brethauer; M. P. Davey; A. G. Smith; S. Vignolini et al. 

Science. 2020-08-28. Vol. 369, num. 6507, p. eabb12141073. DOI : 10.1126/science.abb1214.

Lignin Functionalization for the Production of Novel Materials

S. Bertella; J. S. Luterbacher 

Trends In Chemistry. 2020-05-01. Vol. 2, num. 5, p. 440-453. DOI : 10.1016/j.trechm.2020.03.001.

Stabilization strategies in biomass depolymerization using chemical functionalization

Y. M. Questell-Santiago; M. V. Galkin; K. Barta; J. S. Luterbacher 

Nature Reviews Chemistry. 2020-05-22. Vol. 4, p. 311–330. DOI : 10.1038/s41570-020-0187-y.

Engineering of ecological niches to create stable artificial consortia for complex biotransformations

R. L. Shahab; S. Brethauer; J. S. Luterbacher; M. H. Studer 

Current Opinion In Biotechnology. 2020-04-01. Vol. 62, p. 129-136. DOI : 10.1016/j.copbio.2019.09.008.

Mechanistic Study of Diaryl Ether Bond Cleavage during Palladium-Catalyzed Lignin Hydrogenolysis

Y. Li; S. D. Karlen; B. Demir; H. Kim; J. Luterbacher et al. 

Chemsuschem. 2020-04-20. Vol. 13, num. 17, p. 4487-4494. DOI : 10.1002/cssc.202000753.

Ruthenium on phosphorous-modified alumina as an effective and stable catalyst for catalytic transfer hydrogenation of furfural

T. Fovanna; S. Campisi; A. Villa; A. Kambolis; G. Peng et al. 

Rsc Advances. 2020-03-19. Vol. 10, num. 19, p. 11507-11516. DOI : 10.1039/d0ra00415d.

Efficient reductive amination of HMF with well dispersed Pd nanoparticles immobilized in a porous MOF/polymer composite

V. V. Karve; D. T. Sun; O. Trukhina; S. Yang; E. Oveisi et al. 

Green Chemistry. 2020-01-21. Vol. 22, num. 2, p. 368-378. DOI : 10.1039/c9gc03140e.

Essential role of oxygen vacancies of Cu-Al and Co-Al spinel oxides in their catalytic activity for the reverse water gas shift reaction

A. Bahmanpour; F. E. Héroguel; M. Kiliç; C. J. Baranowski; P. A. Schouwink et al. 

Applied Catalysis B: Environmental. 2020-01-27. Vol. 266, p. 118669. DOI : 10.1016/j.apcatb.2020.118669.

Catalyst Evolution Enhances Production of Xylitol from Acetal-Stabilized Xylose

Y. M. Questell-Santiago; J. H. Yeap; M. Talebi Amiri; B. P. Le Monnier; J. S. Luterbacher 

ACS Sustainable Chemistry & Engineering. 2020-01-10. Vol. 8, num. 4, p. 1709–1714. DOI : 10.1021/acssuschemeng.9b06456.

2019

Topology of Pretreated Wood Fibers Using Dynamic Nuclear Polarization

J. Viger-Gravel; W. Lan; A. C. Pinon; P. Berruyer; L. Emsley et al. 

Journal Of Physical Chemistry C. 2019-12-19. Vol. 123, num. 50, p. 30407-30415. DOI : 10.1021/acs.jpcc.9b09272.

Atomic Layer Deposition on Dispersed Materials in Liquid Phase by Stoichiometrically Limited Injections

B. P. Le Monnier; F. Wells; F. Talebkeikhah; J. S. Luterbacher 

Advanced Materials. 2019-11-11.  p. 1904276. DOI : 10.1002/adma.201904276.

A Road to Profitability from Lignin via the Production of Bioactive Molecules

W. Lan; J. S. Luterbacher 

ACS Central Science. 2019-10-23. Vol. 5, num. 10, p. 1642-1644. DOI : 10.1021/acscentsci.9b00954.

