Rescue of myocytes and locomotion through AAV2/9-2YF intracisternal gene therapy in a rat model of creatine transporter deficiency

G. Fernandes-Pires; M. D. Azevedo; M. Lanzillo; C. Roux-Petronelli; P-A. Binz et al. 

Molecular Therapy Methods & Clinical Development. 2024-06-13. Vol. 32, num. 2, p. 101251. DOI : 10.1016/j.omtm.2024.101251.

Involvement of prelimbic cortex neurons and related circuits in the acquisition of a cooperative learning by pairs of rats

A. R. Conde-Moro; F. Rocha-Almeida; E. Gebara; J. M. Delgado-Garcia; C. Sandi et al. 

Cognitive Neurodynamics. 2024-05-03. DOI : 10.1007/s11571-024-10107-y.

Value Estimation versus Effort Mobilization: A General Dissociation between Ventromedial and Dorsomedial Prefrontal Cortex

N. Clairis; M. Pessiglione 

Journal Of Neuroscience. 2024-04-24. Vol. 44, num. 17, p. e1176232024. DOI : 10.1523/JNEUROSCI.1176-23.2024.

Adolescent Stress-Induced Ventral Hippocampus Redox Dysregulation Underlies Behavioral Deficits and Excitatory/Inhibitory Imbalance Related to Schizophrenia

T. Santos-Silva; C. F. B. Lopes; D. Hazar Ülgen; D. A. Guimarães; F. S. Guimarães et al. 

Schizophrenia Bulletin. 2024.  p. 1-12. DOI : 10.1093/schbul/sbae033.

The brain’s go-getter circuit: Anterior cingulate cortex to nucleus accumbens and its disruption by stress

S. Astori; C. Sandi 

Neuron. 2024. Vol. 112, num. 3, p. 333-335 . DOI : 10.1016/j.neuron.2024.01.009.


Brain mitochondrial diversity and network organization predict anxiety-like behavior in male mice

A. M. Rosenberg; M. Saggar; A. S. Monzel; J. Devine; P. Rogu et al. 

Nature Communications. 2023-08-10. Vol. 14, num. 1. DOI : 10.1038/s41467-023-39941-0.

Debates on the dorsomedial prefrontal/dorsal anterior cingulate cortex: insights for future research

N. Clairis; A. Lopez-Persem 

Brain. 2023-08-02. Vol. 146, num. 12, p. 4826-4844. DOI : 10.1093/brain/awad263.

A response to claims of emergent intelligence and sentience in a dish

F. Balci; S. Ben Hamed; T. Boraud; S. Bouret; T. Brochier. et al. 

Neuron. 2023-03-01. Vol. 111, num. 5, p. 604-605. DOI : 10.1016/j.neuron.2023.02.009.

Commentary: Alpha(1)-adrenergic receptor blockade in the ventral tegmental area attenuates acquisition of cocaine-induced pavlovian associative learning

A. Lasne; M. Simos; L. Constantin; B. D. D. McCabe; C. Sandi 

Frontiers In Behavioral Neuroscience. 2023-02-23. Vol. 17, p. 1147507. DOI : 10.3389/fnbeh.2023.1147507.

Glucocorticoid-based pharmacotherapies preventing PTSD

A. Florido; E. R. Velasco; S. Monari; M. Cano; N. Cardoner et al. 

Neuropharmacology. 2023-02-15. Vol. 224, p. 109344. DOI : 10.1016/j.neuropharm.2022.109344.

Epigenome-wide DNA methylation in externalizing behaviours: A review and combined analysis

M. Meijer; B. Franke; C. Sandi; M. Klein 

Neuroscience And Biobehavioral Reviews. 2023-01-10. Vol. 145, p. 104997. DOI : 10.1016/j.neubiorev.2022.104997.

Transcriptomic analysis reveals mitochondrial pathways associated with distinct adolescent behavioral phenotypes and stress response

T. Santos-Silva; D. H. Ülgen; C. F. B. Lopes; F. S. Guimarães; L. C. Alberici et al. 

Translational Psychiatry. 2023. Vol. 13, num. 1. DOI : 10.1038/s41398-023-02648-3.

Blunted Glucocorticoid Responsiveness to Stress Causes Behavioral and Biological Alterations That Lead to Posttraumatic Stress Disorder Vulnerability

S. Monari; I. Guillot de Suduiraut; J. Grosse; O. Zanoletti; S. E. Walker et al. 

Biological Psychiatry. 2023. DOI : 10.1016/j.biopsych.2023.09.015.

Mitofusin-2 in nucleus accumbens D2-MSNs regulates social dominance and neuronal function

S. Ghosal; E. G. Gebara; E. Ramos Fernandez; A. Chioino; J. Grosse et al. 

Cell Reports. 2023. Vol. 42, num. 7, p. 112776. DOI : 10.1016/j.celrep.2023.112776.

Powering the social brain: Mitochondria in social behaviour

D. H. Ülgen; S. R. Ruigrok; C. Sandi 

Current Opinion in Neurobiology. 2023. Vol. 79, p. 102675. DOI : 10.1016/j.conb.2022.102675.


Acquisition-dependent modulation of hippocampal neural cell adhesion molecules by associative motor learning

J. D. Navarro-Lopez; A. Contreras; K. Touyarot; A. Herrero; C. Venero et al. 

Frontiers In Neuroanatomy. 2022-12-21. Vol. 16, p. 1082701. DOI : 10.3389/fnana.2022.1082701.

Deletion of Crtc1 leads to hippocampal neuroenergetic impairments associated with depressive-like behavior

A. Cherix; C. Poitry-Yamate; B. Lanz; O. Zanoletti; J. Grosse et al. 

Molecular Psychiatry. 2022-10-12. DOI : 10.1038/s41380-022-01791-5.

Pre-pandemic Psychobiological Features Predict Impact of COVID-19 Confinement on Loneliness

S. Baliyan; J. M. Cimadevilla; M. M. Pulopulos; L. Castillejo; C. Sandi et al. 

Frontiers In Psychology. 2022-04-28. Vol. 13, p. 874232. DOI : 10.3389/fpsyg.2022.874232.

Paradoxical neuronal hyperexcitability in a mouse model of mitochondrial pyruvate import deficiency

A. De la Rossa; M. H. Laporte; S. Astori; T. Marissal; S. Montessuit et al. 

Elife. 2022-02-21. Vol. 11, p. e72595. DOI : 10.7554/eLife.72595.

Cultural Adaptation, Validation, and Psychometric Description of the Pictorial Empathy Test (PET) in the Spanish Population

S. Baliyan; J. Manuel Cimadevilla; A. Bustillos; J. Castillo Escamilla; M. Leiman et al. 

European Journal Of Psychological Assessment. 2022-02-01. DOI : 10.1027/1015-5759/a000690.

Glutathione in the nucleus accumbens regulates motivation to exert reward-incentivized effort

I. Zalachoras; E. Ramos-Fernández; F. Hollis; L. Trovo; J. Rodrigues et al. 

eLife. 2022. Vol. 11, p. 1-28, e77791. DOI : 10.7554/eLife.77791.

Signatures of life course socioeconomic conditions in brain anatomy

L. Loued‐Khenissi; O. Trofimova; P. Vollenweider; P. Marques‐Vidal; M. Preisig et al. 

Human Brain Mapping. 2022. Vol. 43, num. 8, p. 2582-2606. DOI : 10.1002/hbm.25807.

eNAMPT actions through nucleus accumbens NAD + /SIRT1 link increased adiposity with sociability deficits programmed by peripuberty stress

L. Morató; S. Astori; I. Zalachoras; J. Rodrigues; S. Ghosal et al. 

Science Advances. 2022. Vol. 8, num. 9. DOI : 10.1126/sciadv.abj9109.

Opposite effects of stress on effortful motivation in high and low anxiety are mediated by CRHR1 in the VTA

I. Zalachoras; S. Astori; M. Meijer; J. Grosse; O. Zanoletti et al. 

Science Advances. 2022. Vol. 8, num. 12. DOI : 10.1126/sciadv.abj9019.

Hypothalamic pregnenolone mediates recognition memory in the context of metabolic disorders

S. Ramírez; R. Haddad-Tóvolli; M. Radosevic; M. Toledo; A. Pané et al. 

Cell Metabolism. 2022. Vol. 34, num. 2, p. 269-284.e9. DOI : 10.1016/j.cmet.2021.12.023.

Creatine transporter-deficient rat model shows motor dysfunction, cerebellar alterations, and muscle creatine deficiency without muscle atrophy

L. Duran-Trio; G. Fernandes-Pires; J. Grosse; I. Soro-Arnaiz; C. Roux-Petronelli et al. 

Journal Of Inherited Metabolic Disease. 2022. Vol. 45, num. 2, p. 278-291. DOI : 10.1002/jimd.12470.

Exploring associations between diurnal cortisol, stress, coping and psychopathology in adolescents and young adults with 22q11.2 deletion syndrome

L. Ilen; C. Feller; S. Eliez; E. Micol; F. Delavari et al. 

Comprehensive Psychoneuroendocrinology. 2022. Vol. 9, p. 100103. DOI : 10.1016/j.cpnec.2021.100103.

CAFS: Cost-Aware Features Selection Method for Multimodal Stress Monitoring on Wearable Devices

N. Momeni; A. Arza Valdes; J. Rodrigues; C. Sandi; D. Atienza Alonso 

IEEE Transactions on Biomedical Engineering. 2022. Vol. 69, num. 3, p. 1072-1084. DOI : 10.1109/TBME.2021.3113593.


