2023
Surface Passivation of FAPbI3-Rich Perovskite with Cesium Iodide Outperforms Bulk Incorporation
ACS Energy Letters. 2023-05-04. Vol. 8, num. 5, p. 2456-2462. DOI : 10.1021/acsenergylett.3c00609.Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells
Nature Energy. 2023-04-17. DOI : 10.1038/s41560-023-01249-0.Assembling a Photoactive 2D Puzzle: From Bulk Powder to Large- Area Films of Semiconducting Transition-Metal Dichalcogenide Nanosheets
Accounts Of Materials Research. 2023-03-15. DOI : 10.1021/accountsmr.2c00209.Photoelectrochemical CO2 Reduction at a Direct CuInGaS2/Electrolyte Junction
Acs Energy Letters. 2023-03-02. DOI : 10.1021/acsenergylett.3c00022.Enabling Direct Photoelectrochemical H2 Production Using Alternative Oxidation Reactions on WO3
Chimia. 2023-03-01. Vol. 77, num. 3, p. 110-115. DOI : 10.2533/chimia.2023.110.Transparent Porous Conductive Substrates for Gas-Phase Photoelectrochemical Hydrogen Production
Advanced Materials. 2023-01-02. DOI : 10.1002/adma.202208740.Tungsten oxide-based photoanodes: biomass valorization and the effects of oxygen vacancies
Lausanne, EPFL, 2023.2022
Effects of surface wettability on (001)-WO3 and (100)-WSe2: A spin-polarized DFT-MD study
Applied Surface Science. 2022-11-01. Vol. 601, p. 154203. DOI : 10.1016/j.apsusc.2022.154203.Light-Responsive Oligothiophenes Incorporating Photochromic Torsional Switches
Chemistry-A European Journal. 2022-10-31. p. e202202698. DOI : 10.1002/chem.202202698.An Organic Semiconductor Photoelectrochemical Tandem Cell for Solar Water Splitting
Advanced Energy Materials. 2022-09-08. Vol. 12, num. 42, p. 2202363. DOI : 10.1002/aenm.202202363.Covalent Organic Framework Nanoplates Enable Solution-Processed Crystalline Nanofilms for Photoelectrochemical Hydrogen Evolution
Journal Of The American Chemical Society. 2022-06-15. Vol. 144, num. 23, p. 10291-10300. DOI : 10.1021/jacs.2c0143310291.Multiple Effects Induced by Mo6+ Doping in BiVO4 Photoanodes
Solar Rrl. 2022-06-15. p. 2200349. DOI : 10.1002/solr.202200349.Transparency and Morphology Control of Cu2O Photocathodes via an in Situ Electroconversion
ACS Energy Letters. 2022-04-07. Vol. 7, num. 5, p. 1618-1625. DOI : 10.1021/acsenergylett.2c00474.Tuning Napththalenediimide Cations for Incorporation into Ruddlesden–Popper-Type Hybrid Perovskites
Chemistry of Materials. 2022-04-07. Vol. 34, num. 8, p. 3798-3805. DOI : 10.1021/acs.chemmater.2c00246.Bulk Heterojunction Organic Semiconductor Photoanodes: Tuning Energy Levels to Optimize Electron Injection
Acs Applied Materials & Interfaces. 2022-02-07. Vol. 14, num. 6, p. 8191–8198. DOI : 10.1021/acsami.1c21440.Semiconducting two dimensional transition metal dichalcogenides via solution-processable routes
Lausanne, EPFL, 2022.Engineering of PEM-PEC photocathodes for solar-driven hydrogen production
Lausanne, EPFL, 2022.Exploring new avenues for perovskite photovoltaics: Molecular functionalization of layered lead-halide perovskites and defect mitigation in lead-free double perovskites
Lausanne, EPFL, 2022.Organic Semiconductors For Photoelectrochemical Applications
Lausanne, EPFL, 2022.2021
Key factors boosting the performance of planar ZnFe2O4 photoanodes for solar water oxidation
Journal Of Materials Chemistry A. 2021-12-07. Vol. 9, num. 48, p. 27736-27747. DOI : 10.1039/d1ta07499g.Identifying Reactive Sites and Surface Traps in Chalcopyrite Photocathodes
