2023
Polypyrrole Electrodes Show Strain‐Specific Enhancement of Photocurrent from Cyanobacteria
Advanced Materials Technologies. 2023-04-04. DOI : 10.1002/admt.202201839.Photoluminescence brightening of single-walled carbon nanotubes through conjugation with graphene quantum dots
2023-03-05. DOI : 10.1101/2023.02.28.528463.Living Photovoltaics based on Recombinant Expression of MtrA Decaheme in Photosynthetic Bacteria
2023-03-01. DOI : 10.1101/2023.02.28.530417.Implementation of a flavin biosynthesis operon improves extracellular electron transfer in bioengineered Escherichia coli
2023-01-02
Engineering extracellular electron transfer for enhanced energy harvesting in microbial electrochemical devices
Lausanne, EPFL, 2023.Prediction of mycotoxin response of DNA-wrapped nanotube sensor with machine learning
2023. DOI : 10.1101/2023.09.07.556334.Extracellular electron transfer pathways to enhance the electroactivity of modified Escherichia coli
Joule. 2023. Vol. 7, num. 9, p. 2092-2106. DOI : 10.1016/j.joule.2023.08.006.Directed evolution of nanosensors for the detection of mycotoxins
2023. DOI : 10.1101/2023.06.13.544576.Investigating the effect of inflammation on the progression of B-cell lymphoma dissemination in the sentinel lymph node
Lausanne, EPFL, 2023.Covalent conjugation of proteins onto fluorescent single-walled carbon nanotubes for biological and medical applications
Materials Advances. 2023. Vol. 4, num. 3, p. 823-834. DOI : 10.1039/D2MA00714B.Differential near-infrared imaging of heterocysts using single-walled carbon nanotubes
Photochemical & Photobiological Sciences. 2023. Vol. 22, p. 103–113. DOI : 10.1007/s43630-022-00302-3.2022
Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics
Nature Nanotechnology. 2022-09-19. DOI : 10.1038/s41565-022-01198-x.Bioengineering a glucose oxidase nanosensor for near-infrared continuous glucose monitoring
Nanoscale Advances. 2022-05-04. p. 1-9. DOI : 10.1039/D2NA00092J.Plasmon-induced near-infrared fluorescence enhancement of single-walled carbon nanotubes
Carbon. 2022-04-04. Vol. 194, p. 162-175. DOI : 10.1016/j.carbon.2022.03.040.2021
Tailored extracellular electron transfer pathways enhance the electroactivity of Escherichia coli
bioRxiv. 2021-08-28. DOI : 10.1101/2021.08.28.458029.A simple micropreparative gel electrophoresis technique for purification of proteins, nucleic acids, and bioconjugates
bioRxiv. 2021-05-26. DOI : 10.1101/2021.03.26.436431.Modulating the properties of DNA-SWCNT sensors using chemically modified DNA
bioRxiv. 2021-02-21. DOI : 10.1101/2021.02.20.432105.Distinguishing dopamine and calcium responses using XNA-nanotube sensors for improved neurochemical sensing
bioRxiv. 2021-02-20. DOI : 10.1101/2021.02.20.428669.Biotechnology Applications of Nanocarbons in Plant and Algal Systems
Carbon Nanostructures for Biomedical Applications; Royal Society of Chemistry, 2021-02-15.Directed evolution of DNA-wrapped single-walled carbon nanotube complexes for optical sensing
Lausanne, EPFL, 2021.2020
Site-Specific Protein Conjugation onto Fluorescent Single-Walled Carbon Nanotubes
Chemistry of Materials. 2020-09-18. Vol. 32, num. 20, p. 8798-8807. DOI : 10.1021/acs.chemmater.0c02051.Synthetic Biology: A Solution for Tackling Nanomaterial Challenges
The Journal of Physical Chemistry Letters. 2020-05-22. Vol. 11, p. 4791-4802. DOI : 10.1021/acs.jpclett.0c00929.Transport and programmed release of nanoscale cargo from cells by using NETosis
Nanoscale. 2020-04-28. Vol. 12, num. 16, p. 9104-9115. DOI : 10.1039/d0nr00864h.Banning carbon nanotubes would be scientifically unjustified and damaging to innovation
Nature Nanotechnology. 2020-03-10. Vol. 15, p. 164–166. DOI : 10.1038/s41565-020-0656-y.Design of Optimized PEDOT‐Based Electrodes for Enhancing Performance of Living Photovoltaics Based on Phototropic Bacteria
Advanced Materials Technologies. 2020-02-13. p. 1-9, 1900931. DOI : 10.1002/admt.201900931.Sensing platform
EP4163635; US2022333154; CN115197995; US2022315979; JP2022130615; JP2022538067; AU2022204551; KR20220098272; CN114599793; EP3987049; KR20220035138; AU2020294875; LU101273; WO2020254336.