IMVEST, an immersive multimodal virtual environment stress test for humans that adjusts challenge to individual’s performance

J. Rodrigues; E. Studer; S. Streuber; C. Sandi 

Neurobiology of Stress. 2021-08-13. Vol. 15, p. 100382. DOI : 10.1016/j.ynstr.2021.100382.

Title: “Labels Matter: Is it stress or is it Trauma?”

G. Richter-Levin; C. Sandi 

Translational Psychiatry. 2021-07-10. Vol. 11, num. 1, p. 385. DOI : 10.1038/s41398-021-01514-4.

A thalamo-amygdalar circuit underlying the extinction of remote fear memories

B. A. Silva; S. Astori; A. M. Burns; H. Heiser; L. van den Heuvel et al. 

Nature Neuroscience. 2021-05-20. Vol. 24, p. 964–974. DOI : 10.1038/s41593-021-00856-y.

Long term effects of peripubertal stress on excitatory and inhibitory circuits in the prefrontal cortex of male and female mice

C. Bueno-Fernandez; M. Perez-Rando; J. Alcaide; S. Coviello; C. Sandi et al. 

Neurobiology Of Stress. 2021-05-01. Vol. 14, p. 100322. DOI : 10.1016/j.ynstr.2021.100322.

Stress-induced depressive-like behavior in male rats is associated with microglial activation and inflammation dysregulation in the hippocampus in adulthood

J. P. Brás; I. Guillot de Suduiraut; O. Zanoletti; S. Monari; M. Meijer et al. 

Brain, Behavior, and Immunity. 2021. Vol. 99, p. 397-408. DOI : 10.1016/j.bbi.2021.10.018.

COVID-19, stress, and inequities in (neuro)science

C. Sandi; M. R. Carey 

Neuron. 2021. Vol. 109, num. 21, p. 3358-3360. DOI : 10.1016/j.neuron.2021.08.031.

Early life adoption shows rearing environment supersedes transgenerational effects of paternal stress on aggressive temperament in the offspring

I. Zutshi; S. Gupta; O. Zanoletti; C. Sandi; G. Poirier 

Translational Psychiatry. 2021. Vol. 11, p. 533. DOI : 10.1038/s41398-021-01659-2.

Commentary: The Risky Closed Economy: A Holistic, Longitudinal Approach to Studying Fear and Anxiety in Rodents

N. Scheidwasser; M. Faggella; E. Kozlova; C. Sandi 

Frontiers in Behavioral Neuroscience. 2021. Vol. 15, p. 664941. DOI : 10.3389/fnbeh.2021.664941.

A new rat model of creatine transporter deficiency reveals behavioral disorder and altered brain metabolism

L. Duran-Trio; G. Fernandes-Pires; D. Simicic; J. Grosse; C. Roux-Petronelli et al. 

Scientific Reports. 2021. Vol. 11, num. 1, p. 1636. DOI : 10.1038/s41598-020-80824-x.

Differential Susceptibility to the Impact of the COVID-19 Pandemic on Working Memory, Empathy, and Perceived Stress: The Role of Cortisol and Resilience

S. Baliyan; J. M. Cimadevilla; S. de Vidania; M. M. Pulopulos; C. Sandi et al. 

Brain Sciences. 2021. Vol. 11, num. 3, p. 348. DOI : 10.3390/brainsci11030348.

Doppelganger-based training: Imitating our virtual self to accelerate interpersonal skills learning

E. P. Kleinlogel; M. Curdy; J. Rodrigues; C. Sandi; M. Schmid Mast 

PLoS One. 2021. Vol. 16, num. 2, p. e0245960. DOI : 10.1371/journal.pone.0245960.

Towards an Evolutionary Theory of Stress Responses

B. Taborsky; S. English; T. W. Fawcett; B. Kuijper; O. Leimar et al. 

Trends Ecol Evol.. 2021. Vol. 36, num. 1, p. 39-48. DOI : 10.1016/j.tree.2020.09.003.

Mitofusin-2 in nucleus accumbens regulates anxiety and depression-like behaviors through mitochondrial and neuronal actions

E. Gebara; O. Zanoletti; S. Ghosal; J. Grosse; B. L. Schneider et al. 

Biological Psychiatry. 2021. Vol. 89, num. 11, p. 1024-1026. DOI : 10.1016/j.biopsych.2020.12.003.

A report on the FENS 2020 virtual FORUM

D. L. Helmreich; J. Jones; L. V. Kristiansen; C. Sandi 

European Journal Of Neuroscience. 2021. Vol. 53, num. 8, p. 2446-2449. DOI : 10.1111/ejn.15000.

The social nature of mitochondria: Implications for human health

M. Picard; C. Sandi 

Neuroscience & Biobehavioral Reviews. 2021. Vol. 120, p. 595-610. DOI : 10.1016/j.neubiorev.2020.04.017.


Programming effects of peripubertal stress on spatial learning

S. Tzanoulinou; E. Gantelet; C. Sandi; C. Márquez 

Neurobiol of Stress. 2020. Vol. 13, p. 100282. DOI : 10.1016/j.ynstr.2020.100282.

Locomotion in virtual environments predicts cardiovascular responsiveness to subsequent stressful challenges

J. Rodrigues; E. Studer; S. Streuber; N. Meyer; C. Sandi 

Nature Communications. 2020. Vol. 11, num. 1, p. 5904. DOI : 10.1038/s41467-020-19736-3.

Mitochondrial gene signature in the prefrontal cortex for differential susceptibility to chronic stress

M. Weger; D. Alpern; A. Cherix; S. Ghosal; J. Grosse et al. 

Scientific Reportds. 2020. Vol. 10, num. 1, p. 18308. DOI : 10.1038/s41598-020-75326-9.

Optogenetic Stimulation of Basal Forebrain Parvalbumin Neurons Activates the Default Mode Network and Associated Behaviors

L. Lozano-Montes; M. Dimanico; R. Mazloum; W. Li; J. Nair et al. 

Cell Reports. 2020. Vol. 33, num. 6, p. 108359. DOI : 10.1016/j.celrep.2020.108359.

What brains do we study and why do we study them?

E. Yaksi; C. Sandi 

European Journal of Neurosciences. 2020. Vol. 52, num. 12, p. 4602-4603. DOI : 10.1111/ejn.15025.

Glutamine-to-glutamate ratio in the nucleus accumbens predicts effort-based motivated performance in humans

A. V. I. Strasser; G. Luksys; L. Xin; M. Pessiglione; R. Gruetter et al. 

Neuropsychopharmacology. 2020. Vol. 45, p. 2048–2057. DOI : 10.1038/s41386-020-0760-6.

Pronounced α-synuclein pathology in a seeding-based mouse model is not sufficient to induce mitochondrial respiration deficits in the striatum and amygdala

J. Burtscher; J-C. Copin; C. Sandi; H. Lashuel 

eNeuro. 2020. Vol. 7, num. 4, p. ENEURO.0110-20.2020. DOI : 10.1523/ENEURO.0110-20.2020.

The Inequality of Neural Destiny: Signatures of Lifecourse Socioeconomic Conditions in Markers of Brain Tissue Myelination and Volume

L. Loued-Khenissi; O. Trofimova; P. Vollenweider; P. Marques-Vidal; M. Preisig et al. 

medRxiv. 2020. DOI : 10.1101/2020.06.04.20121913.

Astrocytic release of ATP through type 2 inositol 1,4,5‐trisphosphate receptor calcium signaling and social dominance behavior in mice

M-I. Guillot de Suduiraut; J. Grosse; E. Ramos Fernandez; C. Sandi; F. Hollis 

Eur J Neurosci.. 2020. Vol. 53, num. 9, p. 2973-85. DOI : 10.1111/ejn.14892.

Therapeutic potential of glutathione-enhancers in stress-related psychopathologies

I. Zalachoras; F. Hollis; E. Ramos Fernandez; L. Trovo; S. Sonnay et al. 

Neurosci Biobehav Rev. 2020. Vol. 114, p. 134-55. DOI : 10.1016/j.neubiorev.2020.03.015.

The glucocorticoid receptor in the nucleus accumbens plays a crucial role in social rank attainment in rodents

A. Papilloud; M. Weger; A. Bacq; I. Zalachoras; F. Hollis et al. 

Psychoneuroendocrinology. 2020. Vol. 112, p. 104538. DOI : 10.1016/j.psyneuen.2019.104538.

LPA1 receptor and chronic stress: Effects on behaviour and the genes involved in the hippocampal excitatory/inhibitory balance

R. Moreno-Fernández; C. Rosell-Valle; A. Bacq; O. Zanoletti; M. Cifuentes et al. 

Neuropharmacology. 2020. Vol. 164, p. 107896. DOI : 10.1016/j.neuropharm.2019.107896.

Pituitary dysmaturation affects psychopathology and neurodevelopment in 22q11.2 Deletion Syndrome

C. Sandini; M. Chambaz; M. Schneider; M. Armando; D. Zöller et al. 

Psychoneuroendocrinology. 2020. Vol. 113, p. 104540. DOI : 10.1016/j.psyneuen.2019.104540.

Metabolic signature in nucleus accumbens for anti-depressant-like effects of acetyl-L-carnitine

A. Cherix; T. Larrieu; J. Grosse; J. Rodrigues; B. McEwen et al. 

eLife. 2020. Vol. 9, p. e50631. DOI : 10.7554/eLife.50631.

Constitutive differences in glucocorticoid responsiveness are related to divergent spatial information processing abilities

D. Huzard; A. Vouros; S. Monad; S. Astori; E. Vasilaki et al. 

Stress. 2020. Vol. 23, num. 1, p. 37-49. DOI : 10.1080/10253890.2019.1625885.

