2023
Journal Articles
Substitutional p‐type Doping in NbS2‐MoS2 Lateral Heterostructures Grown by MOCVD
Advanced Materials. 2023-01-16. p. 2209371. DOI : 10.1002/adma.202209371.Electrical spectroscopy of defect states and their hybridization in monolayer MoS2
Nature Communications. 2023-01-03. Vol. 14, num. 1, p. 44 (2023). DOI : 10.1038/s41467-022-35651-1.2022
Journal Articles
Flat-Band-Induced Many-Body Interactions and Exciton Complexes in a Layered Semiconductor
Nano Letters. 2022-11-08. p. 18403-18410. DOI : 10.1021/acs.nanolett.2c02965.Impact of Interface Traps in Floating-Gate Memory Based on Monolayer MoS2
Ieee Transactions On Electron Devices. 2022-10-05. DOI : 10.1109/TED.2022.3208804.Room-temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED
Nature Communications. 2022-08-19. Vol. 13, num. 1, p. 1-9, 4884. DOI : 10.1038/s41467-022-32292-2.Stable Al2O3 Encapsulation of MoS2 ‐FETs Enabled by CVD Grown h‐BN
Advanced Electronic Materials. 2022-04-29. p. 2200123. DOI : 10.1002/aelm.202200123.Zero-Bias Power-Detector Circuits based on MoS2 Field-Effect Transistors on Wafer-Scale Flexible Substrates
Advanced Materials. 2022-02-17. p. 2108469. DOI : 10.1002/adma.202108469.Low-Power Artificial Neural Network Perceptron Based on Monolayer MoS2
ACS Nano. 2022-02-16. DOI : 10.1021/acsnano.1c07065.Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure
Nature Photonics. 2022. Vol. 16, p. 79–85. DOI : 10.1038/s41566-021-00908-6.Reviews
Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics
Nature Reviews Materials. 2022-01-31. Vol. 7, p. 449–464. DOI : 10.1038/s41578-021-00408-7.2021
Journal Articles
How we made the 2D transistor
Nature Electronics. 2021-11-12. Vol. 4, p. 853. DOI : 10.1038/s41928-021-00675-w.Superconducting 2D NbS2 Grown Epitaxially by Chemical Vapor Deposition
ACS Nano. 2021-11-10. Vol. 15, num. 11, p. 18403–18410. DOI : 10.1021/acsnano.1c07956.Correlating chemical and electronic states from quantitative photoemission electron microscopy of transition-metal dichalcogenide heterostructures
Journal of Vacuum Science & Technology. 2021-08-18. Vol. A39, num. 5, p. 053210. DOI : 10.1116/6.0001135.Super-resolved Optical Mapping of Reactive Sulfur-Vacancies in Two-Dimensional Transition Metal Dichalcogenides
Acs Nano. 2021-04-27. Vol. 15, num. 4, p. 7168-7178. DOI : 10.1021/acsnano.1c00373.Electrochemical Functionalization of Selectively Addressed MoS2 Nanoribbons for Sensor Device Fabrication
Acs Applied Nano Materials. 2021-02-26. Vol. 4, num. 2, p. 1076-1084. DOI : 10.1021/acsanm.0c02628.2020
Journal Articles
Logic-in-memory based on an atomically thin semiconductor
Nature. 2020-11-05. Vol. 587, num. 7832, p. 72-77. DOI : 10.1038/s41586-020-2861-0.Probing magnetism in atomically thin semiconducting PtSe2
