2024
Moulding and Microfluidic Wet Spinning of the Soft Polymer Optical Fibers for Sensory Applications
Lausanne, EPFL, 2024.All-Dielectric Nanophotonic via Glass Fluid Instabilities
Lausanne, EPFL, 2024.2023
Polydimethylsiloxane based soft polymer optical fibers: From the processing-property relationship to pressure sensing applications
Materials & Design. 2023. Vol. 232, p. 112115. DOI : 10.1016/j.matdes.2023.112115.Self-powered transformer intelligent wireless temperature monitoring system based on an ultra-low acceleration piezoelectric vibration energy harvester
Nano Energy. 2023. Vol. 114, p. 108662. DOI : 10.1016/j.nanoen.2023.108662.Soft Multimaterial Magnetic Fibers and Textiles
Advanced Materials. 2023. DOI : 10.1002/adma.202212202.The Development of Aptamer-Coupled Microelectrode Fiber Sensors (apta-?FS) for Highly Selective Neurochemical Sensing
Analytical Chemistry. 2023. Vol. 95, num. 17, p. 6791 – 6800. DOI : 10.1021/acs.analchem.2c05046.A triboelectric nanogenerator coupled with internal and external friction for gesture recognition based on EHD printing technology
Nano Energy. 2023. Vol. 110, p. 108357. DOI : 10.1016/j.nanoen.2023.108357.Thermally Drawn Elastomer Nanocomposites for Soft Mechanical Sensors
Advanced Science. 2023. DOI : 10.1002/advs.202207573.High-performance triboelectric nanogenerator via photon-generated carriers for green low-carbon system
Nano Energy. 2023. Vol. 108, p. 108206. DOI : 10.1016/j.nanoen.2023.108206.Semiconductor-based device architectures in multimaterial fibers
Lausanne, EPFL, 2023.2022
Highly Integrated Multi-Material Fibers for Soft Robotics
Advanced Science. 2022. DOI : 10.1002/advs.202204016.3D stretchable and self-encapsulated multimaterial triboelectric fibers
Science Advances. 2022. Vol. 8, num. 45. DOI : 10.1126/sciadv.abo0869.Controlled filamentation instability as a scalable fabrication approach to flexible metamaterials
Nature Communications. 2022. Vol. 13, num. 1, p. 6154. DOI : 10.1038/s41467-022-33853-1.Surface Plasmon Effect Dominated High-Performance Triboelectric Nanogenerator for Traditional Chinese Medicine Acupuncture
Research. 2022. Vol. 2022, p. 9765634. DOI : 10.34133/2022/9765634.Thermally Drawn CNT-Based Hybrid Nanocomposite Fiber for Electrochemical Sensing
Biosensors-Basel. 2022. Vol. 12, num. 8, p. 559. DOI : 10.3390/bios12080559.Thermally drawn chemically active fibre device and a method of fabrication thereof
EP4281217; WO2022157539.
2022.A method
WO2022136871; GB202020329.
2022.Functionalization of polymer optical fibers for medical application
Lausanne, EPFL, 2022.Highly Stretchable Flame-Retardant Skin for Soft Robotics with Hydrogel-Montmorillonite-Based Translucent Matrix
Soft Robotics. 2022. Vol. 9, num. 1, p. 98 – 118. DOI : 10.1089/soro.2020.0003.Self-Assembled Dewetting as a Fabrication Platform for Photonics Applications
2022. European Conference on Optical Communication (ECOC), ELECTR NETWORK, Sep 18-22, 2022.2021
Unraveling the Influence of Thermal Drawing Parameters on the Microstructure and Thermo-Mechanical Properties of Multimaterial Fibers
Small. 2021. p. 2101392. DOI : 10.1002/smll.202101392.Thermally-Drawn Multi-Electrode Fibers for Bipolar Electrochemistry and Magnified Electrochemical Imaging
Advanced Materials Technologies. 2021. p. 2101066. DOI : 10.1002/admt.202101066.All-in-Fiber Electrochemical Sensing
Acs Applied Materials & Interfaces. 2021. Vol. 13, num. 36, p. 43356 – 43363. DOI : 10.1021/acsami.1c11593.Prediction of Self-Assembled Dewetted Nanostructures for Photonics Applications via a Continuum-Mechanics Framework
Physical Review Applied. 2021. Vol. 3, num. 16, p. 034025. DOI : 10.1103/PhysRevApplied.16.034025.Second harmonic generation in glass-based metasurfaces using tailored surface lattice resonances
Nanophotonics. 2021. Vol. 10, num. 13, p. 3465 – 3475. DOI : 10.1515/nanoph-2021-0277.Stretchable and Sensitive Silver Nanowire-Hydrogel Strain Sensors for Proprioceptive Actuation
Acs Applied Materials & Interfaces. 2021. Vol. 13, num. 31, p. 37816 – 37829. DOI : 10.1021/acsami.1c08305.Novel insights into the design of stretchable electrical systems
Science Advances. 2021. Vol. 7, num. 27, p. eabf7558. DOI : 10.1126/sciadv.abf7558.Functionalized Fiber Reinforced Composites via Thermally Drawn Multifunctional Fiber Sensors
Advanced Materials Technologies. 2021. p. 2000957. DOI : 10.1002/admt.202000957.Ultimate Feature Sizes in Thermally Drawn Fibers: from Fundamental Analysis to Novel Functional Fibers
Lausanne, EPFL, 2021.Soft functional fibers for mechanical sensing and actuation
Lausanne, EPFL, 2021.Novel Insights into Thin Film Instabilities: From Fundamentals to Metamaterial Applications
Lausanne, EPFL, 2021.Electronic Multi-material Fibers and Textiles: Novel Designs and Applications
Lausanne, EPFL, 2021.Design and Fabrication of Stretchable Photonic Fibers
Lausanne, EPFL, 2021.Novel design strategies for modulating conductive stretchable system response based on periodic assemblies
2021
Elongated microstructured capacitive sensor
US2022307878; EP4022273; WO2021038456.