Amygdala GluN2B-NMDAR dysfunction is critical in abnormal aggression of neurodevelopmental origin induced by St8sia2 deficiency

A. Bacq; S. Astori; E. Gebara; W. Tang; B. A. Silva et al. 

Mol Psychiatry. 2020. Vol. 25, num. 9, p. 2144-61. DOI : 10.1038/s41380-018-0132-3.


Neurobiological links between stress and anxiety

N. Daviu; M. R. Bruchas; B. Moghaddam; C. Sandi; A. Beyeler 

Neurobiology of Stress. 2019. Vol. 11, p. 100191. DOI : 10.1016/j.ynstr.2019.100191.

Chronic corticosterone aggravates behavioral and neuronal symptomatology in a mouse model of alpha-synuclein pathology

J. Burtscher; J-C. Copin; J. Rodrigues; S. T. Kumar; A. Chiki et al. 

Neurobiol Aging. 2019. Vol. 83, p. 11-20. DOI : 10.1016/j.neurobiolaging.2019.08.007.

Anxiety and Brain Mitochondria: A Bidirectional Crosstalk

M. D. Filiou; C. Sandi 

Trends in Neurosci. 2019. Vol. 42, num. 9, p. 573-88. DOI : 10.1016/j.tins.2019.07.002.

Gene expression across mammalian organ development

M. Cardoso-Moreira; J. Halbert; D. Valloton; B. Velten; C. Chen et al. 

Nature. 2019. Vol. 571, num. 7766, p. 505-9. DOI : 10.1038/s41586-019-1338-5.

Trait anxiety on effort allocation to monetary incentives: a behavioral and high-density EEG study

C. Berchio; J. Rodrigues; A. Strasser; C. M. Michel; C. Sandi 

Translational Psychiatry. 2019. Vol. 9, num. 174, p. 1-13. DOI : 10.1038/s41398-019-0508-4.

Latency to Reward Predicts Social Dominance in Rats: A Causal Role for the Dopaminergic Mesolimbic System

L. Lozano-Montes; S. Astori; S. Abad; I. Guillot de Suduiraut; C. Sandi et al. 

Frontiers in Behavioral Neuroscience. 2019. Vol. 13, p. 69. DOI : 10.3389/fnbeh.2019.00069.

Neuropharmacology of the mesolimbic system and associated circuits on social hierarchies

S. Ghosal; C. Sandi; M. van der Kooij 

Neuropharmacology. 2019. Vol. 159, p. 107498. DOI : 10.1016/j.neuropharm.2019.01.013.

Biological Signatures of Brain Aging and Accelerated Aging by Early Life Threat

C. Sandi 

Biol Psychiatry. 2019. Vol. 85, num. 3, p. 187-8. DOI : 10.1016/j.biopsych.2018.11.020.

Nucleus accumbens neurochemistry in human anxiety: A 7 T 1H-MRS study

A. Strasser; L. Xin; R. Gruetter; C. Sandi 

Eur Neuropsychopharmacol. 2019. Vol. 29, num. 3, p. 365-75. DOI : 10.1016/j.euroneuro.2018.12.015.

Low vagal tone in two rat models of psychopathology involving high or low corticosterone stress responses

D. Huzard; S. Ghosal; J. Grosse; L. Carnevali; A. Sgoifo et al. 

Psychoneuroendocrinology. 2019. Vol. 101, p. 101-10. DOI : 10.1016/j.psyneuen.2018.11.003.

Peripubertal stress-induced heightened aggression: modulation of the glucocorticoid receptor in the central amygdala and normalization by mifepristone treatment

A. Papilloud; V. Veenit; S. Tzanoulinou; O. Riccio; O. Zanoletti et al. 

Neuropsychopharmacology. 2019. Vol. 44, num. 4, p. 674-82. DOI : 10.1038/s41386-018-0110-0.


High anxiety trait: A vulnerable phenotype for stress-induced depression

M. Weger; C. Sandi 

Neurosci Biobehav Rev. 2018. Vol. 87, p. 27-37. DOI : 10.1016/j.neubiorev.2018.01.012.

A generalised framework for detailed classification of swimming paths inside the Morris Water Maze

A. Vouros; T. V. Gehring; K. Szydlowska; A. Janusz; Z. Tu et al. 

Scientific Reports. 2018. Vol. 8, num. 1, p. 15089. DOI : 10.1038/s41598-018-33456-1.

Peripubertal stress increases play fighting at adolescence and modulates nucleus accumbens CB1 receptor expression and mitochondrial function in the amygdala

A. Papilloud; I. Guillot de Suduiraut; O. Zanoletti; J. Grosse; C. Sandi 

Translational Psychiatry. 2018. Vol. 8, num. 1, p. 156. DOI : 10.1038/s41398-018-0215-6.

Dominant men are faster in decision-making situations and exhibit a distinct neural signal for promptness

J. N. Ramos da Cruz; J. P. de Matos Rodrigues; J. C. Thoresen; V. Chicherov; P. Figueiredo et al. 

Cereb Cortex. 2018. Vol. 28, num. 10, p. 3740-51. DOI : 10.1093/cercor/bhy195.

Alterations in brain microstructure in rats that develop abnormal aggression following peripubertal stress

S. E. Walker; T. C. Wood; D. Cash; M. Mesquita; S. C. R. Williams et al. 

Eur J Neurosci. 2018. Vol. 48, num. 2, p. 1818-32. DOI : 10.1111/ejn.14061.

Medium chain triglyceride diet reduces anxiety-like behaviors and enhances social competitiveness in rats

F. Hollis; E. S. Mitchell; C. Canto; D. Wang; C. Sandi 

Neuropharmacology. 2018. Vol. 138, p. 245-56. DOI : 10.1016/j.neuropharm.2018.06.017.

GABA A receptors in the ventral tegmental area control the outcome of a social competition in rats

M. A. van der Kooij; I. Zalachoras; C. Sandi 

Neuropharmacology. 2018. Vol. 138, p. 275-81. DOI : 10.1016/j.neuropharm.2018.06.023.

Stress-Induced Depression: Is Social Rank a Predictive Risk Factor?

T. Larrieu; C. Sandi 

BioEssays. 2018. Vol. 40, num. 7, p. 1800012. DOI : 10.1002/bies.201800012.

Advances in understanding neural mechanisms of social dominance

T. Zhou; C. Sandi; H. Hu 

Curr Opin Neurobiol. 2018. Vol. 49, p. 99-107. DOI : 10.1016/j.conb.2018.01.006.

Stress Impacts the Regulation Neuropeptides in the Rat Hippocampus and Prefrontal Cortex

W. Li; A. Papilloud; L. Lozano Montes; N. Zhao; X. Ye et al. 

Proteomics. 2018. Vol. 18, num. 7, p. 1700408. DOI : 10.1002/pmic.201700408.

Long term programming of psychopathology-like behaviors in male rats by peripubertal stress depends on individual’s glucocorticoid responsiveness to stress

S. E. Walker; C. Sandi 

Stress. 2018. Vol. 21, num. 5, p. 433-42. DOI : 10.1080/10253890.2018.1435639.

An energetic view of stress: Focus on mitochondria

M. Picard; B. S. McEwen; E. Epel; C. Sandi 

Front Neuroendocrinol. 2018. Vol. 49, p. 72-85. DOI : 10.1016/j.yfrne.2018.01.001.

Increased brain glucocorticoid actions following social defeat in rats facilitates the long-term establishment of social subordination

M. Weger; Y. Sevelinges; J. Grosse; I. Guillot de Suduiraut; O. Zanoletti et al. 

Physiol Behav. 2018. Vol. 186, p. 31-6. DOI : 10.1016/j.physbeh.2018.01.008.

Diazepam actions in the VTA enhance social dominance and mitochondrial function in the nucleus accumbens by activation of accumbal dopamine D1 receptors

M. A. van der Kooij; F. Hollis; L. Lozano; O. Zanoletti; I. Zalachoras et al. 

Molecular Psychiatry. 2018. Vol. 23, p. 569-78. DOI : 10.1038/mp.2017.135.

The link between aberrant hypothalamic-pituitary-adrenal axis activity during development and the emergence of aggression-Animal studies

S. E. Walker; A. Papilloud; D. Huzard; C. Sandi 

Neurosci Biobehav Rev. 2018. Vol. 91, p. 138-152. DOI : 10.1016/j.neubiorev.2016.10.008.


Hierarchical status predicts behavioral vulnerability and nucleus accumbens metabolic profile following chronic social defeat stress.

T. Larrieu; A. Cherix; A. Duque; J. Rodrigues; H. Lei et al. 

Curr Biol. 2017. Vol. 27, num. 14, p. 2202-10.e4. DOI : 10.1016/j.cub.2017.06.027.

Constitutive differences in habituation of the glucocorticoid response to stress are related to variation in aggression and anxiety-related behaviors

S. E. Walker; O. Zanoletti; M-I. Guillot de Suduiraut; C. Sandi 

Psychoneuroendocrinology. 2017. Vol. 84, p. 1-10. DOI : 10.1016/j.psyneuen.2017.06.011.

Structural and functional alterations in the prefrontal cortex after post-weaning social isolation: relationship with species-typical and deviant aggression

L. Biro; M. Toth; E. Sipos; B. Bruzsik; A. Tulogdi et al. 

Brain Struct Funct. 2017. Vol. 222, num. 4, p. 1861-75. DOI : 10.1007/s00429-016-1312-z.

Acute stress alters individual risk taking in a time-dependent manner and leads to anti-social risk

S. Bendahan; L. Goette; J. C. Thoresen; L. Loued-Khenissi; F. Hollis et al. 

Eur J Neurosci. 2017. Vol. 45, num. 7, p. 877-85. DOI : 10.1111/ejn.13395.

