Publications

2024

Journal Articles

Pan-Arctic methanesulfonic acid aerosol: source regions, atmospheric drivers, and future projections

J. B. Pernov; E. Harris; M. Volpi; T. Baumgartner; B. Hohermuth et al. 

npj Climate and Atmospheric Science. 2024. Vol. 7, num. 1. DOI : 10.1038/s41612-024-00712-3.

Atmospheric isoprene measurements reveal larger-than-expected Southern Ocean emissions

V. Ferracci; J. Weber; C. G. Bolas; A. D. Robinson; F. Tummon et al. 

Nature Communications. 2024. Vol. 15, num. 2571. DOI : 10.1038/s41467-024-46744-4.

Modular Multiplatform Compatible Air Measurement System (MoMuCAMS): a new modular platform for boundary layer aerosol and trace gas vertical measurements in extreme environments

R. Pohorsky; A. Baccarini; J. Tolu; L. Winkel; J. Schmale 

Atmospheric Measurement Techniques. 2024. Vol. 17, num. 2, p. 731 – 754. DOI : 10.5194/amt-17-731-2024.

Highly Hygroscopic Aerosols Facilitate Summer and Early‐Autumn Cloud Formation at Extremely Low Concentrations Over the Central Arctic Ocean

P. Duplessis; L. Karlsson; A. Baccarini; M. Wheeler; W. R. Leaitch et al. 

Journal of Geophysical Research: Atmospheres. 2024. Vol. 129, num. 2. DOI : 10.1029/2023JD039159.

Characteristics and sources of fluorescent aerosols in the central Arctic Ocean

I. F. Beck; A. Moallemi; B. J. L. Heutte; J. B. Pernov; N. Bergner et al. 

Elem Sci Anth. 2024. Vol. 12, num. 1. DOI : 10.1525/elementa.2023.00125.

Glucose Enhances Salinity-Driven Sea Spray Aerosol Production in Eastern Arctic Waters

A. Rocchi; A. von Jackowski; A. Welti; G. Li; Z. A. Kanji et al. 

Environmental Science & Technology. 2024. DOI : 10.1021/acs.est.4c02826.

Overview of the Alaskan Layered Pollution and Chemical Analysis (ALPACA) Field Experiment

W. R. Simpson; J. Mao; G. J. Fochesatto; K. S. Law; P. F. DeCarlo et al. 

ACS ES&T Air. 2024. DOI : 10.1021/acsestair.3c00076.

Comparison of selected surface level ERA5 variables against in‐situ observations in the continental Arctic

J. B. Pernov; J. Gros-Daillon; J. Schmale 

Quarterly Journal of the Royal Meteorological Society. 2024. Vol. 1-24. DOI : 10.1002/qj.4700.

2023

Journal Articles

Widespread detection of chlorine oxyacids in the Arctic atmosphere

Y. J. Tham; N. Sarnela; S. Iyer; Q. Li; H. Angot et al. 

Nature Communications. 2023. Vol. 14, num. 1. DOI : 10.1038/s41467-023-37387-y.

Late summer transition from a free-tropospheric to boundary layer source of Aitken mode aerosol in the high Arctic

R. Price; A. Baccarini; J. Schmale; P. Zieger; I. M. Brooks et al. 

Atmospheric Chemistry and Physics. 2023. Vol. 23, num. 5, p. 2927 – 2961. DOI : 10.5194/acp-23-2927-2023.

Low ozone dry deposition rates to sea ice during the MOSAiC field campaign: Implications for the Arctic boundary layer ozone budget

J. G. Barten; L. N. Ganzeveld; G-J. Steeneveld; B. W. Blomquist; H. Angot et al. 

Elementa: Science of the Anthropocene. 2023. Vol. 11, num. 1, p. 00086. DOI : 10.1525/elementa.2022.00086.

Arctic tropospheric ozone: assessment of current knowledge and model performance

C. H. Whaley; K. S. Law; J. L. Hjorth; H. Skov; S. R. Arnold et al. 

Atmospheric Chemistry and Physics. 2023. Vol. 23, num. 1, p. 637 – 661. DOI : 10.5194/acp-23-637-2023.

