Integrated actuators – Prof. Y. Perriard
Note: Projects are intended for Microengineering, Electrical Engineering, Computer Science and Mechanical Engineering sections.
For information and registrations contact:
- Prof. Yves Perriard at: [email protected]
- Paolo Germano at: [email protected]
For opportunities to carry out a Master Project in foreign academic institutions or with one of our Swiss industrial partners, please contact Prof. Y. Perriard.
Transportation fees between EPFL and Neuchâtel will be covered.
- Project # 1 – Design and fabrication of transparent stretchable electrodes
- Simon Holzer; Armando Walter
The Center for Artificial Muscles (CAM) in Neuchâtel is specialised to develop soft robots with applications in medicine and biotechnology [1]. The technology used for artificial muscles are dielectric elastomer actuators (DEA). A DEA consist of a dielectric elastomer which is sandwiched in between two compliant electrodes. These electrodes are normally based on carbon or metals. Unfortunately, the electrodes are usually not transparent.
Project background: The use of transparent electrodes is aimed for the extension of the application of artificial muscles. Transparent electrodes allow the use of dielectric elastomer actuators in applications where optics are used, for example as lenses with adjustable focus or in use together with optical microscopy [2].
Project description: In this project, the student work towards transparent electrodes. Therefore, the design, fabrication and functionality of a novel electrode will be investigated. The creation of a state of the art, as well as the implementation of the fabrication process are some of the tasks of the student. During the project, the student will also work in a cleanroom environment, gaining valuable experience in the manufacture of soft robots.
Keywords: Soft robotics, dielectric elastomer actuators, Cleanroom environment, Stretchable transparent electrodes[2]
[1]: Holzer, Simon, et al. “Design and Characterization of an Equibiaxial Multi-Electrode Dielectric Elastomer Actuator.” Materials 18.8 (2025): 1693. https://doi.org/10.1088/1361-665X/adae6a
[2]: Zhong, H., Xue, Q., Li, J., He, Y., Xie, Y. and Yang, C. (2022). Stretchable Transparent Polyelectrolyte Elastomers for All-Solid Tunable Lenses of Excellent Stability Based on Electro–Mechano–Optical Coupling. Advanced Materials Technologies. https://doi.org/10.1002/admt.202200947
. - Project # 2 – Mesh reinforcement for soft artificial muscle
- Markus Koenigsdorff
DEAs have captured attention in recent years for their ability to function as soft actuators, opening exciting possibilities in implantable biomedical devices and bioinspired robotics. One particularly promising application is the restoration of facial movement in patients suffering from paralysis, where artificial muscles could one day replace damaged or non-functioning facial muscles.
However, while natural muscles contract upon activation, traditional DEAs expand in-plane—posing a key design challenge for muscle mimicking. This project aims to tackle that challenge by integrating mesh reinforcement structures into DEA systems, enabling contractile motion that replicates real muscle behaviour.
As part of this project, you will:
– Conduct a comprehensive state-of-the-art review on soft actuators, muscle-mimicking technologies, and reinforcement strategies in DEAs.
– Fabricate and experimentally test soft actuator prototypes with contractile capabilities.
– Integrate the actuator into a demonstrator to showcase its practical potential.
This is a highly interdisciplinary project ideal for students with interests in biomedical engineering, materials science, mechanical design, and robotics. If you’re looking to work on meaningful, hands-on research at the frontier of medical innovation and soft robotics, this is your opportunity.
References:
Stefania Konstantinidi et al 2025 Smart Mater. Struct. 34 055006
. - Project # 3 – Variable stiffness insole for randomized plantar pressure distribution
- Maël Dagon
Context
One of the typical complications of diabetes is foot insensitivity, caused by peripheral neuropathy. It is estimated that 19-34% of the diabetic population will develop an ulcer during their life, which can lead to amputations. Diabetic foot ulcers (DFUs) are caused by poor plantar pressure (PP) distribution, induced by the lack of sensitivity in the plantar area (figure 1). In the world, one amputation due to diabetic foot ulcers is performed every 20 seconds!