The programming of the social brain by stress during childhood and adolescence: from rodents to humans

S. Tzanoulinou; C. Sandi 

Social Behavior from Rodents to Humans; Springer, 2017. p. 411-29.


Involvement of CRFR1 in the basolateral amygdala in the immediate fear extinction deficit

F. Hollis; Y. Sevelinges; J. Grosse; O. Zanoletti; C. Sandi 

eNeuro. 2016. Vol. 3, num. 5, p. e0084-16.2016. DOI : 10.1523/ENEURO.0084-16.2016.

Emergence in extinction of enhanced and persistent responding to ambiguous aversive cues is associated with high MAOA activity in the prelimbic cortex

G. L. Poirier; N. Hitora-Imamura; C. Sandi 

Neurobiol Stress. 2016. Vol. 5, p. 1-7. DOI : 10.1016/j.ynstr.2016.08.005.

Effects of Stress Throughout the Lifespan on the Brain and Behavior

C. Nasca; E. Davis; B. Bigio; C. Sandi; B. S. McEwen 

Hormones, Brain and Behavior (3rd ed.); Academic Press, 2016. p. 443-463.

Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents

D. Ryu; L. Mouchiroud; P. A. Andreux; E. Katsyuba; N. Moullan et al. 

Nat Med. 2016. Vol. 22, num. 8, p. 879-88. DOI : 10.1038/nm.4132.

Not all anxious individuals get lost: trait anxiety and mental rotation ability interact to explain performance in map-based route learning in men

J. C. Thoresen; R. Francelet; A. Coltekin; K-F. Richter; S. I. Fabrikant et al. 

Neurobiol Learn Mem. 2016. Vol. 132, p. 1-8. DOI : 10.1016/j.nlm.2016.04.008.

Effects of paternal and peripubertal stress on aggression, anxiety, and metabolic alterations in the lateral septum

M. I. Cordero; N. Just; G. L. Poirier; C. Sandi 

Eur Neuropsychopharmacol. 2016. Vol. 26, num. 2, p. 357-67. DOI : 10.1016/j.euroneuro.2015.11.017.

Neuroligin-2 expression in the prefrontal cortex is involved in attention deficits induced by peripubertal stress

S. Tzanoulinou; C. García-Mompó; O. Riccio; J. Grosse; O. Zanoletti et al. 

Neuropsychopharmacol. 2016. Vol. 41, p. 751-61. DOI : 10.1038/npp.2015.200.


Mitochondrial function in the brain links anxiety with social subordination

F. Hollis; M. A. van der Kooij; O. Zanoletti; L. Lozano; C. Cantó et al. 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2015. Vol. 112, num. 50, p. 15486-91. DOI : 10.1073/pnas.1512653112.

The effects of stress during early postnatal periods on behavior and hippocampal neuroplasticity markers in adult male mice

M. A. van der Kooij; J. Grosse; O. Zanoletti; A. Papilloud; C. Sandi 

Neuroscience. 2015. Vol. 311, p. 508-18. DOI : 10.1016/j.neuroscience.2015.10.058.

Detailed classification of swimming paths in the Morris Water Maze: multiple strategies within one trial

T. V. Gehring; G. Luksys; C. Sandi; E. Vasilaki 

Sci Rep. 2015. Vol. 5, p. 14562. DOI : 10.1038/srep14562.

The effects of extrinsic stress on somatic markers and behavior are dependent on animal housing conditions

D. Huzard; D. G. Mumby; C. Sandi; G. L. Poirier; M. A. van der Kooij 

Physiol & Behav. 2015. Vol. 151, p. 238-45. DOI : 10.1016/j.physbeh.2015.07.018.

Stress pulls us apart: Anxiety leads to differences in competitive confidence under stress

L. Goette; S. Bendahan; J. C. Thoresen; F. Hollis; C. Sandi 

Psychoneuroendocrinology. 2015. Vol. 54, p. 115-23. DOI : 10.1016/j.psyneuen.2015.01.019.

Hippocampal neuroligin-2 links early-life stress with impaired social recognition and increased aggression in adult mice

C. Kohl; X-D. Wang; J. Grosse; C. Fournier; D. Harbich et al. 

Psychoneuroendocrinology. 2015. Vol. 55, p. 128-43. DOI : 10.1016/j.psyneuen.2015.02.016.

Stress and the social brain: Behavioral effects and neurobiological mechanisms

C. Sandi; J. Haller 

Nature Reviews Neuroscience. 2015. Vol. 16, p. 290-304. DOI : 10.1038/nrn3918.

The genetics of social hierarchies

M. A. van der Kooij; C. Sandi 

Current Opinion in Behavioral Sciences. 2015. Vol. 2, p. 52-7. DOI : 10.1016/j.cobeha.2014.09.001.


Breaking the Dynamics of Emotions and Fear in Conflict and Reconstruction

U. Luterbacher; C. Sandi 

Peace Economics, Peace Science and Public Policy. 2014. Vol. 20, num. 3, p. 479-522. DOI : 10.1515/peps-2014-0015.

Role for ​MMP-9 in stress-induced downregulation of ​nectin-3 in hippocampal CA1 and associated behavioural alterations

M. A. van der Kooij; M. Fantin; E. Rejmak; J. Grosse; O. Zanoletti et al. 

Nature Communications. 2014. Vol. 5, p. 4995. DOI : 10.1038/ncomms5995.

Social deficits induced by peripubertal stress in rats are reversed by resveratrol

G. L. Poirier; N. Imamura; O. Zanoletti; C. Sandi 

J Psychiatr Res. 2014. Vol. 57, p. 157-64. DOI : 10.1016/j.jpsychires.2014.05.017.

Effects of adverse early-life events on aggression and anti-social behaviours in animals and humans

J. Haller; G. Harold; C. Sandi; I. D. Neumann 

J Neuroendocrinol. 2014. Vol. 26, num. 10, p. 724-38. DOI : 10.1111/jne.12182.

Peripubertal stress-induced behavioral changes are associated with altered expression of genes involved in excitation and inhibition in the amygdala

S. Tzanoulinou; O. Riccio; M. de Boer; C. Sandi 

Transl Psychiatry. 2014. Vol. 4, p. e410. DOI : 10.1038/tp.2014.54.

Mice with ablated adult brain neurogenesis are not impaired in antidepressant response to chronic fluoxetine

P. Jedynak; T. Kos; C. Sandi; L. Kaczmarek; R. K. Filipkowski 

J Psychiatr Res. 2014. Vol. 56, p. 106-11. DOI : 10.1016/j.jpsychires.2014.05.009.

Long-term behavioral programming induced by peripuberty stress in rats is accompanied by GABAergic-related alterations in the amygdala

S. Tzanoulinou; C. Garcia-Mompó; E. Castillo-Gómez; V. Veenit; J. Nacher et al. 

Plos One. 2014. Vol. 9, num. 4, p. e94666. DOI : 10.1371/journal.pone.0094666.

CRHR1 links peripuberty stress with deficits in social and stress-coping behaviors

V. Veenit; O. Riccio; C. Sandi 

J Psychiatr Res. 2014. Vol. 53, p. 1-7. DOI : 10.1016/j.jpsychires.2014.02.015.

Learning improvement after PI3K activation correlates with de novo formation of functional small spines

L. Enriquez-Barreto; G. Cuesto; N. Dominguez-Iturza; E. Gavilán; D. Ruano et al. 

Front Mol Neursci. 2014. Vol. 6, p. 54. DOI : 10.3389/fnmol.2013.00054.

Stratified medicine for mental disorders

G. Schumann; E. B. Binder; A. Holte; E. R. de Kloet; K. J. Oedegaard et al. 

Eur Neuropsychopharmacol. 2014. Vol. 24, num. 1, p. 5-50. DOI : 10.1016/j.euroneuro.2013.09.010.

Impaired hippocampal neuroligin-2 function by chronic stress or synthetic peptide treatment is linked to social deficits and increased aggression

M. A. van der Kooij; M. Fantin; I. Kraev; I. Korshunova; J. Grosse et al. 

Neuropsychopharmacology. 2014. Vol. 39, num. 5, p. 1148-58. DOI : 10.1038/npp.2013.315.

Pathogen-free husbandry conditions alleviate behavioral deficits and neurodegeneration in AD10 anti-NGF mice

S. Tzanoulinou; R. Brandi; I. Arisi; M. D’Onofrio; S. M. Urfer et al. 

J Alzheimers Dis. 2014. Vol. 38, num. 4, p. 951-64. DOI : 10.3233/JAD-131037.


Long-term programming of enhanced aggression by peripuberty stress in female rats

M. I. Cordero; F. Ansermet; C. Sandi 

Psychoneuroendocrinology. 2013. Vol. 38, num. 11, p. 2758-69. DOI : 10.1016/j.psyneuen.2013.07.005.

The interplay of conditional NCAM-knockout and chronic unpredictable stress leads to increased aggression in mice

C. Kohl; O. Riccio; J. Grosse; O. Zanoletti; C. Fournier et al. 

Stress. 2013. Vol. 16, num. 6, p. 647-54. DOI : 10.3109/10253890.2013.840824.

Stress and cognition

C. Sandi 

Wiley Interdisciplinary Reviews-Cognitive Science. 2013. Vol. 4, num. 3, p. 245-61. DOI : 10.1002/wcs.1222.

Age-related cognitive impairments in mice with a conditional ablation of the neural cell adhesion molecule

R. Bisaz; P. Boadas-Vaello; D. Genoux; C. Sandi 

Learn Mem. 2013. Vol. 20, num. 4, p. 183-93. DOI : 10.1101/lm.030064.112.

