Publications

Journal Articles
Google Scholar profile; ORCID ID
*: corresponding author; #: equal contribution
Soft Cancer Cells Squeeze Through T cell’s Grip
Matter 2022, 5, 2510-2513.
Microfluidic T Cell Selection by Cellular Avidity
Adv. Healthcare Mater. 2022, 2200169.
BCG Hydrogel Promotes CTSS-Mediated Antigen Processing and Presentation, Thereby Suppressing Metastasis and Prolonging Survival in Melanoma
J. ImmunoTher. Cancer. 2022, 10, e004133.
Cancer-Cell Stiffening via Cholesterol Depletion Enhances Adoptive T-cell Therapy
Nature Biomedical Engineering. 2021, 5, 1411-1425. Full-text available. Highlighted by Editorial of Nature Biomedical Eningeering, Volume 5 Issue 12, December 2021.
Highlighted: EPFL News ; RTS ; Le Matin ; Medical Press
Delivery of STING agonists for adjuvanting subunit vaccines
Advanced Drug Delivery Reviews. 2021, 179, 114020.
Switchable Immune Modulator for Tumor-Specific Activation of Anticancer Immunity
Science Advances. 2021, 7, eabg7291.
Highlighted: EPFL News ; RCI-Radio Canada ; Mirage News ; Medical Press
A Manganese Phosphate Nanocluster Activates the cGAS-STING Pathway for Enhanced Cancer Immunotherapy
Advanced Therapeutics. 2021, 4, 2100065.
Metabolic Reprogramming of Terminally Exhausted CD8+ T cells by IL-10 Enhances Anti-Tumor Immunity
Nature Immunology. 2021, 22, 746-756. Full-text available. Cover story of Nature Immunology, Volume 22 Issue 6, June 2021.
Highlighted: EPFL News ; RTS ; ACIR ; Nature middle east
Cytokine Engineering for Targeted Cancer Immunotherapy
Current Opinion in Chemical Biology. 2021, 62, 43-52.
T cell force-responsive delivery of anticancer drugs using mesoporous silica microparticles
Materials Horizons. 2020, 7, 3196-3200. Cover story of Materials Horizons Issue 12, December.
Highlighted: EPFL News; Materials Horizons Emerging Investigator Series.
Mechanical Immunoengineering of T cells for Therapeutic Applications
Accounts of Chemical Research. 2020, 53, 12, 2777–2790.
Central memory CD8+ T cells derive from stem-like Tcf7hi effector cells in the absence of cytotoxic differentiation
Immunity. 2020, 53, 5, 985-1000.
Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion
Nature Immunology. 2020, 21, 1540–1551.
Redox-Responsive Polycondensate Neoepitope for Enhanced Personalized Cancer Vaccine
ACS Central Science. 2020, 6, 3, 404–412.
Highlighted: EPFL News
Synthetic 3D scaffolds for cancer immunotherapy
Curr. Opin. Biotechnol.. 2020, 65, 1-8.
Regulatory T Cells Engineered with TCR-Signaling-Responsive IL-2 Nanogels Suppress Alloimmunity in Sites of Antigen Encounter
Science Translational Medicine. 2020, 12, eaaw4744.
Donor-Cell Engineering with GSK3 Inhibitor-Loaded Nanoparticles Enhances Engraftment Following in Utero Transplantation
Blood. 2019, 34 (22): 1983–1995.
A Magnetic Nanovaccine Enhances Cancer Immunotherapy
ACS Central Science. 2019, 5, 747-749. DOI: 10.1021/acscentsci.9b00325.
Redox-Responsive Interleukin-2 Nanogel Specifically and Safely Promotes the Proliferation and Memory Precursor Differentiation of Tumor-Reactive T-Cells
Biomaterials Science. 2019, 7, 1345-1357. DOI: 10.1039/c8bm01556b. Invited contribution as Biomaterials Science Emerging Investigator
Surgery-free injectable macroscale biomaterials for local cancer immunotherapy
Biomaterials Science. 2019, 7, 733-749. DOI : 10.1039/c8bm01470a. Invited review.
