
Welcome to the Laboratory of Molecular Simulation
Latest News

3rd Edition of Understanding Molecular Simulation
D. Frenkel and B. Smit, Understanding Molecular Simulations: from Algorithms to Applications, 3rd ed. (Academic Press, San Diego, 2023)A copy can be obtained from the Elsevier website https://shop.elsevier.com/books/understanding-molecular-simulation/frenkel/9780323902922, and with the promo code “CHEM30” one can get a 30% reduction.

Cover of Digital Discovery
M. V. Gil, K. M. Jablonka, S. García, C. Pevida, and B. Smit, Biomass to energy: A machine learning model for optimum gasification pathways Digital Discovery 2, 929 (2023) http://dx.doi.org/10.1039/D3DD00079F

Cover of ACS Central Science
An ecosystem for reticular chemistry generated using artificial intelligence.K. M. Jablonka, A. S. Rosen, A. S. Krishnapriyan, and B. Smit, An Ecosystem for Digital Reticular Chemistry ACS Cent Sci 9 (4), 563 (2023) http://dx.doi.org/10.1021/acscentsci.2c01177acscentsci.2c01177Download
Latest publications

Examples of How LLMs Can Transform Materials Science and Chemistry
K. M. Jablonka, Q. Ai, A. Al-Feghali, S. Badhwar, J. D. Bocarsly, A. M. Bran, S. Bringuier, L. C. Brinson, K. Choudhary, D. Circi, S. Cox, W. de Jong, M. Evans, N. Gastellu, J. Genzling, M. V. Gil, A. Gupta, Z. Hong, A. Imran, S. Kruschwitz, A. Labarre, J. Lála, T. Liu, S. Ma, S. (…)

3rd Edition of Understanding Molecular Simulation
D. Frenkel and B. Smit, Understanding Molecular Simulations: from Algorithms to Applications, 3rd ed. (Academic Press, San Diego, 2023) doi: 10.1016/C2009-0-63921-0Understanding Molecular Simulation explains molecular simulation from a chemical-physics and statistical-mechanics perspective. It highlights how physical concepts are used to develop better algorithms and expand the range of applicability of simulations. Understanding Molecular Simulation is equally (…)

Biomass to energy: a machine learning model for optimum gasification pathways
M. V. Gil, K. M. Jablonka, S. Garcia, C. Pevida, and B. Smit, Biomass to energy: a machine learning model for optimum gasification pathways Digital Discovery (2023) doi: 10.1039/D3DD00079FAbstract: Biomass is a highly versatile renewable resource for decarbonizing energy systems. Gasification is a promising conversion technology that can transform biomass into multiple energy carriers to (…)