Female vulnerability to the development of depression-like behavior in a rat model of intimate partner violence is related to anxious temperament, coping responses, and amygdala vasopressin receptor 1a expression

G. L. Poirier; M. I. Cordero; C. Sandi 

Frontiers in Behavioral Neuroscience. 2013. Vol. 7, p. 35. DOI : 10.3389/fnbeh.2013.00035.

Increased corticosterone in peripubertal rats leads to long-lasting alterations in social exploration and aggression

V. Veenit; M. I. Cordero; S. Tzanoulinou; C. Sandi 

Frontiers in Behavioral Neuroscience. 2013. Vol. 7, p. 26. DOI : 10.3389/fnbeh.2013.00026.

Hippocampal neuroligin-2 overexpression leads to reduced aggression and inhibited novelty reactivity in rats

C. Kohl; O. Riccio; J. Grosse; O. Zanoletti; C. Fournier et al. 

PLoS ONE. 2013. Vol. 8, num. 2, p. e56871. DOI : 10.1371/journal.pone.0056871.

Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression

C. Márquez; G. L. Poirier; M. I. Cordero; M. H. Larsen; A. Groner et al. 

Transl Psychiatry. 2013. Vol. 3, p. e216. DOI : 10.1038/tp.2012.144.

A key role for nectin-1 in the ventral hippocampus in contextual fear memory

M. Fantin; M. A. van der Kooij; J. Grosse; C. Krummenacher; C. Sandi 

PloS One. 2013. Vol. 8, num. 2, p. e56897. DOI : 10.1371/journal.pone.0056897.


Trait anxiety and post-learning stress do not affect perceptual learning

K. C. Aberg; A. M. Clarke; C. Sandi; M. H. Herzog 

Neurobiol Learn Mem. 2012. Vol. 98, num. 3, p. 246-53. DOI : 10.1016/j.nlm.2012.08.006.

Stress during puberty boosts metabolic activation associated with fear-extinction learning in hippocampus, basal amygdala and cingulate cortex

M. Toledo-Rodriguez; A. Pitiot; T. Paus; C. Sandi 

Neurobiol Learn Mem. 2012. Vol. 98, p. 93-101. DOI : 10.1016/j.nlm.2012.05.006.

Evidence for biological roots in the transgenerational transmission of intimate partner violence

M. I. Cordero; G. L. Poirier; C. Marquez; V. Veenit; X. Fontana et al. 

Transl Psychiatry. 2012. Vol. 2, num. 4, p. e106. DOI : 10.1038/tp.2012.32.

Different emotional disturbances in two experimental models of temporal lobe epilepsy in rats

M. Inostroza; E. Cid; L. Menendez de la Prida; C. Sandi 

Plos One. 2012. Vol. 7, p. e38959. DOI : 10.1371/journal.pone.0038959.

Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement

S. Knafo; C. Venero; C. Sánchez-Puelles; I. Pereda-Peréz; A. Franco et al. 

PLoS Biol. 2012. Vol. 10, num. 2, p. e1001262. DOI : 10.1371/journal.pbio.1001262.

Personality traits in rats predict vulnerability and resilience to developing stress-induced depression-like behaviors, HPA axis hyper-reactivity and brain changes in pERK1/2 activity

J. E. Castro; S. Diessler; E. Varea; C. Márquez; M. H. Larsen et al. 

Psychoneuroendocrinology. 2012. Vol. 37, num. 8, p. 1209-23. DOI : 10.1016/j.psyneuen.2011.12.014.

Lack of cyclin D2 impairing adult brain neurogenesis alters hippocampal-dependent behavioral tasks without reducing learning ability

P. Jedynak; P. Jaholkowski; G. Wozniak; C. Sandi; L. Kaczmarek et al. 

Behav Brain Res. 2012. Vol. 227, num. 1, p. 159-66. DOI : 10.1016/j.bbr.2011.11.007.

Social memories in rodents: methods, mechanisms and modulation by stress

M. A. van der Kooij; C. Sandi 

Neurosci Biobehav Rev. 2012. Vol. 36, num. 7, p. 1763-72. DOI : 10.1016/j.neubiorev.2011.10.006.

Vulnerability of conditional NCAM-deficient mice to develop stress-induced behavioral alterations

R. Bisaz; C. Sandi 

Stress. 2012. Vol. 15, num. 2, p. 195-206. DOI : 10.3109/10253890.2011.608226.


Phosphoinositide-3-kinase activation controls synaptogenesis and spinogenesis in hippocampal neurons

G. Cuesto; L. Enriquez-Barreto; C. Carames; M. Cantarero; X. Gasull et al. 

Journal of Neuroscience. 2011. Vol. 31, num. 8, p. 2721-33. DOI : 10.1523/JNEUROSCI.4477-10.2011.

A peptide mimetic targeting trans-homophilic NCAM binding sites promotes spatial learning and neural plasticity in the hippocampus

I. Kraev; C. Henneberger; C. Rossetti; L. Conboy; L. B. Kohler et al. 

Plos One. 2011. Vol. 6, num. 8, p. e23433. DOI : 10.1371/journal.pone.0023433.

Hippocampal-dependent spatial memory in the water maze is preserved in an experimental model of temporal lobe epilepsy in rats

M. Inostroza; E. Cid; J. Brotons-Mas; B. Gal; P. Aivar et al. 

Plos One. 2011. Vol. 6, num. 7, p. e22372. DOI : 10.1371/journal.pone.0022372.

Evidence for a role of oxytocin receptors in the long-term establishment of dominance hierarchies

M. Timmer; M. I. Cordero; Y. Sevelinges; C. Sandi 

Neuropsychopharmacology. 2011. Vol. 36, p. 2349-56. DOI : 10.1038/npp.2011.125.

Glucocorticoids act on glutamatergic pathways to affect memory processes

C. Sandi 

Trends Neurosci. 2011. Vol. 34, num. 4, p. 165-76. DOI : 10.1016/j.tins.2011.01.006.

Neural mechanisms and computations underlying stress effects on learning and memory

G. Luksys; C. Sandi 

Current Opinion in Neurobiology. 2011. Vol. 21, num. 3, p. 502-508. DOI : 10.1016/j.conb.2011.03.003.

Healing anxiety disorders with glucocorticoids

C. Sandi 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2011. Vol. 108, num. 16, p. 6343-4. DOI : 10.1073/pnas.1103410108.

Extending the impact of stress on hippocampal neurogenesis

C. Sandi 

European Journal of Neuroscience. 2011. Vol. 33, num. 10, p. 1832. DOI : 10.1111/j.1460-9568.2011.07703.x.

Neuroplastin-65 and a mimetic peptide derived from its homophilic binding site modulate neuritogenesis and neuronal plasticity

S. Owczarek; V. Soroka; D. Kiryushko; M. H. Larsen; Q. Yuan et al. 

J Neurochem. 2011. Vol. 117, num. 6, p. 984-94. DOI : 10.1111/j.1471-4159.2011.07269.x.

Stress during adolescence increases novelty seeking and risk-taking behavior in male and female rats

M. Toledo-Rodriguez; C. Sandi 

Frontiers in Behavioral Neuroscience. 2011. Vol. 5, p. 17. DOI : 10.3389/fnbeh.2011.00017.

Chronic delivery of antibody fragments using immunoisolated cell implants as a passive vaccination tool

O. Marroquin Belaunzaran; M. I. Cordero; V. Setola; S. Bianchi; C. Galli et al. 

Plos One. 2011. Vol. 6, num. 4, p. e18268. DOI : 10.1371/journal.pone.0018268.

Macrophage migration inhibitory factor is critically involved in basal and fluoxetine-stimulated adult hippocampal cell proliferation and in anxiety, depression, and memory-related behaviors

L. Conboy; E. Varea; J. E. Castro; H. Sakouhi-Ouertatani; T. Calandra et al. 

Molecular Psychiatry. 2011. Vol. 16, num. 5, p. 533-47. DOI : 10.1038/mp.2010.15.

Causal evidence for the involvement of the neural cell adhesion molecule, NCAM, in chronic stress-induced cognitive impairments

R. Bisaz; M. Schachner; C. Sandi 

Hippocampus. 2011. Vol. 21, num. 1, p. 56-71. DOI : 10.1002/hipo.20723.


Role of NCAM in emotion and learning

L. Conboy; R. Bisaz; K. Markram; C. Sandi 

Advances in Experimental Medicine and Biology. 2010. Vol. 663, p. 271-96. DOI : 10.1007/978-1-4419-1170-4_18.

Learning under stress: the inverted-U-shape function revisited

B. Salehi; M. I. Cordero; C. Sandi 

Learn Mem. 2010. Vol. 17, num. 10, p. 522-30. DOI : 10.1101/lm.1914110.

Differential impact of polysialyltransferase ST8SiaII and ST8iaIV knockout on social interaction and aggression

L. Calandreau; C. Márquez; R. Bisaz; M. Fantin; C. Sandi 

Genes Brain Behav. 2010. Vol. 9, num. 8, p. 958-67. DOI : 10.1111/j.1601-183X.2010.00635.x.

Dennexin peptides modeled after the homophilic binding sites of the neural cell adhesion molecule (NCAM) promote neuronal survival, modify cell adhesion and impair spatial learning

L. B. Køhler; C. Christensen; C. Rossetti; M. Fantin; C. Sandi et al. 

Eur Journal of Cell Biology. 2010. Vol. 89, num. 11, p. 817-27. DOI : 10.1016/j.ejcb.2010.07.007.

