Optoelectronics and spintronics

We have harnessed the direct band gap in 2D TMDCs and their atomic scale thickness for making ultrasensitive photodetectors with very low noise levels. Combining them with 3D electronic materials such as Si into hybrid 2D/3D heterostructures can extend their reach further and allow the realization of other optoelectronic devices such as light-emitting diodes and solar cells. The direct band gap and strong spin-orbit coupling also enable addressing the spin state using light excitation and emission.

Representative key papers from our group

  1. Z. Sun, A. Ciarrocchi, F. Tagarelli, J. F. Gonzalez Marin, K. Watanabe, T. Taniguchi, A. Kis. Excitonic Transport Driven by Repulsive Dipolar Interaction in a van Der Waals Heterostructure. Nat. Photon. 16, 79–85 (2022); DOI:10.1038/s41566-021-00908-6.
  2. A. Ciarrocchi, F. Tagarelli, A. Avsar, A. Kis. Excitonic Devices with van Der Waals Heterostructures: Valleytronics Meets Twistronics. Nat Rev Mater (2022); DOI:10.1038/s41578-021-00408-7.
  3. D. Unuchek, A. Ciarrocchi, A. Avsar, Z. Sun, K. Watanabe, T. Taniguchi, A. Kis. Valley-Polarized Exciton Currents in a van Der Waals Heterostructure.  Nat. Nanotechnol. 14, 1104–1109 (2019); DOI:10.1038/s41565-019-0559-y.
  4. A. Ciarrocchi, D. Unuchek, A. Avsar, K. Watanabe, T. Taniguchi, A. Kis. Polarization Switching and Electrical Control of Interlayer Excitons in Two-Dimensional van Der Waals Heterostructures. Nature Photonics (2018); DOI:10.1038/s41566-018-0325-y.
  5. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi, A. Kis. Room-Temperature Electrical Control of Exciton Flux in a van Der Waals Heterostructure.
    Nature (2018); DOI:10.1038/s41586-018-0357-y.
  6. Lopez Sanchez, O., D. Lembke, M. Kayci, A. Radenovic, A. Kis. Ultrasensitive Photodetectors Based on Monolayer MoS2Nature Nanotechnology 8, 497–501 (2013); DOI:10.1038/nnano.2013.100.