2021.Edible fiber
JP2021513617; US2021000155; EP3752006; CN111683539; WO2019158494.
2021.2020
Nanoscale Controlled Oxidation of Liquid Metals for Stretchable Electronics and Photonics
Advanced Functional Materials. 2020. p. 2006711. DOI : 10.1002/adfm.202006711.Structured nanoscale metallic glass fibres with extreme aspect ratios
Nature Nanotechnology. 2020. Vol. 15, p. 875 – 882. DOI : 10.1038/s41565-020-0747-9.Simulation of silicon KOH and dry etching methods for micromould fabrication
2020.High-efficiency super-elastic liquid metal based triboelectric fibers and textiles
Nature Communications. 2020. Vol. 11, num. 1, p. 3537. DOI : 10.1038/s41467-020-17345-8.Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations
Nature Electronics. 2020. Vol. 3, p. 316 – 326. DOI : 10.1038/s41928-020-0415-y.Facile Fabrication of Microfluidic Chips for 3D Hydrodynamic Focusing and Wet Spinning of Polymeric Fibers
Polymers. 2020. Vol. 12, num. 3, p. 633. DOI : 10.3390/polym12030633.Microstructured Biodegradable Fibers for Advanced Control Delivery
Advanced Functional Materials. 2020. p. 1910283. DOI : 10.1002/adfm.201910283.Thermally drawn advanced functional fibers: New frontier of flexible electronics
Materials Today. 2020. Vol. 35, p. 168 – 194. DOI : 10.1016/j.mattod.2019.11.006.Method and system for fabricating glass-based nanostructures on large-area planar substrates, fibers, and textiles
US11579523; US2020257194.
2020.Ultralong, complexly structured micro- and nanoscale metallic glasses and fibers
EP3856426; WO2020065551.
2020.Multi-material and Multi-functional Optical Fibers: Fabrication and Opportunities
2020. Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, May 10-15, 2020. DOI : 10.1364/CLEO_SI.2020.SF1P.1.Self-assembled glass-based Fano resonant metasurfaces
2020. Conference on Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XIII, San Francisco, CA, Feb 02-05, 2020. DOI : 10.1117/12.2546112.Microstructured biodegradable fibers for advanced controlled release
Lausanne, EPFL, 2020.2019
Compressible and Electrically Conducting Fibers for Large‐Area Sensing of Pressures
Advanced Functional Materials. 2019. Vol. 30, num. 1, p. 1904274. DOI : 10.1002/adfm.201904274.Microstructured Multimaterial Fibers for Microfluidic Sensing
Advanced Materials Technologies. 2019. p. 1900417. DOI : 10.1002/admt.201900417.Unraveling radial dependency effects in fiber thermal drawing
Applied Physics Letters. 2019. Vol. 115, num. 4, p. 044102. DOI : 10.1063/1.5109469.Polyphenols as Morphogenetic Agents for the Controlled Synthesis of Mesoporous Silica Nanoparticles
Chemistry Of Materials. 2019. Vol. 31, num. 9, p. 3192 – 3200. DOI : 10.1021/acs.chemmater.8b05249.Insights into the fabrication of sub-100 nm textured thermally drawn fibers
Journal Of Applied Physics. 2019. Vol. 125, num. 17, p. 175301. DOI : 10.1063/1.5089022.Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities
Nature Nanotechnology. 2019. Vol. 14, num. 4, p. 320 – 327. DOI : 10.1038/s41565-019-0362-9.Advanced Multimaterial Electronic and Optoelectronic Fibers and Textiles
Advanced Materials. 2019. Vol. 31, num. 1, p. 1802348. DOI : 10.1002/adma.201802348.Programmable self-assembled metasurface for strong field enhancement
2019. Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, May 05-10, 2019. DOI : 10.1364/CLEO_SI.2019.STh1O.3.Thermal Drawing of Polymer Nano-composites: Fluid Dynamic Analysis and Application to Novel Functional Fibers
Lausanne, EPFL, 2019.Super-elastic multi-material optical fibers for health-care applications
2019. Conference on Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIX, San Francisco, CA, Feb 02-03, 2019. DOI : 10.1117/12.2510697.Microstructured Fibers for the Production of Food