A role for glucocorticoids in the long-term establishment of a social hierarchy

M. Timmer; C. Sandi 

Psychoneuroendocrinology. 2010. Vol. 35, num. 10, p. 1543-52. DOI : 10.1016/j.psyneuen.2010.05.011.

Regulation of brain-derived neurotrophic factor (BDNF) in the chronic unpredictable stress rat model and the effects of chronic antidepressant treatment

M. H. Larsen; J. D. Mikkelsen; A. Hay-Schmidt; C. Sandi 

J Psychiatr Res. 2010. Vol. 44, p. 808-16. DOI : 10.1016/j.jpsychires.2010.01.005.

Role of the amygdala in antidepressant effects on hippocampal cell proliferation and survival and on depression-like behavior in the rat

J. E. Castro; E. Varea; C. Márquez; M. I. Cordero; G. L. Poirier et al. 

PloS ONE. 2010. Vol. 5, num. 1, p. e8618. DOI : 10.1371/journal.pone.0008618.

The role of NCAM in auditory fear conditioning and its modulation by stress: a focus on the amygdala

R. Bisaz; C. Sandi 

Genes Brain Behav. 2010. Vol. 9, num. 4, p. 353-64. DOI : 10.1111/j.1601-183X.2010.00563.x.

Neuroplastin-55 binds to and signals through the fibroblast growth factor receptor

S. Owczarek; D. Kiryushko; M. H. Larsen; J. S. Kastrup; M. Gajhede et al. 

FASEB Journal. 2010. Vol. 24, num. 4, p. 1139-50. DOI : 10.1096/fj.09-140509.

Stress at learning facilitates memory formation by regulating AMPA receptor trafficking through a glucocorticoid action

L. Conboy; C. Sandi 

Neuropsychopharmacology. 2010. Vol. 35, num. 3, p. 674-85. DOI : 10.1038/npp.2009.172.


Stress, genotype and norepinephrine in the prediction of mouse behavior using reinforcement learning

G. Luksys; W. Gerstner; C. Sandi 

Nat Neurosci. 2009. Vol. 12, num. 9, p. 1180-6. DOI : 10.1038/nn.2374.

Fear conditioning enhances spontaneous AMPA receptor-mediated synaptic transmission in mouse hippocampal CA1 area

M. Zhou; L. Conboy; C. Sandi; M. Joëls; H. J. Krugers 

European Journal of Neuroscience. 2009. Vol. 30, num. 8, p. 1559-64. DOI : 10.1111/j.1460-9568.2009.06951.x.

From high anxiety trait to depression: a neurocognitive hypothesis

C. Sandi; G. Richter-Levin 

Trends Neurosci. 2009. Vol. 32, num. 6, p. 312-20. DOI : 10.1016/j.tins.2009.02.004.

Stress effects on working memory, explicit memory, and implicit memory for neutral and emotional stimuli in healthy men

M. Luethi; B. Meier; C. Sandi 

Frontiers in Behavioral Neuroscience. 2009. Vol. 2, p. 5. DOI : 10.3389/neuro.08.005.2008.

Learning under stress: a role for the neural cell adhesion molecule NCAM

R. Bisaz; L. Conboy; C. Sandi 

Neurobiol Learn Mem. 2009. Vol. 91, num. 4, p. 333-42. DOI : 10.1016/j.nlm.2008.11.003.

The antidepressant agomelatine blocks the adverse effects of stress on memory and enables spatial learning to rapidly increase neural cell adhesion molecule (NCAM) expression in the hippocampus of rats

L. Conboy; C. Tanrikut; P. R. Zoladz; A. M. Campbell; C. R. Park et al. 

Int J Neuropsychopharmacology. 2009. Vol. 12, num. 3, p. 329-41. DOI : 10.1017/S1461145708009255.


KAP1-mediated epigenetic repression in the forebrain modulates behavioral vulnerability to stress

J. Jakobsson; M. I. Cordero; R. Bisaz; A. C. Groner; V. Busskamp et al. 

Neuron. 2008. Vol. 60, num. 5, p. 818-31. DOI : 10.1016/j.neuron.2008.09.036.

Understanding the neurobiological basis of behavior: a good way to go

C. Sandi 

Frontiers in Neuroscience. 2008. Vol. 2, num. 2, p. 129-30. DOI : 10.3389/neuro.01.046.2008.

Adding complexity to emotion-cognition interactions: the stressed individual

C. Sandi 

Frontiers in Neuroscience. 2008. Vol. 2, num. 2, p. 134-5. DOI : 10.3389/neuro.01.042.2008.

A role for NCAM in depression and antidepressant actions?

C. Sandi 

European Journal of Neuroscience. 2008. Vol. 28, num. 8, p. 1617. DOI : 10.1111/j.1460-9568.2008.06504.x.

Chronic stress-induced alterations in amygdala responsiveness and behavior – modulation by trait anxiety and corticotropin-releasing factor systems

C. Sandi; M. I. Cordero; A. Ugolini; E. Varea; L. Caberlotto et al. 

European Journal of Neuroscience. 2008. Vol. 28, num. 9, p. 1836-48. DOI : 10.1111/j.1460-9568.2008.06451.x.

Chronic stress in adulthood followed by intermittent stress impairs spatial memory and the survival of newborn hippocampal cells in aging animals: prevention by FGL, a peptide mimetic of neural cell adhesion molecule

E. Borcel; L. Perez-Alvarez; A. I. Herrero; T. Brionne; E. Varea et al. 

Behav Pharmacol. 2008. Vol. 19, num. 1, p. 41-9. DOI : 10.1097/FBP.0b013e3282f3fca9.

Abnormal fear conditioning and amygdala processing in an animal model of autism

K. Markram; T. Rinaldi; D. La Mendola; C. Sandi; H. Markram 

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2008. Vol. 33, num. 4, p. 901-12. DOI : 10.1038/sj.npp.1301453.


A model for the involvement of neural cell adhesion molecules in stress-related mood disorders

C. Sandi; R. Bisaz 

Neuroendocrinology. 2007. Vol. 85, num. 3, p. 158-76. DOI : 10.1159/000101535.

Stress and memory: behavioral effects and neurobiological mechanisms

C. Sandi; M. T. Pinelo-Nava 

Neural Plasticity. 2007. Vol. 2007, p. 78970. DOI : 10.1155/2007/78970.

Stress before puberty exerts a sex- and age-related impact on auditory and contextual fear conditioning in the rat

M. Toledo-Rodriguez; C. Sandi 

Neural Plasticity. 2007. Vol. 2007, p. 71203. DOI : 10.1155/2007/71203.

Effects of P2, a peptide derived from a homophilic binding site in the neural cell adhesion molecule on learning and memory in rats

L. Rizhova; B. Klementiev; K. Cambon; C. Venero; C. Sandi et al. 

Neuroscience. 2007. Vol. 149, num. 4, p. 931-42. DOI : 10.1016/j.neuroscience.2007.08.008.

Upregulation of polysialylated neural cell adhesion molecule in the dorsal hippocampus after contextual fear conditioning is involved in long-term memory formation

M. A. Lopez-Fernandez; M-F. Montaron; E. Varea; G. Rougon; C. Venero et al. 

Journal of Neuroscience. 2007. Vol. 27, num. 17, p. 4552-61. DOI : 10.1523/JNEUROSCI.0396-07.2007.

Stress amplifies memory for social hierarchy

M. I. Cordero; C. Sandi 

Frontiers in Neuroscience. 2007. Vol. 1, num. 1, p. 175-84. DOI : 10.3389/neuro.01/

Amygdala upregulation of NCAM polysialylation induced by auditory fear conditioning is not required for memory formation, but plays a role in fear extinction

K. Markram; M. A. Lopez Fernandez; D. N. Abrous; C. Sandi 

Neurobiol Learn Mem. 2007. Vol. 87, num. 4, p. 573-82. DOI : 10.1016/j.nlm.2006.11.007.

Selective learning and memory impairments in mice deficient for polysialylated NCAM in adulthood

K. Markram; R. Gerardy-Schahn; C. Sandi 

Neuroscience. 2007. Vol. 144, num. 3, p. 788-96. DOI : 10.1016/j.neuroscience.2006.10.024.


Chronic restraint stress induces changes in synapse morphology in stratum lacunosum-moleculare CA1 rat hippocampus: a stereological and three-dimensional ultrastructural study

H. S. Donohue; P. L. Gabbott; H. A. Davies; J. J. Rodriguez; M. I. Cordero et al. 

Neuroscience. 2006. Vol. 140, num. 2, p. 597-606. DOI : 10.1016/j.neuroscience.2006.02.072.

Individual differences in anxiety trait are related to spatial learning abilities and hippocampal expression of mineralocorticoid receptors

A. I. Herrero; C. Sandi; C. Venero 

Neurobiol Learn Mem. 2006. Vol. 86, num. 2, p. 150-9. DOI : 10.1016/j.nlm.2006.02.001.

Differences in corticosterone level due to inter-food interval length: implications for schedule-induced polydipsia

M. Lopez-Grancha; G. A. Lopez-Crespo; C. Venero; F. Canadas; F. Sanchez-Santed et al. 

Horm and Behav. 2006. Vol. 49, num. 2, p. 166-72. DOI : 10.1016/j.yhbeh.2005.05.019.

Mid-life stress and cognitive deficits during early aging in rats: individual differences and hippocampal correlates

C. Sandi; K. Touyarot 

Neurobiol Aging. 2006. Vol. 27, num. 1, p. 128-40. DOI : 10.1016/j.neurobiolaging.2005.01.006.