2020.Establishing a Ternary System for Optical Monitoring of DNA-Protein Interactions with Single-Walled Carbon Nanotubes
Lausanne, EPFL, 2020.Optical Biosensors for Improved Neurochemical Sensing Using Single-Walled Carbon Nanotubes
Lausanne, EPFL, 2020.Interaction of Fluorescent Single-Walled Carbon Nanotubes with Photosynthetic Microbes
Lausanne, EPFL, 2020.2019
Templating colloidal sieves for tuning nanotube surface interactions and optical sensor responses
Journal of Colloid and Interface Science. 2019-12-21. Vol. 565, p. 55-62. DOI : 10.1016/j.jcis.2019.12.058.Non-covalent Methods of Engineering Optical Sensors Based on Single-Walled Carbon Nanotubes
Frontiers in Chemistry. 2019-09-19. Vol. 7, num. 612. DOI : 10.3389/fchem.2019.00612.Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials
Nano Research. 2019-06-11. Vol. 12, p. 2184–2199. DOI : 10.1007/s12274-019-2438-0.Analytical Approaches for Monitoring DNA–Protein Interactions
CHIMIA International Journal for Chemistry. 2019-04-01. Vol. 73, num. 4, p. 283-287. DOI : 10.2533/chimia.2019.283.Directed evolution of the optoelectronic properties of synthetic nanomaterials
Chemical Communications. 2019-02-27. Vol. 55, num. 1, p. 3239-3242. DOI : 10.1039/C8CC08670B.Protein Bioconjugation to Carbon Nanotubes for Near-Infrared Sensing
Lausanne, EPFL, 2019.2018
Restriction Enzyme Analysis of Double-Stranded DNA on Pristine Single-Walled Carbon Nanotubes
ACS Applied Materials & Interfaces. 2018-10-02. Vol. 10, num. 43, p. 37386-37395. DOI : 10.1021/acsami.8b12287.Spinning-disc confocal microscopy in the second near-infrared window (NIR-II)
Scientific Reports. 2018-09-13. Vol. 8, num. 1, p. 1-1-. DOI : 10.1038/s41598-018-31928-y.Xeno Nucleic Acid Nanosensors for Enhanced Stability Against Ion-Induced Perturbations
The Journal of Physical Chemistry Letters. 2018-07-13. Vol. 9, num. 15, p. 4336-4343. DOI : 10.1021/acs.jpclett.8b01879.2017
Mediatorless, Reversible Optical Nanosensor Enabled through Enzymatic Pocket Doping
Small. 2017. Vol. 1701654, p. 1-10. DOI : 10.1002/smll.201701654.A synthetic biology approach to engineering living photovoltaics
Energy & Environmental Science. 2017. Vol. 10, num. 5, p. 1102-1115. DOI : 10.1039/C7EE00282C.Noncovalent Protein and Peptide Functionalization of Single-Walled Carbon Nanotubes for Biodelivery and Optical Sensing Applications
ACS Applied Materials and Interfaces. 2017. Vol. 9, num. 13, p. 11321–11331. DOI : 10.1021/acsami.7b00810.2016
Living on the Edge: Re-shaping the Interface of Synthetic Biology and Nanotechnology
Chimia. 2016. Vol. 70, num. 11, p. 773-779. DOI : 10.2533/chimia.2016.773.Engineering the Selectivity of the DNA-SWCNT Sensor
Journal of Solid State Science and Technology. 2016. Vol. 5, num. 8, p. M3067-M3074. DOI : 10.1149/2.0111608jss.2015
Applications of Nanoparticles for Reactive Oxygen Species (ROS) Scavenging in Photosynthetic Systems
2015. 227th ECS Meeting, Chicago, Illinois, USA, May 24-28, 2015. DOI : 10.1149/06612.0001ecst.2014
Spatiotemporal Intracellular Nitric Oxide Signaling Captured Using Internalized, Near-Infrared Fluorescent Carbon Nanotube Nanosensors
Nano Letters. 2014. Vol. 14, p. 4887-4894. DOI : 10.1021/nl502338y.Plant nanobionics approach to augment photosynthesis and biochemical sensing [Erratum to document cited in CA160:482675]
Nature Materials. 2014. Vol. 13, p. 530. DOI : 10.1038/nmat3947.Plant nanobionics approach to augment photosynthesis and biochemical sensing
Nature materials. 2014. Vol. 13, num. 4, p. 400-408. DOI : 10.1038/nmat3890.2013
Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes
Nature Nanotechnology. 2013. Vol. 8, p. 959-968. DOI : 10.1038/nnano.2013.236.Effect of Reductive Dithiothreitol and Trolox on Nitric Oxide Quenching of Single-Walled Carbon Nanotubes
Journal of Physical Chemistry C. 2013. Vol. 117, p. 593-602. DOI : 10.1021/jp307175f.Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting
Advanced Energy Materials. 2013. Vol. 3, p. 881-893. DOI : 10.1002/aenm.201201014.2012
Observation of Oscillatory Surface Reactions of Riboflavin, Trolox, and Singlet Oxygen Using Single Carbon Nanotube Fluorescence Spectroscopy
ACS Nano. 2012. Vol. 6, p. 10632-10645. DOI : 10.1021/nn303716n.NoRSE: noise reduction and state evaluator for high-frequency single event traces
Bioinformatics. 2012. Vol. 28, p. 296-297. DOI : 10.1093/bioinformatics/btr632.An Engineering Analysis of Natural and Biomimetic Self-Repair Processes for Solar Energy Harvesting
2012.2011
Single Molecule Detection of Nitric Oxide Enabled by d(AT)15 DNA Adsorbed to Near Infrared Fluorescent Single-Walled Carbon Nanotubes
Journal of the American Chemical Society. 2011. Vol. 133, p. 567-581. DOI : 10.1021/ja1084942.Periplasmic Binding Proteins as Optical Modulators of Single-Walled Carbon Nanotube Fluorescence: Amplifying a Nanoscale Actuator
Angewandte Chemie, International Edition. 2011. Vol. 50, num. 8, p. 1828-1831. DOI : 10.1002/anie.201006167.Applicability of Birth-Death Markov Modeling for Single-Molecule Counting Using Single-Walled Carbon Nanotube Fluorescent Sensor Arrays
Journal of Physical Chemistry Letters. 2011. Vol. 2, p. 1690-1694. DOI : 10.1021/jz200572b.Transduction of Glycan-Lectin Binding Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes for Glycan Profiling
Journal of the American Chemical Society. 2011. Vol. 133, p. 17923-17933. DOI : 10.1021/ja2074938.Single-Molecule Detection of H2O2 Mediating Angiogenic Redox Signaling on Fluorescent Single-Walled Carbon Nanotube Array
ACS Nano. 2011. Vol. 5, p. 7848-7857. DOI : 10.1021/nn201904t.Peptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics
Proceedings of the National Academy of Sciences of the United States of America. 2011. Vol. 108, p. 8544-8549. DOI : 10.1073/pnas.1005512108.The chemical dynamics of nanosensors capable of single-molecule detection
Journal of Chemical Physics. 2011. Vol. 135, p. 084124/1-084124/10. DOI : 10.1063/1.3606496.Near-Infrared Fluorescent Sensors based on Single-Walled Carbon Nanotubes for Life Sciences Applications
ChemSusChem. 2011. Vol. 4, p. 848-863. DOI : 10.1002/cssc.201100070.Biomimetic strategies for solar energy conversion: a technical perspective
Energy & Environmental Science. 2011. Vol. 4, p. 3834-3843. DOI : 10.1039/c1ee01363g.Dynamic and reversible self-assembly of photoelectrochemical complexes based on lipid bilayer disks, photosynthetic reaction centers, and single-walled carbon nanotubes
Langmuir. 2011. Vol. 27, p. 1599-1609. DOI : 10.1021/la103469s.Label-Free, Single Protein Detection on a Near-Infrared Fluorescent Single-Walled Carbon Nanotube/Protein Microarray Fabricated by Cell-Free Synthesis
Nano Letters. 2011. Vol. 11, p. 2743-2752. DOI : 10.1021/nl201033d.2010
Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes
Nature Nanotechnology. 2010. Vol. 5, p. 302-309. DOI : 10.1038/nnano.2010.24.Single-molecule optical detection of nitroaromatic compounds by carbon nanotubes
2010. p. INOR-454.Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate
Nature Chemistry. 2010. Vol. 2, p. 929-936. DOI : 10.1038/nchem.822.Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate
2010. p. COLL-510.2009
The chemistry of single-walled nanotubes
MRS Bulletin. 2009. Vol. 34, p. 950-961. DOI : 10.1557/mrs2009.218.
BOOK CHAPTERS |
Biomimetic Self-Repair of Nanotube-Based Complexes for the Regeneration of Photoactivity A. A. Boghossian, M. H. Ham, J. H. Choi, M. S. Strano in Self-Healing at the Nanoscale, Taylor & Francis 2012. |
Self-Repairing Photoelectrochemical Complexes Based on Nanoscale Synthetic and Biological Components M. H. Ham, A. A. Boghossian, J. H. Choi, M .S. Strano, M.S. in Encyclopedia of Nanotechnology, Springer 2012. |
Biotechnology Applications of Nanocarbons in Plant and Algal Systems
A. Antonucci, A.J. Gillen, A.A. Boghossian in Carbon Nanomaterials for Biomedical Applications, Royal Society of Chemistry 2021