Nature Communications. 2020-09-23. Vol. 11, num. 1, p. 4806. DOI : 10.1038/s41467-020-18521-6.Strongly Coupled Coherent Phonons in Single-Layer MoS2
Acs Nano. 2020-05-26. Vol. 14, num. 5, p. 5700-5710. DOI : 10.1021/acsnano.0c00309.Wafer-Scale Fabrication of Nanopore Devices for Single-Molecule DNA Biosensing using MoS2
Small Methods. 2020-05-11. p. 2000072. DOI : 10.1002/smtd.202000072.Quantitative Mapping of the Charge Density in a Monolayer of MoS2 at Atomic Resolution by Off-Axis Electron Holography
ACS Nano. 2020. Vol. 14, num. 1, p. 524–530. DOI : 10.1021/acsnano.9b06716.Reviews
Production and processing of graphene and related materials
2D Materials. 2020-01-30. Vol. 7, num. 2, p. 022001. DOI : 10.1088/2053-1583/ab1e0a.2019
Journal Articles
Quantitative Nanoscale Absorption Mapping: A Novel Technique To Probe Optical Absorption of Two-Dimensional Materials
Nano Letters. 2019-12-24. Vol. 20, num. 1, p. 567-576. DOI : 10.1021/acs.nanolett.9b04304.Waveguide-Based Platform for Large-FOV Imaging of Optically Active Defects in 2D Materials
Acs Photonics. 2019-12-01. Vol. 6, num. 12, p. 3100-3107. DOI : 10.1021/acsphotonics.9b01103.Self-sensing, tunable monolayer MoS2 nanoelectromechanical resonators
Nature Communications. 2019-10-23. Vol. 10, num. 1, p. 4831. DOI : 10.1038/s41467-019-12795-1.Valley-polarized exciton currents in a van der Waals heterostructure
Nature Nanotechnology. 2019-10-21. Vol. 14, p. 1104–1109. DOI : 10.1038/s41565-019-0559-y.Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2
Nano Research. 2019-10-01. Vol. 12, num. 10, p. 2646-2652. DOI : 10.1007/s12274-019-2502-9.Light-Enhanced Blue Energy Generation Using MoS2 Nanopores
Joule. 2019-06-19. Vol. 3, num. 6, p. 1549-1564. DOI : 10.1016/j.joule.2019.04.011.Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2
Nature Nanotechnology. 2019-06-17. Vol. 14, p. 674–678. DOI : 10.1038/s41565-019-0467-1.MoS2 photodetectors integrated with photonic circuits
npj 2D Materials and Applications. 2019-03-29. Vol. 3, num. 1, p. 14. DOI : 10.1038/s41699-019-0096-4.Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography
Nature Electronics. 2019-01-16. Vol. 2, num. 1, p. 17-25. DOI : 10.1038/s41928-018-0191-0.Non equilibrium anisotropic excitons in atomically thin ReS2
2D Materials. 2019-01-01. Vol. 6, num. 1, p. 015012. DOI : 10.1088/2053-1583/aae9b9.Conference Papers
Excitonic Effects in Single Layer MoS2 Probed by Broadband Two-dimensional Electronic Spectroscopy
2019-01-01. Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, May 05-10, 2019. DOI : 10.1364/CLEO_QELS.2019.FW3M.4.Reviews
Development of graphene-based ionizing radiation sensors
Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment. 2019-08-21. Vol. 936, p. 666-668. DOI : 10.1016/j.nima.2018.08.088.Patents
Excitonic device and operating methods thereof
US2021217919; WO2019229653.