Engineering Cancer Vaccines Using Stimuli-Responsive Biomaterials
Nano Research. 2018, 11, 5355–5371. DOI : 10.1007/s12274-018-2162-1. Invited review. Special issue: 2018 Nano Research Young Innovators (NR45) Award in nanobiotechnology
Enhancing T-cell Therapy Through TCR Signaling-Responsive Nanoparticle Drug Delivery
Nature Biotechnology. 2018, 36, 707-716. DOI : 10.1038/nbt.4181. Cover story of Nature Biotechnology, Volume 36 Issue 8, August 2018. News & Views “A backpack revs up T-cell activity” in Nat. Biotech.
Highlighted: MIT News, EPFL News, EurekAlert!, Phys.org, Nanowerk, My Science, eCancer, Health Canal, Medindia, Madrid, UPI.com, Science and Enterprise, Brinkwire, Sina, BioArt
Neoantigen Vaccine Delivery for Personalized Anticancer Immunotherapy
Frontiers in Immunology. 2018, 9, 1499. DOI : 10.3389/fimmu.2018.01499. Invited review, total views 24,392.
Albumin as a “Trojan Horse” for polymeric nanoconjugate transendothelial transport across tumor vasculatures for improved cancer targeting
Biomaterials Science. 2018, 6, 1189-1200. DOI : 10.1039/c8bm00149a.
Immunoengineering with Biomaterials for Enhanced Cancer Immunotherapy
WIREs Nanomed. Nanobiotechnol. 2018, 10, e1506. DOI : 10.1002/wnan.1506. Invited review.
Enhancing Adoptive Cell Therapy of Cancer through Targeted Delivery of Small-Molecule Immunomodulators to Internalizing or Noninternalizing Receptors
ACS Nano. 2017, 11, 3089-3100. DOI : 10.1021/acsnano.7b00078.
High-Throughput Quantitation of Inorganic Nanoparticle Biodistribution at the Single-Cell Level Using Mass Cytometry
Nature Communications. 2017, 8, 14069. DOI : 10.1038/ncomms14069.
Selective in vivo Metabolic Cell-Labeling-Mediated Cancer Targeting
Nature Chemical Biology. 2017, 13, 415-424. DOI : 10.1038/nchembio.2297.
Pamidronate Functionalized Nanoconjugates for Targeted Therapy of Focal Skeletal Malignant Osteolysis
Proc. Natl. Acad. Sci. 2016, 113, E4601-4609. DOI : 10.1073/pnas.1603316113.
Highlighted: NIH Director’ Blog, FierceBiotech, Noodles, EurekAlert!, Technology.org, Nanotechnology Now, Drug Discovery & Development, Bioscience technology, Azonano, Science Daily, Laboratory Journal, Phys.org, Nanowerk, Engineering at Illinois.
In Vivo Targeting of Metabolically Labeled Cancers with Ultra-Small Silica Nanoconjugates
Theranostics. 2016, 6, 1467-1476. DOI : 10.7150/thno.16003.
Targeted Delivery of Immunomodulators to Lymph Nodes
Cell Reports. 2016, 15, 1202-1213. DOI : 10.1016/j.celrep.2016.04.007.
Prior to EPFL
Targeting Tumor Vasculature with Aptamer Functionalized Doxorubicin-Polylactide Nanoconjugates for Enhanced Cancer Therapy
ACS Nano. 2015, 9, 5072-5081. DOI : 10.1021/acsnano.5b00166.
Biomaterial Strategies for Immunomodulation
Annu. Rev. Biomed. Eng. 2015, 17, 317-349. DOI : 10.1146/annurev-bioeng-071813-104814.
Bioorthogonal Oxime Ligation Mediated In Vivo Cancer Targeting
Chemical Science. 2015, 6, 2182-2186. DOI : 10.1039/C5SC00063G.
Investigating the Optimal Size of Anticancer Nanomedicine
Proc. Natl. Acad. Sci. 2014, 111, 15344-15349. DOI : 10.1073/pnas.1411499111. Highlighted: Engineering at Illinois, Nanowerk, MedicalXpress, Science Daily, Nanotechnology Now, Daily News, EurekAlert!, Azonano, Health Canal, Bionity, Controlled Environments, Technology Org., Nature Science-Business eXchange 7(43); doi:10.1038/scibx.2014.1275.