A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition

M. Boyer; D. Aliaga; J. B. Pernov; H. Angot; L. L. J. Quéléver et al. 

Atmospheric Chemistry and Physics. 2023. Vol. 23, num. 1, p. 389 – 415. DOI : 10.5194/acp-23-389-2023.

Thin and transient meltwater layers and false bottoms in the Arctic sea ice pack—Recent insights on these historically overlooked features

M. M. Smith; H. Angot; E. J. Chamberlain; E. S. Droste; S. Karam et al. 

Elem Sci Anth. 2023. Vol. 11, num. 1. DOI : 10.1525/elementa.2023.00025.

Arctic Tropospheric Ozone Trends

K. S. Law; J. L. Hjorth; J. B. Pernov; C. H. Whaley; H. Skov et al. 

Geophysical Research Letters. 2023. Vol. 50, num. 22. DOI : 10.1029/2023GL103096.

Arctic warming by abundant fine sea salt aerosols from blowing snow

X. Gong; J. Zhang; B. Croft; X. Yang; M. M. Frey et al. 

Nature Geoscience. 2023. DOI : 10.1038/s41561-023-01254-8.

The Marginal Ice Zone as a dominant source region of atmospheric mercury during central Arctic summertime

F. Yue; H. Angot; B. Blomquist; J. Schmale; C. J. M. Hoppe et al. 

Nature Communications. 2023. Vol. 14, num. 1. DOI : 10.1038/s41467-023-40660-9.

Measurement report: High Arctic aerosol hygroscopicity at sub- and supersaturated conditions during spring and summer

A. Massling; R. Lange; J. B. Pernov; U. Gosewinkel; L-L. Sørensen et al. 

Atmospheric Chemistry and Physics. 2023. Vol. 23, num. 8, p. 4931 – 4953. DOI : 10.5194/acp-23-4931-2023.

Modelling the coupled mercury-halogen-ozone cycle in the central Arctic during spring

S. Ahmed; J. L. Thomas; H. Angot; A. Dommergue; S. D. Archer et al. 

Elem Sci Anth (Elementa: Science of the Anthropocene). 2023. Vol. 11, num. 1, p. 00129. DOI : 10.1525/elementa.2022.00129.

Snow Loss Into Leads in Arctic Sea Ice: Minimal in Typical Wintertime Conditions, but High During a Warm and Windy Snowfall Event

D. Clemens‐Sewall; C. Polashenski; M. M. Frey; C. J. Cox; M. A. Granskog et al. 

Geophysical Research Letters. 2023. Vol. 50, num. 12, p. e2023GL102816. DOI : 10.1029/2023GL102816.

Polar oceans and sea ice in a changing climate

M. D. Willis; D. Lannuzel; B. Else; H. Angot; K. Campbell et al. 

Elem Sci Anth. 2023. Vol. 11, num. 1. DOI : 10.1525/elementa.2023.00056.

Untangling the influence of Antarctic and Southern Ocean life on clouds

M. D. Mallet; R. S. Humphries; S. L. Fiddes; S. P. Alexander; K. Altieri et al. 

Elementa: Science of the Anthropocene. 2023. Vol. 11, num. 1. DOI : 10.1525/elementa.2022.00130.

Measurements of aerosol microphysical and chemical properties in the central Arctic atmosphere during MOSAiC

B. Heutte; N. Bergner; I. Beck; H. Angot; L. Dada et al. 

Scientific Data. 2023. Vol. 10, num. 1, p. 690. DOI : 10.1038/s41597-023-02586-1.

2022

Journal Articles

The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source

H. Finkenzeller; S. Iyer; X-C. He; M. Simon; T. K. Koenig et al. 

Nature Chemistry. 2022. DOI : 10.1038/s41557-022-01067-z.