2019.2018
Journal Articles
Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures
Nature Photonics. 2018-12-31. Vol. 13, p. 131-136. DOI : 10.1038/s41566-018-0325-y.Air and Water-Stable n-Type Doping and Encapsulation of Flexible MoS2 Devices with SU8
Advanced Electronic Materials. 2018-11-09. p. 1800492. DOI : 10.1002/aelm.201800492.Electronic Properties of Transferable Atomically Thin MoSe2/h-BN Heterostructures Grown on Rh(111)
ACS Nano. 2018-11-02. Vol. 12, num. 11, p. 11161–11168. DOI : 10.1021/acsnano.8b05628.Room-temperature electrical control of exciton flux in a van der Waals heterostructure
Nature. 2018-07-25. Vol. 560, num. 7718, p. 340-344. DOI : 10.1038/s41586-018-0357-y.Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide
Nature Communications. 2018-03-02. Vol. 9, num. 1, p. 919. DOI : 10.1038/s41467-018-03436-0.Intervalley Scattering of Interlayer Excitons in a MoS2/MoSe2/MoS2 Heterostructure in High Magnetic Field
NANO LETTERS. 2018. Vol. 18, num. 6, p. 3994-4000. DOI : 10.1021/acs.nanolett.8b01484.Impact of photodoping on inter- and intralayer exciton emission in a MoS2/MoSe2/MoS2 heterostructure
Applied Physics Letters. 2018. Vol. 113, num. 6, p. 062107. DOI : 10.1063/1.5043098.Reconfigurable Diodes Based on Vertical WSe2 Transistors with van der Waals Bonded Contacts
Advanced Materials. 2018. Vol. 30, num. 18, p. 1707200. DOI : 10.1002/adma.201707200.Large-grain MBE-grown GaSe on GaAs with a Mexican hat-like valence band dispersion
npj 2D Materials and Applications. 2018. Vol. 2, num. 1, p. 2. DOI : 10.1038/s41699-017-0047-x.2017
Journal Articles
Resolving the spin splitting in the conduction band of monolayer MoS2
Nature Communications. 2017. Vol. 8, num. 1, p. 1938. DOI : 10.1038/s41467-017-02047-5.Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure
Nano Letters. 2017. Vol. 17, num. 10, p. 6360-6365. DOI : 10.1021/acs.nanolett.7b03184.Optospintronics in Graphene via Proximity Coupling
ACS Nano. 2017. Vol. 11, num. 11, p. 11678–11686. DOI : 10.1021/acsnano.7b06800.On current transients in MoS2 Field Effect Transistors
Scientific Reports. 2017. Vol. 7, num. 1, p. 11575. DOI : 10.1038/s41598-017-11930-6.Your new travel guide to the flatlands
Npj 2D Materials And Applications. 2017. Vol. 1, p. 1. DOI : 10.1038/s41699-017-0006-6.Field-induced charge separation dynamics in monolayer MoS2
2D Materials. 2017. Vol. 4, num. 3, p. 035017. DOI : 10.1088/2053-1583/aa7ce0.Suppressing Nucleation in Metal–Organic Chemical Vapor Deposition of MoS2
Nano Letters. 2017. Vol. 17, num. 8, p. 5056–5063. DOI : 10.1021/acs.nanolett.7b02311.Defect Healing and Charge Transfer-Mediated Valley Polarization in MoS2/MoSe2/MoS2 heterostructures
Nano Letters. 2017. Vol. 17, num. 7, p. 4130–4136. DOI : 10.1021/acs.nanolett.7b00904.Highly Oriented Atomically Thin Ambipolar MoSe2
ACS Nano. 2017. Vol. 11, num. 6, p. 6355–6361. DOI : 10.1021/acsnano.7b02726.High Throughput Characterization of Epitaxially Grown Single-Layer MoS2
Electronics. 2017. Vol. 6, num. 2, p. 28. DOI : 10.3390/electronics6020028.Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials
Journal Of Physics D-Applied Physics. 2017. Vol. 50, num. 7, p. 074002. DOI : 10.1088/1361-6463/aa5256.Dark excitons and the elusive valley polarization in transition metal dichalcogenides