Designing Heterogeneous Catalysts for Renewable Catalysis Applications Using Metal Oxide Deposition

Y-P. Du; J. S. Luterbacher 

CHIMIA International Journal for Chemistry. 2019-09-01. Vol. 73, num. 9, p. 698-706. DOI : 10.2533/chimia.2019.698.

Catalyst support and solvent effects during lignin depolymerization and hydrodeoxygenation

F. E. Héroguel; X. T. Nguyen; J. Luterbacher 

ACS Sustainable Chemistry & Engineering. 2019-09-19. Vol. 7, num. 20, p. 16952-16958. DOI : 10.1021/acssuschemeng.9b03843.

Preventing Lignin Condensation to Facilitate Aromatic Monomer Production

W. Lan; J. S. Luterbacher 

Chimia. 2019-08-01. Vol. 73, num. 7-8, p. 591-598. DOI : 10.2533/chimia.2019.591.

Establishing Lignin Structure-Upgradeability Relationships Using Quantitative 1H-13C Heteronuclear Single Quantum Coherence Nuclear Magnetic Resonance (HSQC-NMR) Spectroscopy

M. Talebi Amiri; S. Bertella; Y. Questell-Santiago; J. Luterbacher 

Chemical Science. 2019-07-15. Vol. 10, num. 35, p. 8135-8142. DOI : 10.1039/C9SC02088H.

Insights into the Nature of the Active Sites of Tin‐Montmorillonite for the Synthesis of Polyoxymethylene Dimethyl Ethers (OME)

C. J. Baranowski; A. M. Bahmanpour; F. Héroguel; J. S. Luterbacher; O. Kröcher 

ChemCatChem. 2019-05-06. Vol. 11, num. 13, p. 3010-3021. DOI : 10.1002/cctc.201900502.

Cu–Al Spinel as a Highly Active and Stable Catalyst for the Reverse Water Gas Shift Reaction

A. M. Bahmanpour; F. Héroguel; M. Kılıç; C. J. Baranowski; L. Artiglia et al. 

ACS Catalysis. 2019-06-03. Vol. 9, num. 7, p. 6243-6251. DOI : 10.1021/acscatal.9b01822.

Catalytic valorization of the acetate fraction of biomass to aromatics and its integration into the carboxylate platform

B. Rozmysłowicz; J. H. Yeap; A. Elkhaiary; M. Talebi Amiri; R. L. Shahab et al. 

Green Chemistry. 2019. Vol. 21, num. 10, p. 2801-2809. DOI : 10.1039/c9gc00513g.
publication thumbnail

Post-synthesis deposition of mesoporous niobic acid with improved thermal stability by kinetically controlled sol–gel overcoating

Y-P. Du; F. Héroguel; X. T. Nguyen; J. S. Luterbacher 

Journal of Materials Chemistry A. 2019. Vol. 7, num. 41, p. 23803-23811. DOI : 10.1039/C9TA01459D.
publication thumbnail

Fractionation of lignocellulosic biomass to produce uncondensed aldehyde-stabilized lignin

M. Talebi Amiri; G. R. Dick; Y. M. Questell-Santiago; J. S. Luterbacher 

Nature Protocols. 2019. Vol. 14, p. 921-954. DOI : 10.1038/s41596-018-0121-7.
publication thumbnail

Optimization of Lignin Extraction from Pine Wood for Fast Pyrolysis by Using γ-valerolactone-Based Binary Solvent System

S. Jampa; A. Puente-Urbina; Z. Ma; S. Wongkasemjit; J. S. Luterbacher et al. 

ACS Sustainable Chemistry & Engineering. 2019. Vol. 7, num. 4, p. 4058-4068. DOI : 10.1021/acssuschemeng.8b05498.
publication thumbnail

Highly Selective Oxidation and Depolymerization of α,γ-Diol Protected Lignin

W. Lan; J. B. de Bueren; J. S. Luterbacher 

Angewandte Chemie International Edition. 2019. Vol. 58, num. 9, p. 2649-2654. DOI : 10.1002/anie.201811630.
publication thumbnail

Prominent role of mesopore surface area and external acid sites for the synthesis of polyoxymethylene dimethyl ethers (OME) on a hierarchical H-ZSM-5 zeolite

C. J. Baranowski; A. M. Bahmanpour; F. Héroguel; J. S. Luterbacher; O. Kröcher 

Catalysis Science & Technology. 2019. Vol. 9, num. 2, p. 366-376. DOI : 10.1039/C8CY02194E.