Advanced Materials. 2019. p. 1807282. DOI : 10.1002/adma.201807282.2018
Probing non-Gaussian stochastic gravitational wave backgrounds with LISA
Journal Of Cosmology And Astroparticle Physics. 2018. num. 11, p. 034. DOI : 10.1088/1475-7516/2018/11/034.Direct Synthesis of Selenium Nanowire Mesh on a Solid Substrate and Insights into Ultrafast Photocarrier Dynamics
Journal Of Physical Chemistry C. 2018. Vol. 122, num. 43, p. 25134 – 25141. DOI : 10.1021/acs.jpcc.8b08942.Template assisted dewetting of optical glasses for large area, flexible and stretchable all dielectric metasurfaces
2018. CLEO. Conference on Lasers and Electro-Optics. Science and Innovations 2018, San Jose, California, USA, May 13–18, 2018. DOI : 10.1364/CLEO_SI.2018.STh1I.5.Integration of High-performance Optoelectronic Nanowire-based Devices at Optical Fiber Tips
2018. CLEO. Conference on Lasers and Electro-Optics. Science and Innovations 2018, San Jose, California, USA, May 13–18, 2018. DOI : 10.1364/CLEO_SI.2018.SF2K.4.Development of a Monolithic Fiber-Based Electric Field Sensor
2018.Multi-material and Multi-functional Optical Fibers
2018. DOI : 10.1364/OFC.2018.Tu2J.6.Stretchable Optical and Electronic Fibers via Thermal Drawing
2018. IEEE International Flexible Electronics Technology Conference (IFETC), Ottawa, CANADA, Aug 07-09, 2018. DOI : 10.1109/IFETC.2018.8583875.Superelastic Multimaterial Electronic and Photonic Fibers and Devices via Thermal Drawing
Advanced Materials. 2018. Vol. 30, num. 27, p. 1707251. DOI : 10.1002/adma.201707251.2017
Controlled Sub-Micrometer Hierarchical Textures Engineered in Polymeric Fibers and Microchannels via Thermal Drawing
Advanced Functional Materials. 2017. Vol. 27, num. 10, p. 1605935. DOI : 10.1002/adfm.201605935.Fabrication method of functional micro/nano structures over large-area, flexible and high curvature surfaces, by drawing a fiber from a preform
EP3377681; US10704167; US2018327931; EP3377681; WO2017085323.
2017.Multi-material stretchable optical, electronic and optoelectronic fibers and ribbons composites via thermal drawing
US11141942; US2019047240; CN109154104; EP3414370; WO2017137945.
2017.Microstructure Engineering in Multi-material Fibers
Lausanne, EPFL, 2017.Multi-material micro-electromechanical fibers with bendable functional domains
Journal Of Physics D-Applied Physics. 2017. Vol. 50, num. 14, p. 144001. DOI : 10.1088/1361-6463/aa5bf7.Tailoring Surface Properties of Fiber Materials : Novel Opportunities in the Fabrication of Multi-scale Fiber-based Architectures
Lausanne, EPFL, 2017.Multi-material Optoelectronic Fiber Devices
2017. Conference on Micro- and Nanotechnology (MNT) Sensors, Systems, and Applications IX, Anaheim, CA, USA, APR 09-13, 2017. DOI : 10.1117/12.2262124.Semiconducting Nanowire-Based Optoelectronic Fibers
Advanced Materials. 2017. Vol. 29, num. 27, p. 1700681. DOI : 10.1002/adma.201700681.Feature issue introduction: Multimaterial and Multifunctional Optical Fibers
Optical Materials Express. 2017. Vol. 7, num. 6, p. 1906 – 1908. DOI : 10.1364/Ome.7.001906.Microstructure tailoring of selenium-core multimaterial optoelectronic fibers
Optical Materials Express. 2017. Vol. 7, num. 4, p. 1388 – 1397. DOI : 10.1364/OME.7.001388.2015
Hybrid Optical Fibers – An Innovative Platform for In‐Fiber Photonic Devices
Advanced Optical Materials. 2015. Vol. 4, num. 1, p. 13 – 36. DOI : 10.1002/adom.201500319.2014
Self-organized ordered silver nanoparticle arrays obtained by solid state dewetting
Applied Physics Letters. 2014. Vol. 105, num. 20, p. 203102. DOI : 10.1063/1.4901715.