Atmospheric biogenic volatile organic compounds in the Alaskan Arctic tundra: constraints from measurements at Toolik Field Station

V. Selimovic; D. Ketcherside; S. Chaliyakunnel; C. Wielgasz; W. Permar et al. 

Atmospheric Chemistry And Physics. 2022. Vol. 22, num. 21, p. 14037 – 14058. DOI : 10.5194/acp-22-14037-2022.

Exploring the link between austral stratospheric polar vortex anomalies and surface climate in chemistry-climate models

N. Bergner; M. Friedel; D. I. Domeisen; D. Waugh; G. Chiodo 

Atmospheric Chemistry And Physics. 2022. Vol. 22, num. 21, p. 13915 – 13934. DOI : 10.5194/acp-22-13915-2022.

Information content and aerosol property retrieval potential for different types of in situ polar nephelometer data

A. Moallemi; R. L. Modini; T. Lapyonok; A. Lopatin; D. Fuertes et al. 

Atmospheric Measurement Techniques. 2022. Vol. 15, num. 19, p. 5619 – 5642. DOI : 10.5194/amt-15-5619-2022.

Clean air policies are key for successfully mitigating Arctic warming

K. von Salzen; C. H. Whaley; S. C. Anenberg; R. Van Dingenen; Z. Klimont et al. 

Communications Earth & Environment. 2022. Vol. 3, num. 222. DOI : 10.1038/s43247-022-00555-x.

Using Novel Molecular-Level Chemical Composition Observations of High Arctic Organic Aerosol for Predictions of Cloud Condensation Nuclei

K. Siegel; A. Neuberger; L. Karlsson; P. Zieger; F. Mattsson et al. 

Environmental Science & Technology. 2022. Vol. 56, num. 19, p. 13888 – 13899. DOI : 10.1021/acs.est.2c02162.

Substantial contribution of iodine to Arctic ozone destruction

N. Benavent; A. S. Mahajan; Q. Li; C. A. Cuevas; J. Schmale et al. 

Nature Geoscience. 2022. DOI : 10.1038/s41561-022-01018-w.

A central arctic extreme aerosol event triggered by a warm air-mass intrusion

L. Dada; H. Angot; I. F. Beck; A. Baccarini; L. L. J. Quéléver et al. 

Nature Communications. 2022. Vol. 13, num. 1, p. 5290. DOI : 10.1038/s41467-022-32872-2.

Aerobiology over the Southern Ocean – implications for bacterial colonization of Antarctica

L. A. Malard; M-L. Avila-Jimenez; J. Schmale; L. Cuthbertson; L. Cockerton et al. 

Environment International. 2022.  p. 107492. DOI : 10.1016/j.envint.2022.107492.

Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere

B. F. Araujo; S. Osterwalder; N. Szponar; D. Lee; M. V. Petrova et al. 

Nature Communications. 2022. Vol. 13, num. 1, p. 4956. DOI : 10.1038/s41467-022-32440-8.

Increased aerosol concentrations in the High Arctic attributable to changing atmospheric transport patterns

J. B. Pernov; D. Beddows; D. Thomas; M. Dall’Osto; R. Harrison et al. 

npj Climate and Atmospheric Science. 2022. Vol. 5, p. 62. DOI : 10.1038/s41612-022-00286-y.

Circum-Antarctic abundance and properties of CCN and INPs

C. Tatzelt; S. Henning; A. Welti; A. Baccarini; M. Hartmann et al. 

Atmospheric Chemistry and Physics. 2022. Vol. 22, num. 14, p. 9721 – 9745. DOI : 10.5194/acp-22-9721-2022.

Observing the Central Arctic Atmosphere and Surface with University of Colorado uncrewed aircraft systems

G. de Boer; R. Calmer; G. Jozef; J. J. Cassano; J. Hamilton et al. 

Scientific Data. 2022. Vol. 9, num. 1, p. 439. DOI : 10.1038/s41597-022-01526-9.