Angewandte Chemie-International Edition. 2021-10-01. Vol. 60, num. 44, p. 23651-23655. DOI : 10.1002/anie.202108994.Mott–Schottky Analysis of Photoelectrodes: Sanity Checks Are Needed
ACS Energy Letters. 2021-07-09. Vol. 6, num. 7, p. 2549-2551. DOI : 10.1021/acsenergylett.1c01245.Benzodithiophene‐Based Spacers for Layered and Quasi‐Layered Lead Halide Perovskite Solar Cells
ChemSusChem. 2021-06-21. Vol. 14, num. 14, p. 3001-3009. DOI : 10.1002/cssc.202100992.Spray Synthesis of CuFeO2 Photocathodes and In-Operando Assessment of Charge Carrier Recombination
Journal Of Physical Chemistry C. 2021-05-27. Vol. 125, num. 20, p. 10883-10890. DOI : 10.1021/acs.jpcc.1c02282.A semiconducting polymer bulk heterojunction photoanode for solar water oxidation
Nature Catalysis. 2021-05-01. Vol. 4, num. 5, p. 431-438. DOI : 10.1038/s41929-021-00617-x.A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion dagger
Energy & Environmental Science. 2021-03-30. Vol. 14, num. 5, p. 3141-3151. DOI : 10.1039/d1ee00152c.Organic Semiconductors as Photoanodes for Solar-driven Photoelectrochemical Fuel Production
Chimia. 2021-03-01. Vol. 75, num. 3, p. 169-179. DOI : 10.2533/chimia.2021.169.A Direct Z-Scheme for the Photocatalytic Hydrogen Production from a Water Ethanol Mixture on CoTiO3/TiO2 Heterostructures
Acs Applied Materials & Interfaces. 2021-01-13. Vol. 13, num. 1, p. 449-457. DOI : 10.1021/acsami.0c17004.Systematic investigations of uranium carbide composites oxidation from micro- to nano-scale: Application to waste disposal
Lausanne, EPFL, 2021.Novel Interfacial Characterization and Surface Engineering in Semiconductor Electrodes for Optimized Solar Fuel Production
Lausanne, EPFL, 2021.Direct photoelectrochemical oxidation of hydroxymethylfurfural on tungsten trioxide photoanodes
RSC Advances. 2021. Vol. 11, num. 1, p. 198-202. DOI : 10.1039/D0RA09989A.Spectroelectrochemical and Chemical Evidence of Surface Passivation at Zinc Ferrite (ZnFe 2 O 4 ) Photoanodes for Solar Water Oxidation
Advanced Functional Materials. 2021. p. 2010081. DOI : 10.1002/adfm.202010081.Defect engineered nanostructured LaFeO3 photoanodes for improved activity in solar water oxidation
Journal of Materials Chemistry. 2021. Vol. A9, num. 5, p. 2888-2898. DOI : 10.1039/D0TA11541J.2020
Crown Ether Modulation Enables over 23% Efficient Formamidinium-Based Perovskite Solar Cells
Journal Of The American Chemical Society. 2020-11-25. Vol. 142, num. 47, p. 19980-19991. DOI : 10.1021/jacs.0c08592.Influence of Composition on Performance in Metallic Iron-Nickel-Cobalt Ternary Anodes for Alkaline Water Electrolysis
Acs Catalysis. 2020-10-16. Vol. 10, num. 20, p. 12139-12147. DOI : 10.1021/acscatal.0c03523.MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr(VI) and oxidation of bisphenol A in aqueous media
Applied Catalysis B-Environmental. 2020-09-05. Vol. 272, p. 119033. DOI : 10.1016/j.apcatb.2020.119033.Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells
Journal Of The American Chemical Society. 2020-07-01. Vol. 142, num. 26, p. 11428-11433. DOI : 10.1021/jacs.0c01704.Generalized Synthesis to Produce Transparent Thin Films of Ternary Metal Oxide Photoelectrodes
Chemsuschem. 2020-06-04. Vol. 13, num. 14, p. 3645-3653. DOI : 10.1002/cssc.202000926.Achieving visible light-driven hydrogen evolution at positive bias with a hybrid copper-iron oxide|TiO2-cobaloxime photocathode