Hippocampal up-regulation of NCAM expression and polysialylation plays a key role on spatial memory

C. Venero; A. I. Herrero; K. Touyarot; K. Cambon; M. A. Lopez-Fernandez et al. 

European Journal of Neuroscience. 2006. Vol. 23, num. 6, p. 1585-95. DOI : 10.1111/j.1460-9568.2006.04663.x.


Chronic restraint stress down-regulates amygdaloid expression of polysialylated neural cell adhesion molecule

M. I. Cordero; J. J. Rodriguez; H. A. Davies; C. J. Peddie; C. Sandi et al. 

Neuroscience. 2005. Vol. 133, num. 4, p. 903-10. DOI : 10.1016/j.neuroscience.2005.03.046.

Olfactory learning-related NCAM expression is state, time, and location specific and is correlated with individual learning capabilities

S. Knafo; E. Barkai; A. I. Herrero; F. Libersat; C. Sandi et al. 

Hippocampus. 2005. Vol. 15, num. 3, p. 316-25. DOI : 10.1002/hipo.20052.

Dynamics of olfactory learning-induced up-regulation of L1 in the piriform cortex and hippocampus

S. Knafo; E. Barkai; F. Libersat; C. Sandi; C. Venero 

European Journal of Neuroscience. 2005. Vol. 21, num. 2, p. 581-6. DOI : 10.1111/j.1460-9568.2005.03862.x.

Acute stress-induced impairment of spatial memory is associated with decreased expression of neural cell adhesion molecule in the hippocampus and prefrontal cortex

C. Sandi; J. C. Woodson; V. F. Haynes; C. R. Park; K. Touyarot et al. 

Biological Psychiatry. 2005. Vol. 57, num. 8, p. 856-64. DOI : 10.1016/j.biopsych.2004.12.034.

Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: a three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities

M. G. Stewart; H. A. Davies; C. Sandi; I. V. Kraev; V. V. Rogachevsky et al. 

Neuroscience. 2005. Vol. 131, num. 1, p. 43-54. DOI : 10.1016/j.neuroscience.2004.10.031.


Stress, cognitive impairment and cell adhesion molecules

C. Sandi 

Nat Rev Neurosci. 2004. Vol. 5, num. 12, p. 917-30. DOI : 10.1038/nrn1555.

A facilitative role for corticosterone in the acquisition of a spatial task under moderate stress

I. Akirav; M. Kozenicky; D. Tal; C. Sandi; C. Venero et al. 

Learn Mem. 2004. Vol. 11, num. 2, p. 188-95. DOI : 10.1101/lm.61704.

A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation

K. Cambon; S. M. Hansen; C. Venero; A. I. Herrero; G. Skibo et al. 

Journal of Neuroscience. 2004. Vol. 24, num. 17, p. 4197-204. DOI : 10.1523/JNEUROSCI.0436-04.2004.

Exposure to retrieval cues improves retention performance and induces changes in ACTH and corticosterone release

P. Gisquet-Verrier; F. Botreau; C. Venero; C. Sandi 

Psychoneuroendocrinology. 2004. Vol. 29, num. 4, p. 529-56. DOI : 10.1016/S0306-4530(03)00085-4.

Neurobiological and endocrine correlates of individual differences in spatial learning ability

C. Sandi; M. I. Cordero; J. J. Merino; N. D. Kruyt; C. M. Regan et al. 

Learn Mem. 2004. Vol. 11, num. 3, p. 244-52. DOI : 10.1101/lm.73904.

Spatial learning impairment induced by chronic stress is related to individual differences in novelty reactivity: search for neurobiological correlates

K. Touyarot; C. Venero; C. Sandi 

Psychoneuroendocrinology. 2004. Vol. 29, num. 2, p. 290-305. DOI : 10.1016/S0306-4530(03)00031-3.

Water maze learning and forebrain mRNA expression of the neural cell adhesion molecule L1

C. Venero; T. Tilling; I. Hermans-Borgmeyer; A. I. Herrero; M. Schachner et al. 

Journal of Neuroscience Res. 2004. Vol. 75, num. 2, p. 172-81. DOI : 10.1002/jnr.10857.


Post-training administration of a synthetic peptide ligand of the neural cell adhesion molecule, C3d, attenuates long-term expression of contextual fear conditioning

K. Cambon; C. Venero; V. Berezin; E. Bock; C. Sandi 

Neuroscience. 2003. Vol. 122, num. 1, p. 183-91. DOI : 10.1016/S0306-4522(03)00597-9.

Modulation of contextual fear conditioning by chronic stress in rats is related to individual differences in behavioral reactivity to novelty

M. I. Cordero; N. D. Kruyt; C. Sandi 

Brain Res. 2003. Vol. 970, num. 1-2, p. 242-5. DOI : 10.1016/S0006-8993(03)02352-7.

Prior exposure to a single stress session facilitates subsequent contextual fear conditioning in rats. Evidence for a role of corticosterone

M. I. Cordero; C. Venero; N. D. Kruyt; C. Sandi 

Horm Behav. 2003. Vol. 44, num. 4, p. 338-45. DOI : 10.1016/S0018-506X(03)00160-0.

Lack of thyroid hormone receptor alpha1 is associated with selective alterations in behavior and hippocampal circuits

A. Guadano-Ferraz; R. Benavides-Piccione; C. Venero; C. Lancha; B. Vennstrom et al. 

Molecular Psychiatry. 2003. Vol. 8, num. 1, p. 30-8. DOI : 10.1038/

Rapid reversal of stress induced loss of synapses in CA3 of rat hippocampus following water maze training

C. Sandi; H. A. Davies; M. I. Cordero; J. J. Rodriguez; V. I. Popov et al. 

European Journal of Neuroscience. 2003. Vol. 17, num. 11, p. 2447-56. DOI : 10.1046/j.1460-9568.2003.02675.x.

Modulation of hippocampal NCAM polysialylation and spatial memory consolidation by fear conditioning

C. Sandi; J. J. Merino; M. I. Cordero; N. D. Kruyt; K. J. Murphy et al. 

Biological Psychiatry. 2003. Vol. 54, num. 6, p. 599-607. DOI : 10.1016/S0006-3223(03)00182-3.


Chronic restraint stress induces an isoform-specific regulation on the neural cell adhesion molecule in the hippocampus

K. Touyarot; C. Sandi 

Neural Plasticity. 2002. Vol. 9, num. 3, p. 147-59. DOI : 10.1155/NP.2002.147.

Glucocorticoid involvement in memory formation in a rat model for traumatic memory

M. I. Cordero; N. D. Kruyt; J. J. Merino; C. Sandi 

Stress. 2002. Vol. 5, num. 1, p. 73-9. DOI : 10.1080/1025389029000124404.

Chronic stress induces opposite changes in the mRNA expression of the cell adhesion molecules NCAM and L1

C. Venero; T. Tilling; I. Hermans-Borgmeyer; R. Schmidt; M. Schachner et al. 

Neuroscience. 2002. Vol. 115, num. 4, p. 1211-9. DOI : 10.1016/S0306-4522(02)00543-2.


Differential activation of hippocampus and amygdala following spatial learning under stress

I. Akirav; C. Sandi; G. Richter-Levin 

European Journal of Neuroscience. 2001. Vol. 14, num. 4, p. 719-25. DOI : 10.1046/j.0953-816x.2001.01687.x.

Stress alleviates reduced expression of cell adhesion molecules (NCAM, L1), and deficits in learning and corticosterone regulation of apolipoprotein E knockout mice

J. Grootendorst; M. S. Oitzl; S. Dalm; L. Enthoven; M. Schachner et al. 

European Journal of Neuroscience. 2001. Vol. 14, num. 9, p. 1505-14. DOI : 10.1046/j.0953-816x.2001.01766.x.

Effects of chronic stress on contextual fear conditioning and the hippocampal expression of the neural cell adhesion molecule, its polysialylation, and L1

C. Sandi; J. J. Merino; M. I. Cordero; K. Touyarot; C. Venero 

Neuroscience. 2001. Vol. 102, num. 2, p. 329-39. DOI : 10.1016/S0306-4522(00)00484-X.


Regulation of hippocampal cell adhesion molecules NCAM and L1 by contextual fear conditioning is dependent upon time and stressor intensity

J. J. Merino; M. I. Cordero; C. Sandi 

European Journal of Neuroscience. 2000. Vol. 12, num. 9, p. 3283-90. DOI : 10.1046/j.1460-9568.2000.00191.x.


Opposite effects on NCAM expression in the rat frontal cortex induced by acute vs. chronic corticosterone treatments

C. Sandi; M. Loscertales 

Brain Res. 1999. Vol. 828, num. 1-2, p. 127-34. DOI : 10.1016/S0006-8993(99)01346-3.


The role and mechanisms of action of glucocorticoid involvement in memory storage

C. Sandi 

Neural Plast. 1998. Vol. 6, num. 3, p. 41-52. DOI : 10.1155/NP.1998.41.

Correlational relationship between shock intensity and corticosterone secretion on the establishment and subsequent expression of contextual fear conditioning

M. I. Cordero; J. J. Merino; C. Sandi 

Behav Neurosci. 1998. Vol. 112, num. 4, p. 885-91. DOI : 10.1037/0735-7044.112.4.885.

A role for brain glucocorticoid receptors in contextual fear conditioning: dependence upon training intensity

M. I. Cordero; C. Sandi 

Brain Res. 1998. Vol. 786, num. 1-2, p. 11-7. DOI : 10.1016/S0006-8993(97)01420-0.