Automated identification of local contamination in remote atmospheric composition time series

I. Beck; H. Angot; A. Baccarini; L. Dada; L. Quelever et al. 

Atmospheric Measurement Techniques. 2022. Vol. 15, num. 14, p. 4195 – 4224. DOI : 10.5194/amt-15-4195-2022.

Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere

L. J. Beck; S. Schobesberger; H. Junninen; J. Lampilahti; A. Manninen et al. 

Atmospheric Chemistry And Physics. 2022. Vol. 22, num. 13, p. 8547 – 8577. DOI : 10.5194/acp-22-8547-2022.

Investigation of new particle formation mechanisms and aerosol processes at Marambio Station, Antarctic Peninsula

L. L. J. Quelever; L. Dada; E. Asmi; J. Lampilahti; T. Chan et al. 

Atmospheric Chemistry And Physics. 2022. Vol. 22, num. 12, p. 8417 – 8437. DOI : 10.5194/acp-22-8417-2022.

High-frequency gaseous and particulate chemical characterization using extractive electrospray ionization mass spectrometry (Dual-Phase-EESI-TOF)

C. P. Lee; M. Surdu; D. M. Bell; J. Dommen; M. Xiao et al. 

Atmospheric Measurement Techniques. 2022. Vol. 15, num. 12. DOI : 10.5194/amt-15-3747-2022.

Annual cycle observations of aerosols capable of ice formation in central Arctic clouds

J. M. Creamean; K. Barry; T. C. J. Hill; C. Hume; P. J. DeMott et al. 

Nature Communications. 2022. Vol. 13, p. 3537. DOI : 10.1038/s41467-022-31182-x.

A local marine source of atmospheric particles in the High Arctic

J. Nøjgaard; L. Peker; J. B. Pernov; M. Johnson; R. Bossi et al. 

Atmospheric Environment. 2022. Vol. 285, p. 119241. DOI : 10.1016/j.atmosenv.2022.119241.

Physical and Chemical Properties of Cloud Droplet Residuals and Aerosol Particles During the Arctic Ocean 2018 Expedition

L. Karlsson; A. Baccarini; P. Duplessis; D. Baumgardner; I. M. Brooks et al. 

Journal of Geophysical Research: Atmospheres. 2022. Vol. 127, num. 11. DOI : 10.1029/2021JD036383.

An evaluation of new particle formation events in Helsinki during a Baltic Sea cyanobacterial summer bloom

R. C. Thakur; L. Dada; L. J. Beck; L. L. J. Quelever; T. Chan et al. 

Atmospheric Chemistry And Physics. 2022. Vol. 22, num. 9, p. 6365 – 6391. DOI : 10.5194/acp-22-6365-2022.

What are the likely changes in mercury concentration in the Arctic atmosphere and ocean under future emissions scenarios?

A. Schartup; A. Soerensen; H. Angot; K. Bowman; N. Selin 

Science of The Total Environment. 2022. Vol. 836, p. 155477. DOI : 10.1016/j.scitotenv.2022.155477.

Model evaluation of short-lived climate forcers for the Arctic Monitoring and Assessment Programme: a multi-species, multi-model study

C. H. Whaley; R. Mahmood; K. von Salzen; B. Winter; S. Eckhardt et al. 

Atmospheric Chemistry and Physics. 2022. Vol. 22, num. 9, p. 5775 – 5828. DOI : 10.5194/acp-22-5775-2022.

Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories

J. Schmale; S. Sharma; S. Decesari; J. Pernov; A. Massling et al. 

Atmospheric Chemistry and Physics. 2022. Vol. 22, num. 5, p. 3067 – 3096. DOI : 10.5194/acp-22-3067-2022.

Elucidating the present-day chemical composition, seasonality and source regions of climate-relevant aerosols across the Arctic land surface

V. Moschos; J. Schmale; W. Aas; S. Becagli; G. Calzolai et al. 

Environmental Research Letters. 2022. Vol. 17, num. 3, p. 034032. DOI : 10.1088/1748-9326/ac444b.