Smart Chemistry in Polymeric Nanomedicines
Chem. Soc. Rev. 2014, 43, 6982-7012. DOI : 10.1039/C4CS00133H.
Nonporous Silica Nanoparticles for Nanomedicine Applications
Nano Today. 2013, 8, 290-312. DOI : 10.1016/j.nantod.2013.04.007.
Size-Dependent Tumor Penetration and In Vivo Efficacy of Monodisperse Drug-silica Nanoconjugates
Mol. Pharm. 2013, 10, 883-892. DOI : 10.1021/mp300684a.
Selective Delivery of an Anticancer Drug with Aptamer-Functionalized Liposomes to Breast Cancer Cells in Vitro and in Vivo.
J. Mater. Chem. B. 2013, 1, 5288-5297. DOI : 10.1039/C3TB20412J.
Redox-Responsive, Core-Cross-Linked Micelles Capable of On-Demand, Concurrent Drug Release and Structure Disassembly
Biomacromolecules. 2013, 14, 3706-3712. DOI : 10.1021/bm401086d.
Chain-Shattering Polymeric Therapeutics with On-Demand Drug-Release Capability
Angew. Chem. Int. Ed. 2013, 52, 6435-6439. DOI : 10.1002/anie.201300497.
Aptamer-Functionalized, Ultra-Small, Monodisperse Silica Nanoconjugates for Targeted Dual-Modal Imaging of Lymph Nodes with Metastatic Tumors
Angew. Chem. Int. Ed. 2015, 51, 12721-12726. DOI : 10.1002/anie.201205271. Highlighted: Nature Science-Business eXchange 5(45); doi:10.1038/scibx.2012.1193.
Synthesis and Biological Response of Size-Specific, Monodisperse Drug-Silica Nanoconjugates
ACS Nano. 2012, 6, 3954-3966. DOI : 10.1021/nn300149c
Immunosuppressive Activity of Size-Controlled PEG-PLGA Nanoparticles Containing Encapsulated Cyclosporine A
J. Transplant. 2012, Article ID 896141. DOI :10.1155/2012/896141.
Targeting Mantle Cell Lymphoma with Anti-SYK Nanoparticles
J. Analy. Oncol. 2012, 1, 1-9. DOI : 10.6000/1927-7229.2012.01.01.1.
The Therapeutic Efficacy of Camptothecin-Encapsulated Supramolecular Nanoparticles
Biomaterials. 2011, 33, 1162-1169. DOI : 10.1016/j.biomaterials.2011.10.044.
Translocation of HIV TAT Peptide and Analogues Induced by Multiplexed Membrane and Cytoskeletal Interactions
Proc. Natl. Acad. Sci. 2011, 108, 16883-16888. DOI : 10.1073/pnas.1108795108.
Polylactide-Cyclosporin A Nanoparticles for Targeted Immunosuppression
FASEB J. 2010, 24, 3927-3938. DOI : 10.1096/fj.10-154690.
Lymphatic Biodistribution of Polylactide Nanoparticles
Mol. Imag. 2010, 9, 153-162.
Polylactide Nanoparticles Containing Stably-Incorporated Cyanine Dyes for In Vitro and In Vivo Imaging Applications
Microsc. Res. Tech. 2010, 73, 901-909. DOI : 10.1002/jemt.20824.
Nanopolymeric Therapeutics
MRS Bulletin. 2009, 34, 422-431. DOI : 10.1557/mrs2009.118.
Immune control of tuberculosis by IFN-gamma-inducible LRG-47Hydrothermal Growth of Large-scale Micropatterned Arrays of Ultralong ZnO Nanowires and Nanobelts on Zinc Substrate
Chem. Commun. 2006, 3551-3553. DOI : 10.1039/B608151G.
Patents
Efficient and Stable Cell Surface Coupling of Nanoparticles
U.S. provisional patent application, 2015.
Carrier-Free Biologically-Active Protein Nanogels
US Patent 20150110740, 2015.
Silica Nanoparticle Agent Conjugates
US 61/418,230, 2010, WO PCT/US2011/062548, 2011 (TF09149).