Objective
One way to prevent lasting high-pressure points in the plantar area is to actively randomize the pressure distribution. The aim of this project is to use rotating disks made from several sections of materials of different stiffnesses. The rotation of the disks allows a redistribution of the insole stiffness pattern and avoid lasting high-pressure points (figure 2).
Content of the project
Disks design and fabrication: Find a material for the disks, tune the stiffness of each section to allow stiffness variation across the insole.
Actuation and control: Assess how many actuators are needed for good randomization of the plantar pressure and find suitable actuators for the rotation of the disks. Integrate electronics and a battery for embedded actuation and control of the disks in the insole.
Insole design: Design a layout of the system for maximum plantar coverage. Integrate the disks, actuators and electronics into a prototype insole.
Field tests: Using a provided pressure sensing insole, perform experiments to assess the performance of the insole regarding plantar pressure randomization.
Note: The project can be conducted in collaboration with an industrial partner (https://sti.epfl.ch/master-projects-in-industry/).
Profile
Type of work: 20% theory / 50% hardware / 10% software / 20% experiments
– Good hardware and hands-on experience
– Basic microcontrollers and control experience
– Ability to work autonomously
– Ability to setup and conduct relevant experimental tests
Figure 1 Armstrong et al., “Diabetic Foot Ulcers and Their Recurrence,” New England Journal of Medicine, 2017.
Figure 2 Illustrative sketch of the concept to be developed.
. - Project # 4 – Modèle complet de moteur électrique synchrone haute vitesse
- Prof. Yves Perriard
Projet de master en entreprise, Master génie électrique, microtechnique ou autre domaine connexe
Durée : 4 à 6 mois, début à convenir
Lieu du projet : locaux de l’entreprise à Ecublens (VD)
L’Entreprise : Mabuchi Motor Electromag
Electromag conçoit et produit des moteurs brushless à hautes performances, silencieux et à haute vitesse, principalement pour l’industrie médicale.
Département R&D (développement produit)
Description de la mission
L’objectif du projet est d’établir un modèle complet des moteurs électriques produits par Electromag, avec une modélisation détaillée de chaque type de pertes, modélisation de l’échauffement et des caractéristiques et performances électromécaniques. Le projet s’appuiera sur les travaux précédents déjà effectués dans l’entreprise, qui regroupe des modèles déjà existants : l’objectif est de les rassembler, les compléter et les synthétiser en un modèle global.
Une étude bibliographique des méthodes de modélisation des paramètres électromécaniques (résistance, inductance, flux), du comportement thermique et des différents types de pertes (pertes fer, pertes Joule, friction des roulements, pertes par courants de Foucault dans les bobinages, pertes aérauliques, pertes par courants de Foucault dans les aimants…) sera effectuée. Un modèle détaillé sera établi (modèle électromécanique, thermique et des pertes), et des essais de caractérisation pour valider et affiner séparément les différents éléments du modèle (mesures avec rotor non aimanté, sans bobine, échauffement transitoire…).
Éléments de la mission confiée :
– Étude bibliographique sur les modèles électromécaniques, thermique et de pertes
– Développement d’un moteur électromécanique à partir des travaux préexistants (flux, résistance inductance), affinage du modèle en le confrontant aux différents moteurs du catalogue
– Développement d’un modèle de pertes pour chaque type de pertes
– Caractérisation expérimentale des pertes par séparation (mesure indépendante de chaque type de pertes à l’aide de maquettes partielles) pour affiner les modèles de pertes
– Développement d’un modèle thermique simplifié du moteur
– Caractérisation thermique expérimental (mesures d’échauffement transitoire)
– Réalisation d’un outil de modélisation global
– Documentation de l’outil global et rédaction de mode d’emploi
Logiciels utilisés : Scilab, FEMM
Profil recherché
Étudiant en dernière année d’école d’ingénieur ou Master
– Autonomie et esprit d’initiative
– Compétences analytiques avancées et rigueur dans la documentation
– Connaissance de la modélisation et de la simulation des moteurs électriques à aimants permanents
– Bonne capacité à préparer et mener des expériences
– Bonne aptitude à gérer plusieurs tâches simultanément et à collaborer en équipe.
– Une connaissance de Matlab ou Scilab est un plus
.