Optoelectronics and spintronics

We have harnessed the direct band gap in 2D TMDCs and their atomic scale thickness for making ultrasensitive photodetectors with very low noise levels. Combining them with 3D electronic materials such as Si into hybrid 2D/3D heterostructures can extend their reach further and allow the realization of other optoelectronic devices such as light-emitting diodes and solar cells. The direct band gap and strong spin-orbit coupling also enable addressing the spin state using light excitation and emission.

Representative key papers from our group

  1. F. Tagarelli, E. Lopriore, D. Erkensten, R. Perea-Causín, S. Brem, J. Hagel, Z. Sun, G. Pasquale, K. Watanabe, T. Taniguchi, E. Malic, A. Kis. Electrical Control of Hybrid Exciton Transport in a van Der Waals Heterostructure. Nature Photonics 17, 615–621 (2023); DOI:10.1038/s41566-023-01198-w.
  2. G. Pasquale, E. Lopriore, Z. Sun, K. Čerņevičs, F. Tagarelli, K. Watanabe, T. Taniguchi, O. V. Yazyev, A. Kis. Electrical Detection of the Flat-Band Dispersion in van Der Waals Field-Effect Structures. Nature Nanotechnology 18, 1416–1422 (2023); DOI:10.1038/s41565-023-01489-x.
  3. Z. Sun, A. Ciarrocchi, F. Tagarelli, J. F. Gonzalez Marin, K. Watanabe, T. Taniguchi, A. Kis. Excitonic Transport Driven by Repulsive Dipolar Interaction in a van Der Waals Heterostructure. Nature Photonics 16, 79–85 (2022); DOI:10.1038/s41566-021-00908-6.
  4. A. Ciarrocchi, F. Tagarelli, A. Avsar, A. Kis. Excitonic Devices with van Der Waals Heterostructures: Valleytronics Meets Twistronics. Nat Rev Mater (2022); DOI:10.1038/s41578-021-00408-7.
  5. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi, A. Kis. Room-Temperature Electrical Control of Exciton Flux in a van Der Waals Heterostructure.
    Nature (2018); DOI:10.1038/s41586-018-0357-y.
  6. Lopez Sanchez, O., D. Lembke, M. Kayci, A. Radenovic, A. Kis. Ultrasensitive Photodetectors Based on Monolayer MoS2Nature Nanotechnology 8, 497–501 (2013); DOI:10.1038/nnano.2013.100.