2D Materials. 2017. Vol. 4, num. 2, p. 025016. DOI : 10.1088/2053-1583/aa58a0.Unconventional electroabsorption in monolayer MoS2
2D Materials. 2017. Vol. 4, num. 2, p. 021005. DOI : 10.1088/2053-1583/aa5784.Reviews
2D transition metal dichalcogenides
Nature Reviews Materials. 2017. Vol. 2, p. 17033. DOI : 10.1038/natrevmats.2017.33.2016
Journal Articles
THz time-domain spectroscopy and IR spectroscopy on MoS2
Physica Status Solidi B-Basic Solid State Physics. 2016. Vol. 253, num. 12, p. 2499-2504. DOI : 10.1002/pssb.201600281.High Responsivity, Large-Area Graphene/MoS2 flexible photodetectors
ACS Nano. 2016. Vol. 10, num. 9, p. 8252–8262. DOI : 10.1021/acsnano.6b05109.Free-standing electronic character of monolayer
Physical Review B. 2016. Vol. 94, num. 8, p. 081401. DOI : 10.1103/PhysRevB.94.081401.Valley polarization by spin injection in a light-emitting van der Waals heterojunction
Nano Letters. 2016. Vol. 16, num. 9, p. 5792–5797. DOI : 10.1021/acs.nanolett.6b02527.A robust molecular probe for Ångstrom-scale analytics in liquids
Nature Communications. 2016. Vol. 7, p. 12403. DOI : 10.1038/ncomms12403.Disorder engineering and conductivity dome in ReS2 with electrolyte gating
Nature Communications. 2016. Vol. 7, p. 12391. DOI : 10.1038/ncomms12391.Single-layer MoS2 nanopores as nanopower generators
Nature. 2016. Vol. 536, p. 197-200. DOI : 10.1038/nature18593.Magnetoexcitons in large area CVD-grown monolayer MoS2 and MoSe2 on sapphire
Physical Review B. 2016. Vol. 93, num. 16, p. 165412. DOI : 10.1103/PhysRevB.93.165412.Observation of ionic Coulomb blockade in nanopores
Nature Materials. 2016. Vol. 15, p. 850–855. DOI : 10.1038/nmat4607.Vacuum ultraviolet excitation luminescence spectroscopy of few-layered MoS2
Journal Of Physics-Condensed Matter. 2016. Vol. 28, num. 1, p. 015301. DOI : 10.1088/0953-8984/28/1/015301.Conference Papers
High-quality Synthetic 2D Transition Metal Dichalcogenide Semiconductors
2016. 46th European Solid-State Device Research Conference (ESSDERC) / 42nd European Solid-State Circuits Conference (ESSCIRC), Lausanne, SWITZERLAND, SEP 12-15, 2016. p. 284-286. DOI : 10.1109/ESSDERC.2016.7599641.2015
Journal Articles
Large-area MoS2 grown using H2S as the sulphur source
2D Materials. 2015. Vol. 2, num. 4, p. 044005. DOI : 10.1088/2053-1583/2/4/044005.Electromechanical oscillations in bilayer graphene
Nature Communications. 2015. Vol. 6, p. 8582. DOI : 10.1038/ncomms9582.Identification of single nucleotides in MoS2 nanopores
Nature Nanotechnology. 2015. Vol. 10, num. 12, p. 1070-1076. DOI : 10.1038/nnano.2015.219.Electronic properties of transition-metal dichalcogenides
MRS Bulletin. 2015. Vol. 40, num. 07, p. 577-584. DOI : 10.1557/mrs.2015.143.Piezoresistivity and Strain-induced Band Gap Tuning in Atomically Thin MoS2
Nano Letters. 2015. p. 150720132701006. DOI : 10.1021/acs.nanolett.5b01689.Electrochemical Reaction in Single Layer MoS2: nanopores opened atom by atom
Nano Letters. 2015. p. 150504094212005. DOI : 10.1021/acs.nanolett.5b00768.Optically active quantum dots in monolayer WSe2
Nature Nanotechnology. 2015. Vol. 10, p. 491-496. DOI : 10.1038/nnano.2015.60.Large-Area Epitaxial Monolayer MoS2
ACS Nano. 2015. Vol. 9, p. 4611-4620. DOI : 10.1021/acsnano.5b01281.Direct fabrication of thin layer MoS2 field-effect nanoscale transistors by oxidation scanning probe lithography