2018

publication thumbnail

Selectivity control during the single-step conversion of aliphatic carboxylic acids to linear olefins

J. H. Yeap; F. Héroguel; R. L. Shahab; B. Rozmyslowicz; M. H. Studer et al. 

ACS Catalysis. 2018. Vol. 8, p. 10769-10773. DOI : 10.1021/acscatal.8b03370.
publication thumbnail

An “ideal lignin” facilitates full biomass utilization

Y. Li; L. Shuai; H. Kim; A. H. Motagamwala; J. K. Mobley et al. 

Science Advances. 2018. Vol. 4, num. 9, p. eaau2968. DOI : 10.1126/sciadv.aau2968.
publication thumbnail

Carbohydrate stabilization extends the kinetic limits of chemical polysaccharide depolymerization

Y. M. Questell-Santiago; R. Zambrano-Varela; M. Talebi Amiri; J. S. Luterbacher 

Nature Chemistry. 2018. Vol. 10, num. 12, p. 1222-1228. DOI : 10.1038/s41557-018-0134-4.
publication thumbnail

Slowing the Kinetics of Alumina Sol-Gel Chemistry for Controlled Catalyst Overcoating and Improved Catalyst Stability and Selectivity

Y-P. Du; F. Héroguel; J. S. Luterbacher 

Small. 2018.  p. 1801733. DOI : 10.1002/smll.201801733.
publication thumbnail

Selective synthesis of dimethyl ether on eco-friendly K10 montmorillonite clay

A. M. Bahmanpour; F. Héroguel; C. J. Baranowski; J. S. Luterbacher; O. Kröcher 

Applied Catalysis A: General. 2018. Vol. 560, p. 165-170. DOI : 10.1016/j.apcata.2018.05.006.
publication thumbnail

Simulation of Gas- and Liquid-Phase Layer-By-Layer Deposition of Metal Oxides by Coarse-Grained Modeling

K. S. Brown; C. Saggese; B. P. Le Monnier; F. Héroguel; J. S. Luterbacher 

The Journal of Physical Chemistry C. 2018. Vol. 122, num. 12, p. 6713-6720. DOI : 10.1021/acs.jpcc.8b00197.
publication thumbnail

Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium

R. L. Shahab; J. S. Luterbacher; S. Brethauer; M. H. Studer 

Biotechnology and Bioengineering. 2018. Vol. 115, num. 5, p. 1207-1215. DOI : 10.1002/bit.26541.
publication thumbnail

Densely Packed, Ultra Small SnO Nanoparticles for Enhanced Activity and Selectivity in Electrochemical CO2 Reduction

J. Gu; F. Héroguel; J. Luterbacher; X. Hu 

Angewandte Chemie International Edition. 2018. Vol. 130, num. 11, p. 2993-2997. DOI : 10.1002/anie.201713003.
publication thumbnail

Protection Group Effects During α,γ-Diol Lignin Stabilization Promote High-Selectivity Monomer Production

W. Lan; M. T. Amiri; C. M. Hunston; J. S. Luterbacher 

Angewandte Chemie International Edition. 2018. Vol. 57, num. 5, p. 1356-1360. DOI : 10.1002/anie.201710838.

Controlled deposition of titanium oxide overcoats by non-hydrolytic sol gel for improved catalyst selectivity and stability

F. Héroguel; L. Silvioli; Y-P. Du; J. S. Luterbacher 

Journal of Catalysis. 2018. Vol. 358, p. 50-61. DOI : 10.1016/j.jcat.2017.11.023.