Green Chemistry. 2020-05-21. Vol. 22, num. 10, p. 3141-3149. DOI : 10.1039/d0gc00979b.Understanding Surface Recombination Processes Using Intensity-Modulated Photovoltage Spectroscopy on Hematite Photoanodes for Solar Water Splitting
Helvetica Chimica Acta. 2020-05-07. p. e2000064. DOI : 10.1002/hlca.202000064.FeO-based nanostructures and nanohybrids for photoelectrochemical water splitting
Progress In Materials Science. 2020-05-01. Vol. 110, p. 100632. DOI : 10.1016/j.pmatsci.2019.100632.Establishing Stability in Organic Semiconductor Photocathodes for Solar Hydrogen Production
Journal Of The American Chemical Society. 2020-04-29. Vol. 142, num. 17, p. 7795-7802. DOI : 10.1021/jacs.0c00126.Taking lanthanides out of isolation: tuning the optical properties of metal-organic frameworks
Chemical Science. 2020-04-28. Vol. 11, num. 16, p. 4164-4170. DOI : 10.1039/d0sc00740d.Hydrogenation of ZnFe2O4 Flat Films: Effects of the Pre-Annealing Temperature on the Photoanodes Efficiency for Water Oxidation
Surfaces. 2020-03-12. Vol. 3, num. 1, p. 93-104. DOI : 10.3390/surfaces3010009.Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting
Nature Communications. 2020-01-16. Vol. 11, num. 1, p. 318. DOI : 10.1038/s41467-019-13987-5.2019
Roll-to-Roll Deposition of Semiconducting 2D Nanoflake Films of Transition Metal Dichalcogenides for Optoelectronic Applications
ACS Applied Nano Materials. 2019-11-17. Vol. 2, num. 12, p. 7705-7712. DOI : 10.1021/acsanm.9b01774.In Situ Electrochemical Oxidation of Cu2S into CuO Nanowires as a Durable and Efficient Electrocatalyst for Oxygen Evolution Reaction
Chemistry Of Materials. 2019-09-24. Vol. 31, num. 18, p. 7732-7743. DOI : 10.1021/acs.chemmater.9b02790.Multiarm and Substituent Effects on Charge Transport of Organic Hole Transport Materials
Chemistry of Materials. 2019-09-10. Vol. 31, num. 17, p. 6605-6614. DOI : 10.1021/acs.chemmater.9b00438.Robust Electron Transport Layers via In Situ Cross-Linking of Perylene Diimide and Fullerene for Perovskite Solar Cells
ACS Applied Energy Materials. 2019-09-01. Vol. 2, num. 9, p. 6616-6623. DOI : 10.1021/acsaem.9b01154.In situ and operando spectroelectrochemical techniques for evaluating interfacial carrier behavior in emerging photoelectrodes for solar fuel production
2019-08-25. Fall National Meeting and Exposition of the American-Chemical-Society (ACS), San Diego, CA, Aug 25-29, 2019.Lead Halide Perovskite Quantum Dots to Enhance the Power Conversion Efficiency of Organic Solar Cells
Angewandte Chemie-International Edition. 2019-08-01. Vol. 58, num. 36, p. 12696-12704. DOI : 10.1002/anie.201906803.Porous NiTiO3/TiO2 nanostructures for photocatatalytic hydrogen evolution
Journal Of Materials Chemistry A. 2019-07-28. Vol. 7, num. 28, p. 17053-17059. DOI : 10.1039/c9ta04763h.Solution-Processed Ultrathin SnS2-Pt Nanoplates for Photoelectrochemical Water Oxidation
Acs Applied Materials & Interfaces. 2019-02-20. Vol. 11, num. 7, p. 6918-6926. DOI : 10.1021/acsami.8b17622.Insights into the interfacial carrier behaviour of copper ferrite ( CuFe2O4) photoanodes for solar water oxidation
Journal Of Materials Chemistry A. 2019-01-28. Vol. 7, num. 4, p. 1669-1677. DOI : 10.1039/c8ta11160j.Covalent polymer network semiconducting thin-films and method for producing thereof
WO2019145025.
2019.