Applied Physics Letters. 2015. Vol. 106, num. 10, p. 103503. DOI : 10.1063/1.4914349.Thickness-dependent mobility in two-dimensional MoS2
Nanoscale. 2015. Vol. 7, num. 14, p. 6255-6260. DOI : 10.1039/C4NR06331G.Atomic Scale Microstructure and Properties of Se-Deficient Two-Dimensional MoSe2
ACS Nano. 2015. Vol. 9, num. 3, p. 3274-3283. DOI : 10.1021/acsnano.5b00410.Valley Zeeman effect in elementary optical excitations of monolayer WSe2
Nature Physics. 2015. Vol. 11, p. 141–147. DOI : 10.1038/nphys3203.Single-Layer MoS2 Electronics
Accounts of Chemical Research. 2015. Vol. 48, num. 1, p. 100-110. DOI : 10.1021/ar500274q.Numerical correction of anti-symmetric aberrations in single HRTEM images of weakly scattering 2D-objects
Ultramicroscopy. 2015. Vol. 151, p. 130-135. DOI : 10.1016/j.ultramic.2014.09.010.Conference Papers
High-Frequency Scaled MoS2 Transistors
2015. International Electron Devices Meeting (IEDM 2015), Washington, DC, 7-9 December, 2015. DOI : 10.1109/IEDM.2015.7409781.Reviews
Electrical contacts to two-dimensional semiconductors
Nature Materials. 2015. Vol. 14, num. 12, p. 1195-1205. DOI : 10.1038/nmat4452.Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems
Nanoscale. 2015. Vol. 7, num. 11, p. 4598-4810. DOI : 10.1039/c4nr01600a.MoS2 and semiconductors in the flatland
Materials Today. 2015. Vol. 18, num. 1, p. 20-30. DOI : 10.1016/j.mattod.2014.07.005.2014
Journal Articles
MoS2 Transistors Operating at Gigahertz Frequencies
Nano Letters. 2014. Vol. 14, num. 10, p. 5905-5911. DOI : 10.1021/nl5028638.Can 2D-Nanocrystals Extend the Lifetime of Floating-Gate Transistor Based Nonvolatile Memory?
IEEE Transactions on Electron Devices. 2014. Vol. 61, num. 10, p. 3456-3464. DOI : 10.1109/TED.2014.2350483.Electrical Transport Properties of Single-Layer WS2
ACS Nano. 2014. p. 140728153134003. DOI : 10.1021/nn502362b.Electron and Hole Mobilities in Single-Layer WSe2
ACS Nano. 2014. p. doi:10.1021/nn5021538. DOI : 10.1021/nn5021538.Atomically Thin Molybdenum Disulfide Nanopores with High Sensitivity for DNA Translocation
ACS Nano. 2014. Vol. 8, p. 2504-2511. DOI : 10.1021/nn406102h.Light Generation and Harvesting in a van der Waals Heterostructure
ACS Nano. 2014. Vol. 8, p. 3042-3048. DOI : 10.1021/nn500480u.Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy
ACS Nano. 2014. Vol. 8, num. 1, p. 986-993. DOI : 10.1021/nn405826k.2013
Journal Articles
Detecting the translocation of DNA through a nanopore using graphene nanoribbons
Nature Nanotechnology. 2013. Vol. 8, num. 12, p. 939-945. DOI : 10.1038/Nnano.2013.240.Mobility engineering and a metal–insulator transition in monolayer MoS2
Nature Materials. 2013. Vol. 12, p. 815–820. DOI : 10.1038/nmat3687.Nonvolatile Memory Cells Based on MoS2/graphene heterostructures
ACS Nano. 2013. Vol. 7, p. 3246-3252. DOI : 10.1021/nn3059136.Ultrasensitive photodetectors based on monolayer MoS2
Nature Nanotechnology. 2013. Vol. 8, num. 7, p. 497-501. DOI : 10.1038/nnano.2013.100.Exciton Dynamics in Suspended Monolayer and Few-Layer MoS2
ACS Nano. 2013. Vol. 7, num. 2, p. 1072-1080. DOI : 10.1021/nn303973r.2012
Journal Articles
Ultrathin MoS2 membranes and their characterization through HRTEM and electron diffraction studies
Microscopy and Microanalysis. 2012. Vol. 18, num. S2, p. 1582-1583. DOI : 10.1017/S1431927612009762.Patents
Semiconductor device
US9608101; US2014197459; EP2661775; WO2012093360.
2012.