2017

Promotion Effect of Alkali Metal Hydroxides on Polymer-Stabilized Pd Nanoparticles for Selective Hydrogenation of C–C Triple Bonds in Alkynols

L. Z. Nikoshvili; A. V. Bykov; T. E. Khudyakova; T. Lagrange; F. Héroguel et al. 

Industrial & Engineering Chemistry Research. 2017. Vol. 56, num. 45, p. 13219-13227. DOI : 10.1021/acs.iecr.7b01612.

Catalyst stabilization by stoichiometrically limited layer-by-layer overcoating in liquid media

F. Héroguel; B. P. Le Monnier; K. S. Brown; J. C. Siu; J. S. Luterbacher 

Applied Catalysis B: Environmental. 2017. Vol. 218, p. 643-649. DOI : 10.1016/j.apcatb.2017.07.006.

Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO

M. Schreier; F. Héroguel; L. Steier; S. Ahmad; J. S. Luterbacher et al. 

Nature Energy. 2017. Vol. 2, p. 17087. DOI : 10.1038/nenergy.2017.87.

Clean, cleaved surfaces of the photovoltaic perovskite

M. Kollár; L. Ćirić; J. H. Dil; A. Weber; S. Muff et al. 

Scientific Reports. 2017. Vol. 7, p. 695. DOI : 10.1038/s41598-017-00799-0.

Introduction to High Pressure CO2 and H2O Technologies in Sustainable Biomass Processing

Y. M. Questell-Santiago; J. Luterbacher 

High Pressure Technologies in Biomass Conversion; UK: The Royal Society of Chemistry, 2017. p. 9-36.

2016

The influence of interunit carbon–carbon linkages during lignin upgrading

L. Shuai; M. Talebi Amiri; J. Luterbacher 

Current Opinion in Green and Sustainable Chemistry. 2016. Vol. 2, p. 59-63. DOI : 10.1016/j.cogsc.2016.10.001.

Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization

L. Shuai; M. T. Amiri; Y. M. Questell-Santiago; F. Heroguel; Y. Li et al. 

Science. 2016. Vol. 354, num. 6310, p. 329-333. DOI : 10.1126/science.aaf7810.

A mild biomass pretreatment using gamma-valerolactone for concentrated sugar production

L. Shuai; Y. M. Questell-Santiago; J. S. Luterbacher 

Green Chemistry. 2016. Vol. 18, num. 4, p. 937-943. DOI : 10.1039/c5gc02489g.

Organic Solvent Effects in Biomass Conversion Reactions

L. Shuai; J. Luterbacher 

Chemsuschem. 2016. Vol. 9, num. 2, p. 133-155. DOI : 10.1002/cssc.201501148.

2015

Improving Heterogeneous Catalyst Stability for Liquid-phase Biomass Conversion and Reforming

F. E. Héroguel; B. Rozmysłowicz; J. Luterbacher 

Chimia. 2015. Vol. 69, num. 10, p. 582-591. DOI : 10.2533/chimia.2015.582.

Hydrothermally-treated Na-X as efficient adsorbents for butadiene removal

G. B. Baur; F. E. Héroguel; J. Spring; J. Luterbacher; L. Kiwi 

The Chemical Engineering Journal. 2015. Vol. 288, p. 19-27. DOI : 10.1016/j.cej.2015.11.096.

2014

Linear Programming Decoding of Spatially Coupled Codes

L. Bazzi; B. Ghazi; R. L. Urbanke 

Ieee Transactions On Information Theory. 2014. Vol. 60, num. 8, p. 4677-4698. DOI : 10.1109/Tit.2014.2325903.

Patents

2024

Biobased surfactant

S. Bertella; A. Komarova; S. Sun; J. Luterbacher 

EP4311831; WO2023198682.

2024.

Biobased surfactant

S. Bertella; A. Komarova; S. Sun; J. Luterbacher 

EP4311826.

