Prof. Volkan Cevher

Research Interests:

  • Machine Learning
  • Optimization
  • Signal Processing
  • Information Theory

Biography

Volkan Cevher received the B.Sc. (valedictorian) in electrical engineering from Bilkent University in Ankara, Turkey, in 1999 and the Ph.D. in electrical and computer engineering from the Georgia Institute of Technology in Atlanta, GA in 2005. He was a Research Scientist with the University of Maryland, College Park from 2006-2007 and also with Rice University in Houston, TX, from 2008-2009. Currently, he is an Associate Professor at the Swiss Federal Institute of Technology Lausanne and a Faculty Fellow in the Electrical and Computer Engineering Department at Rice University. His research interests include signal processing theory, machine learning, convex optimization, and information theory. Dr. Cevher is an ELLIS fellow and was the recipient of the Google Faculty Research Award on Machine Learning in 2018, IEEE Signal Processing Society Best Paper Award in 2016, a Best Paper Award at CAMSAP in 2015, a Best Paper Award at SPARS in 2009, and an ERC CG in 2016 as well as an ERC StG in 2011.

Publications (most recent)

A 16-Channel Wireless Neural Recording System-on-Chip with CHT Feature Extraction Processor in 65nm CMOS

A. Uran; K. Ture; C. Aprile; A. Trouillet; F. Fallegger et al. 

2021-05-17. 2021 IEEE Custom Integrated Circuits Conference (CICC), Virtual, April 25-30, 2021. DOI : 10.1109/CICC51472.2021.9431458.

Scalable Semidefinite Programming

A. Yurtsever; J. A. Tropp; O. Fercoq; M. Udell; V. Cevher 

SIAM Journal on Mathematics of Data Science. 2021. Vol. 3, num. 1, p. 171–200. DOI : 10.1137/19M1305045.

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

K. Parameswaran; Y-T. Huang; Y-P. Hsieh; P. T. Y. Rolland; C. Shi et al. 

2020-11-05

An AC-Coupled Wideband Neural Recording Front-End With Sub-1 mm2×fJ/conv-step Efficiency and 0.97 NEF

A. Uran; Y. Leblebici; A. Emami; V. Cevher 

IEEE Solid-State Circuits Letters. 2020-08-04. Vol. 3, p. 258-261. DOI : 10.1109/LSSC.2020.3013993.

Machine Learning From Distributed, Streaming Data [From the Guest Editors]

W. U. Bajwa; V. Cevher; D. Papailiopoulos; A. Scaglione 

Ieee Signal Processing Magazine. 2020-05-01. Vol. 37, num. 3, p. 11-13. DOI : 10.1109/MSP.2020.2972654.

Contact

e-mail address: [email protected]


telephone: 0041 21 6930111


Additional links