Highly Active Ice‐Nucleating Particles at the Summer North Pole

G. C. E. Porter; M. P. Adams; I. M. Brooks; L. Ickes; L. Karlsson et al. 

Journal of Geophysical Research: Atmospheres. 2022. Vol. 127, num. 6, p. 1 – 18, e2021JD036059. DOI : 10.1029/2021JD036059.

Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols

V. Moschos; K. Dzepina; D. Bhattu; H. Lamkaddam; R. Casotto et al. 

Nature Geoscience. 2022. Vol. 15, num. 3, p. 196 – 202. DOI : 10.1038/s41561-021-00891-1.

Overview of the MOSAiC expedition—Atmosphere

M. D. Shupe; M. Rex; B. Blomquist; P. O. G. Persson; J. Schmale et al. 

Elementa: Science of the Anthropocene. 2022. Vol. 10, num. 1. DOI : 10.1525/elementa.2021.00060.

New particle formation event detection with Mask R-CNN

P. Su; J. Joutsensaari; L. Dada; M. A. Zaidan; T. Nieminen et al. 

Atmospheric Chemistry and Physics. 2022. Vol. 22, num. 2, p. 1293 – 1309. DOI : 10.5194/acp-22-1293-2022.

Observed coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in Beijing

S. Hakala; V. Vakkari; F. Bianchi; L. Dada; C. Deng et al. 

Environmental Science: Atmospheres. 2022. Vol. 2, num. 2, p. 146 – 164. DOI : 10.1039/D1EA00089F.

Evidence that Pacific tuna mercury levels are driven by marine methylmercury production and anthropogenic inputs

A. Médieu; D. Point; T. Itai; H. Angot; P. Buchanan et al. 

Proceedings of the National Academy of Sciences. 2022. Vol. 119, num. 2, p. e2113032119. DOI : 10.1073/pnas.2113032119.

Year-round trace gas measurements in the central Arctic during the MOSAiC expedition

H. Angot; B. Blomquist; D. Howard; L. Bariteau; I. F. Beck et al. 

Scientific Data. 2022. Vol. 9, num. 1. DOI : 10.1038/s41597-022-01769-6.

Arctic atmospheric mercury: Sources and changes

A. Dastoor; S. Wilson; O. Travnikov; A. Ryjkov; H. Angot et al. 

Science of The Total Environment. 2022. Vol. 839, p. 156213. DOI : 10.1016/j.scitotenv.2022.156213.

Key challenges for tropospheric chemistry in the Southern Hemisphere

C. Paton-Walsh; K. M. Emmerson; R. M. Garland; M. Keywood; J. J. Hoelzemann et al. 

Elementa: Science of the Anthropocene. 2022. Vol. 10, num. 1. DOI : 10.1525/elementa.2021.00050.

The standard operating procedure for Airmodus Particle Size Magnifier and nano-Condensation Nucleus Counter

K. Lehtipalo; L. Ahonen; R. Baalbaki; J. Sulo; T. Chan et al. 

Journal of Aerosol Science. 2022. Vol. 159, p. 105896. DOI : 10.1016/j.jaerosci.2021.105896.

2021

Journal Articles

Measurement report: New particle formation characteristics at an urban and a mountain station in northern China

Y. Zhou; S. Hakala; C. Yan; Y. Gao; X. Yao et al. 

Atmospheric Chemistry And Physics. 2021. Vol. 21, num. 23, p. 17885 – 17906. DOI : 10.5194/acp-21-17885-2021.

Exploring the coupled ocean and atmosphere system with a data science approach applied to observations from the Antarctic Circumnavigation Expedition

S. Landwehr; M. Volpi; F. A. Haumann; C. M. Robinson; I. Thurnherr et al. 

Earth System Dynamics. 2021. Vol. 12, num. 4, p. 1295 – 1369. DOI : 10.5194/esd-12-1295-2021.