2024.

2023

Biobased surfactants

A. Komarova; S. Sun; S. Bertella; J. Luterbacher 

EP4311831; WO2023198682.

2023.

2022

Green solvents for chemical reactions

A. Komarova; J. Luterbacher 

EP4326725; CN117321060; BR112023019753; WO2022223480; CA3215288.

2022.

2021

Production of fragments of lignin with functional groups

J. Luterbacher; G. Dick; S. Bertella 

US2024150385; JP2022551188; EP4045513; BR112022007225; CN114616265; CA3155731; WO2021074210; EP3808755.

2021.

Renewable monomer and polymer thereof

J. Luterbacher; L. Manker; G. Dick; S. Bertella 

US2024140961; CN114630833; JP2022551187; EP4045514; BR112022007169; CN114630833; CA3155744; WO2021074211; EP3808757.

2021.

2020

Aqueous effluent treatment system

G. Peng; F. Juillard; J. Luterbacher; R. Zambranovarela; L. Bertschy 

EP3931156; EP3931156; CN113474305; US2022111345; EP3931156; CN113474305; WO2020173888; EP3699150.

2020.

2017

Production of monomers from lignin during depolymerisation of lignocellulose-containing composition

J. S. Luterbacher; L. Shuai 

US11639324; US2023023803; BR112018071060; US11444703; CN109328185; US2021107851; US2021111745; US10906856; US10903866; US10903915; RU2739567; RU2018134925; RU2018134925; BR112018071060; US2019127304; EP3442938; CN109328185; CA3029301; WO2017178513.

2017.

Publications before EPFL

2022

Dynamic Monte Carlo reactor modeling of calcium looping with sorbent purge and utilization decay

J. Y. Kim; Z. J. Li; N. Ellis; C. J. Lim; J. R. Grace 

Chemical Engineering Journal. 2022-05-01. Vol. 435, p. 134954. DOI : 10.1016/j.cej.2022.134954.

2015

Lignin monomer production integrated into the γ-valerolactone sugar platform

J. S. Luterbacher; A. Azarpira; A. H. Motagamwala; F. Lu; J. Ralph et al. 

Energy & Environmental Science. 2015. Vol. 8, num. 9, p. 2657-2663. DOI : 10.1039/C5EE01322D.

Process systems engineering studies for the synthesis of catalytic biomass-to-fuels strategies

J. Han; S. Murat Sen; J. S. Luterbacher; D. M. Alonso; J. A. Dumesic et al. 

Computers & Chemical Engineering. 2015. Vol. 81, p. 57-69. DOI : 10.1016/j.compchemeng.2015.04.007.

Solvent-Enabled Nonenyzmatic Sugar Production from Biomass for Chemical and Biological Upgrading

J. S. Luterbacher; D. M. Alonso; J. M. Rand; Y. M. Questell-Santiago; J. H. Yeap et al. 

ChemSusChem. 2015. Vol. 8, num. 8, p. 1317-1322. DOI : 10.1002/cssc.201403418.

A lignocellulosic ethanol strategy via nonenzymatic sugar production: Process synthesis and analysis

J. Han; J. S. Luterbacher; D. M. Alonso; J. A. Dumesic; C. T. Maravelias 

Bioresource Technology. 2015. Vol. 182, p. 258-266. DOI : 10.1016/j.biortech.2015.01.135.

Modeling enzymatic hydrolysis of lignocellulosic substrates using fluorescent confocal microscopy II: Pretreated biomass

J. S. Luterbacher; J. M. Moran-Mirabal; E. W. Burkholder; L. P. Walker 

Biotechnology and Bioengineering. 2015. Vol. 112, num. 1, p. 32-42. DOI : 10.1002/bit.25328.

Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: Filter paper cellulose

J. S. Luterbacher; J. M. Moran-Mirabal; E. W. Burkholder; L. P. Walker 

Biotechnology and Bioengineering. 2015. Vol. 112, num. 1, p. 21-31. DOI : 10.1002/bit.25329.

