Aerosol Chemistry and Impacts

Substances in the atmosphere can originate from a myriad of source like industrial emissions, power generation, fossil fuel combustion, dust, forest, residential fires and forest fires. Predicting the fate and impacts of these substances in the atmosphere requires understanding their chemical, physical and optical transformation processes; this task is complicated by the fact that thousands of different types of molecules in different complexes can be found in one place, and can be distributed among several phases (gas, solid, liquid).

Work at LAPI includes the development of mechanistic models and numerical tools to characterize these complex interactions. Models are evaluated in conjunction with advanced measurement campaigns conducted in the field and experiments conducted in controlled laboratory environments. Statistical models are further used to reduce and understand the high dimensional space of measurements and simulations of atmospheric variables, and used to build predictive models of chemical composition where the mechanical predictive ability is still incomplete.

Research themes

Select references

Lbadaoui-Darvas et al. (2019) Water Activity from Equilibrium Molecular Dynamics Simulations and Kirkwood-Buff Theory, J. Phys. Chem. B, 123, 50, 10757-10768, doi:10.1021/acs.jpcb.9b06735

Vasilakos et al. (2018) Understanding nitrate formation in a world with less sulfate, Atmos. Chem. Phys., 18, 12765–12775, doi:10.5194/acp-18-12765-2018

Guo et al. (2018) Effectiveness of ammonia reduction on control of fine particle nitrate, Atmos. Chem. Phys., 18, 12241–12256, doi:10.5194/acp-18-12241-2018

Ingall et al. (2018) Enhanced Iron Solubility at Low pH in Global Aerosols,  Atmosphere, 9(5), 201; doi:10.3390/atmos9050201

Shi et al. (2017) pH of Aerosols in a Polluted Atmosphere: Source Contributions to Highly Acidic Aerosol, Environ. Sci. Technol. 51, 8, 4289-4296, doi:10.1021/acs.est.6b05736

Wong et al. (2019) Atmospheric evolution of molecular-weight-separated brown carbon from biomass burning,  Atmos. Chem. Phys., 19, 7319–7334, doi:10.5194/acp-19-7319-2019

Zhang et al. (2017) Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere, Nat. Geosci., 10, 486–489, doi:10.1038/ngeo2960

Forrester et al. (2015) Evolution of brown carbon in wildfire plumes, Geophys. Res. Lett., 42, 11, 4623-4630, doi:10.1002/2015GL063897

Ruggeri, G. and Takahama, S. (2016) Technical Note: Development of chemoinformatic tools to enumerate functional groups in molecules for organic aerosol characterization, Atmos. Chem. Phys., 16, 4401–4422,

Ruggeri et coll. (2016) Comparaison de modèle-mesure de l’abondance des groupes fonctionnels dans la formation d’aérosols organiques secondaires α-pinène et 1,3,5-triméthylbenzène, Atmos. Chem. Phys., 16, 8729–8747, doi: 10.5194 / acp-16-8729-2016

Takahama, S. et Ruggeri, G. (2017) Note technique: Relier les mesures de groupes fonctionnels aux types de carbone pour améliorer les comparaisons modèle-mesure de la composition des aérosols organiques, Atmos. Chem. Phys., 17, 4433–4450,

Arangio, A., Delval, C., Ruggeri, G., Dudani, N., Yazdani, A., Takahama, S. (2019) Electrospray Film Deposition for Solvent-Elimination Infrared Spectroscopy, Appl. Spectrosc., 73 (6), 638-652,