Piracetam facilitates long-term memory for a passive avoidance task in chicks through a mechanism that requires a brain corticosteroid action

M. Loscertales; S. P. Rose; J. N. Daisley; C. Sandi 

European Journal of Neuroscience. 1998. Vol. 10, num. 7, p. 2238-43. DOI : 10.1046/j.1460-9568.1998.00234.x.


The corticosteroid synthesis inhibitors metyrapone and aminoglutethimide impair long-term memory for a passive avoidance task in day-old chicks

M. Loscertales; S. P. Rose; C. Sandi 

Brain Res. 1997. Vol. 769, num. 2, p. 357-61. DOI : 10.1016/S0006-8993(97)00735-X.

Experience-dependent facilitating effect of corticosterone on spatial memory formation in the water maze

C. Sandi; M. Loscertales; C. Guaza 

European Journal of Neuroscience. 1997. Vol. 9, num. 4, p. 637-42. DOI : 10.1111/j.1460-9568.1997.tb01412.x.

Training-dependent biphasic effects of corticosterone in memory formation for a passive avoidance task in chicks

C. Sandi; S. P. Rose 

Psychopharmacology (Berl). 1997. Vol. 133, num. 2, p. 152-60. DOI : 10.1007/s002130050385.

Protein synthesis- and fucosylation-dependent mechanisms in corticosterone facilitation of long-term memory in the chick

C. Sandi; S. P. Rose 

Behav Neurosci. 1997. Vol. 111, num. 5, p. 1098-104. DOI : 10.1037/0735-7044.111.5.1098.

Interactions of corticosterone and embryonic light deprivation on memory retention in day-old chicks

N. Sui; C. Sandi; S. P. Rose 

Dev Brain Res. 1997. Vol. 101, num. 1-2, p. 269-72. DOI : 10.1016/S0165-3806(97)00054-0.

Effects of NMDA and AMPA receptor antagonists on corticosterone facilitation of long-term memory in the chick

C. Venero; C. Sandi 

European Journal of Neuroscience. 1997. Vol. 9, num. 9, p. 1923-8. DOI : 10.1111/j.1460-9568.1997.tb00759.x.


Fibroblast growth factor decreases locomotor activity in rats

C. Guaza; C. Garcia-Andres; C. Sandi; I. Munoz-Willery; P. Cuevas et al. 

Neuroscience. 1996. Vol. 75, num. 3, p. 805-13. DOI : 10.1016/0306-4522(96)00247-3.

Novelty-related rapid locomotor effects of corticosterone in rats

C. Sandi; C. Venero; C. Guaza 

European Journal of Neuroscience. 1996. Vol. 8, num. 4, p. 794-800. DOI : 10.1111/j.1460-9568.1996.tb01264.x.

Nitric oxide synthesis inhibitors prevent rapid behavioral effects of corticosterone in rats

C. Sandi; C. Venero; C. Guaza 

Neuroendocrinology. 1996. Vol. 63, num. 5, p. 446-53.

Regional and temporal modulation of brain glycoprotein synthesis by corticosterone

C. Venero; C. Guaza; C. Sandi 

Neuroreport. 1996. Vol. 7, num. 15-17, p. 2819-22. DOI : 10.1097/00001756-199611040-00082.


Evidence for a role of nitric oxide in the corticotropin-releasing factor release induced by interleukin-1 beta

C. Sandi; C. Guaza 

European Journal of Pharmacology. 1995. Vol. 274, num. 1-3, p. 17-23. DOI : 10.1016/0014-2999(94)00700-H.

Corticosterone facilitates long-term memory formation via enhanced glycoprotein synthesis

C. Sandi; S. P. Rose; R. Mileusnic; C. L. Lancashire 

Neuroscience. 1995. Vol. 69, num. 4, p. 1087-93. DOI : 10.1016/0306-4522(95)00306-4.

Decreased spontaneous motor activity and startle response in nitric oxide synthase inhibitor-treated rats

C. Sandi; C. Venero; C. Guaza 

European Journal of Pharmacology. 1995. Vol. 277, num. 1, p. 89-97. DOI : 10.1016/0014-2999(95)00068-V.


Evidence for nitric oxide-mediated rapid locomotor effects of corticosterone in a novel environment

C. Sandi; C. Guaza 

Annals of the New York Academy of Sciences. 1994. Vol. 746, p. 398-399. DOI : 10.1111/j.1749-6632.1994.tb39266.x.

Corticosteroid receptor antagonists are amnestic for passive avoidance learning in day-old chicks

C. Sandi; S. P. Rose 

European Journal of Neuroscience. 1994. Vol. 6, num. 8, p. 1292-7. DOI : 10.1111/j.1460-9568.1994.tb00319.x.

Corticosterone enhances long-term retention in one-day-old chicks trained in a weak passive avoidance learning paradigm

C. Sandi; S. P. Rose 

Brain Res. 1994. Vol. 647, num. 1, p. 106-12. DOI : 10.1016/0006-8993(94)91404-4.


Visual input and lateralization of brain function in learning in the chick

C. Sandi; T. A. Patterson; S. P. Rose 

Neuroscience. 1993. Vol. 52, num. 2, p. 393-401. DOI : 10.1016/0306-4522(93)90166-D.


Activity of the hypothalamic-pituitary-adrenal axis in mice selected for left- or right-handedness

C. Betancur; C. Sandi; S. Vitiello; J. Borrell; C. Guaza et al. 

Brain Res. 1992. Vol. 589, num. 2, p. 302-6. DOI : 10.1016/0006-8993(92)91290-U.

Prolonged increase of corticosterone secretion by chronic social stress does not necessarily impair immune functions

F. Klein; V. Lemaire; C. Sandi; S. Vitiello; J. Van der Logt et al. 

Life Sciences. 1992. Vol. 50, num. 10, p. 723-731. DOI : 10.1016/0024-3205(92)90475-5.

Behavioral factors in stress-induced immunomodulation

C. Sandi; J. Borrell; C. Guaza 

Behav Brain Res. 1992. Vol. 48, num. 1, p. 95-8. DOI : 10.1016/S0166-4328(05)80144-5.

Behavioral, neuroendocrine, and immunological outcomes of escapable or inescapable shocks

C. Sandi; J. Borrell; C. Guaza 

Physiol Behav. 1992. Vol. 51, num. 3, p. 651-6. DOI : 10.1016/0031-9384(92)90192-5.

Mutually antagonistic effects of corticosterone and prolactin on rat lymphocyte proliferation

C. Sandi; J. C. Cambronero; J. Borrell; C. Guaza 

Neuroendocrinology. 1992. Vol. 56, num. 4, p. 574-81.

Effects of HPA hormones on adapted lymphocyte responsiveness to repeated stress

C. Sandi; J. C. Cambronero; J. Borrell; C. Guaza 

Brain Res Bull. 1992. Vol. 28, num. 4, p. 581-5. DOI : 10.1016/0361-9230(92)90106-8.

Unilateral hippocampal lesions prevent recall of a passive avoidance task in day-old chicks

C. Sandi; S. P. Rose; T. A. Patterson 

Neurosci Lett. 1992. Vol. 141, num. 2, p. 255-8. DOI : 10.1016/0304-3940(92)90907-O.


Different responsiveness of spleen lymphocytes from two lines of psychogenetically selected rats (Roman high and low avoidance)

C. Sandi; N. Castanon; S. Vitiello; P. J. Neveu; P. Mormède 

J Neuroimmunol. 1991. Vol. 31, num. 1, p. 27-33. DOI : 10.1016/0165-5728(91)90083-J.


Administration of leu-enkephalin impairs the acquisition of preference for ethanol

C. Sandi; J. Borrell; C. Guaza 

Psychopharmacology. 1990. Vol. 100, num. 3, p. 350-354. DOI : 10.1007/BF02244605.

Effects of the kappa opioid receptor antagonist MR-2266-BS on the acquisition of ethanol preference

C. Sandi; J. Borrell; C. Guaza 

Life Sciences. 1990. Vol. 46, num. 16, p. 1119-29. DOI : 10.1016/0024-3205(90)90448-Z.

Enkephalins interfere with early phases of voluntary ethanol drinking

C. Sandi; J. Borrell; C. Guaza 

Peptides. 1990. Vol. 11, num. 4, p. 697-702. DOI : 10.1016/0196-9781(90)90183-6.

D-Ala2-Met5-enkephalinamide impairs the acquisition of ethanol preference without influencing sucrose preference

C. Sandi; J. Borrell; C. Guaza 

Physiol Behav. 1990. Vol. 48, num. 3, p. 435-9. DOI : 10.1016/0031-9384(90)90340-A.


[Interactions between the immune system and the neuroendocrine system. Implications of the hypothalamo-hypophyseal-adrenal axis]

C. Sandi; M. A. Castro-Alamancos; J. C. Cambronero; C. Bailon; C. Guaza et al. 

Archivos de neurobiologia. 1989. Vol. 52, num. 6, p. 277-86.

Beta-endorphin administration interferes with the acquisition and initial maintenance of ethanol preference in the rat

C. Sandi; J. Borrell; C. Guaza 

Physiol Behav. 1989. Vol. 45, num. 1, p. 87-92. DOI : 10.1016/0031-9384(89)90169-8.


Naloxone decreases ethanol consumption within a free choice paradigm in rats

C. Sandi; J. Borrell; C. Guaza 

Pharmacol Biochem Behav. 1988. Vol. 29, num. 1, p. 39-43. DOI : 10.1016/0091-3057(88)90270-5.

Involvement of kappa type opioids on ethanol drinking

C. Sandi; J. Borrell; C. Guaza 

Life Sciences. 1988. Vol. 42, num. 10, p. 1067-75. DOI : 10.1016/0024-3205(88)90562-0.