2014

Targeted chemical upgrading of lignocellulosic biomass to platform molecules

J. S. Luterbacher; D. Martin Alonso; J. A. Dumesic 

Green Chemistry. 2014. Vol. 16, num. 12, p. 4816-4838. DOI : 10.1039/C4GC01160K.

Effects of γ-valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides

M. A. Mellmer; D. Martin Alonso; J. S. Luterbacher; J. M. R. Gallo; J. A. Dumesic 

Green Chemistry. 2014. Vol. 16, num. 11, p. 4659-4662. DOI : 10.1039/C4GC01768D.

Solvent Effects in Acid-Catalyzed Biomass Conversion Reactions

M. A. Mellmer; C. Sener; J. M. R. Gallo; J. S. Luterbacher; D. M. Alonso et al. 

Angewandte Chemie International Edition. 2014. Vol. 53, num. 44, p. 11872-11875. DOI : 10.1002/anie.201408359.

Selective Conversion of Cellulose to Hydroxymethylfurfural in Polar Aprotic Solvents

R. Weingarten; A. Rodriguez-Beuerman; F. Cao; J. S. Luterbacher; D. M. Alonso et al. 

ChemCatChem. 2014. Vol. 6, num. 8, p. 2229-2234. DOI : 10.1002/cctc.201402299.

Nonenzymatic Sugar Production from Biomass Using Biomass-Derived gamma-Valerolactone

J. S. Luterbacher; J. M. Rand; D. M. Alonso; J. Han; J. T. Youngquist et al. 

Science. 2014. Vol. 343, num. 6168, p. 277-280. DOI : 10.1126/science.1246748.

2012

Two-temperature stage biphasic CO2-H2O pretreatment of lignocellulosic biomass at high solid loadings

J. S. Luterbacher; J. W. Tester; L. P. Walker 

Biotechnology and Bioengineering. 2012. Vol. 109, num. 6, p. 1499-1507. DOI : 10.1002/bit.24417.

Producing concentrated solutions of monosaccharides using biphasic CO2–H2O mixtures

J. S. Luterbacher; Q. Chew; Y. Li; J. W. Tester; L. P. Walker 

Energy & Environmental Science. 2012. Vol. 5, num. 5, p. 6990. DOI : 10.1039/c2ee02913h.

Observing and modeling BMCC degradation by commercial cellulase cocktails with fluorescently labeled

J. S. Luterbacher; L. P. Walker; J. M. Moran-Mirabal 

Biotechnology and Bioengineering. 2012. Vol. 110, num. 1, p. 108-117. DOI : 10.1002/bit.24597.

A pore-hindered diffusion and reaction model can help explain the importance of pore size distribution in enzymatic hydrolysis of biomass

J. S. Luterbacher; J-Y. Parlange; L. P. Walker 

Biotechnology and Bioengineering. 2012. Vol. 110, num. 1, p. 127-136. DOI : 10.1002/bit.24614.

2011

Observing Thermobifida fusca cellulase binding to pretreated wood particles using time-lapse confocal laser scanning microscopy

P. Zhu; J. M. Moran-Mirabal; J. S. Luterbacher; L. P. Walker; H. G. Craighead 

Cellulose. 2011. Vol. 18, num. 3, p. 749-758. DOI : 10.1007/s10570-011-9506-2.

2010

High-solids biphasic CO2-H2O pretreatment of lignocellulosic biomass

J. S. Luterbacher; J. W. Tester; L. P. Walker 

Biotechnology and Bioengineering. 2010. Vol. 107, num. 3, p. 451-460. DOI : 10.1002/bit.22823.

2009

Hydrothermal Gasification of Waste Biomass: Process Design and Life Cycle Asessment

J. S. Luterbacher; M. Fröling; F. Vogel; F. Maréchal; J. W. Tester 

Environmental Science & Technology. 2009. Vol. 43, num. 5, p. 1578-1583. DOI : 10.1021/es801532f.