Low‐Volatility Vapors and New Particle Formation Over the Southern Ocean During the Antarctic Circumnavigation Expedition

A. Baccarini; J. Dommen; K. Lehtipalo; S. Henning; R. L. Modini et al. 

Journal of Geophysical Research: Atmospheres. 2021. Vol. 126, num. 22, p. 1 – 25, e2021JD035126. DOI : 10.1029/2021JD035126.

New Insights Into the Composition and Origins of Ultrafine Aerosol in the Summertime High Arctic

M. J. Lawler; E. S. Saltzman; L. Karlsson; P. Zieger; M. Salter et al. 

Geophysical Research Letters. 2021. Vol. 48, num. 21, p. e2021GL094395. DOI : 10.1029/2021GL094395.

Constraining the response factors of an extractive electrospray ionization mass spectrometer for near-molecular aerosol speciation

D. S. Wang; C. P. Lee; J. E. Krechmer; F. Majluf; Y. Tong et al. 

Atmospheric Measurement Techniques. 2021. Vol. 14, num. 11, p. 6955 – 6972. DOI : 10.5194/amt-14-6955-2021.

Atmospheric mercury sources in a coastal-urban environment: a case study in Boston, Massachusetts, USA

H. Angot; E. Rutkowski; M. Sargent; S. Wofsy; L. Hutyra et al. 

Environmental Science: Processes & Impacts. 2021. Vol. 23, num. 12, p. 1914 – 1929. DOI : 10.1039/D1EM00253H.

Temporary pause in the growth of atmospheric ethane and propane in 2015–2018

H. Angot; C. Davel; C. Wiedinmyer; G. Pétron; J. Chopra et al. 

Atmospheric Chemistry and Physics. 2021. Vol. 21, num. 19, p. 15153 – 15170. DOI : 10.5194/acp-21-15153-2021.

Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry

M. Surdu; V. Pospisilova; M. Xiao; M. Wang; B. Mentler et al. 

Environmental Science: Atmospheres. 2021. Vol. 1, num. 6, p. 434 – 448. DOI : 10.1039/D1EA00050K.

Differentiation of coarse-mode anthropogenic, marine and dust particles in the High Arctic islands of Svalbard

C. Song; M. Dall’Osto; A. Lupi; M. Mazzola; R. Traversi et al. 

Atmospheric Chemistry and Physics. 2021. Vol. 21, num. 14, p. 11317 – 11335. DOI : 10.5194/acp-21-11317-2021.

Progress in Unraveling Atmospheric New Particle Formation and Growth Across the Arctic

J. Schmale; A. Baccarini 

Geophysical Research Letters. 2021. Vol. 48, num. 14, p. e2021GL094198. DOI : 10.1029/2021GL094198.

Black carbon and dust in the Third Pole glaciers: revaluated concentrations, mass absorption cross-sections and contributions to glacier ablation

Y. Li; S. Kang; X. Zhang; J. Chen; J. Schmale et al. 

Science of The Total Environment. 2021.  p. 147746. DOI : 10.1016/j.scitotenv.2021.147746.

Sources, Occurrence and Characteristics of Fluorescent Biological Aerosol Particles Measured over the Pristine Southern Ocean

A. Moallemi; S. Landwehr; C. Robinson; R. Simó; M. Zamanillo et al. 

Journal of Geophysical Research: Atmospheres. 2021. Vol. 126, num. 11, p. e2021JD034811. DOI : 10.1029/2021JD034811.

Large contribution to secondary organic aerosol from isoprene cloud chemistry

H. Lamkaddam; J. Dommen; A. Ranjithkumar; H. Gordon; G. Wehrle et al. 

Science Advances. 2021. Vol. 7, num. 13, p. eabe2952. DOI : 10.1126/sciadv.abe2952.

Insights into the molecular composition of semi-volatile aerosols in the summertime central Arctic Ocean using FIGAERO-CIMS

K. Siegel; L. Karlsson; P. Zieger; A. Baccarini; J. Schmale et al. 

Environmental Science: Atmospheres. 2021. Vol. 1, num. 4, p. 161 – 175. DOI : 10.1039/D0EA00023J.

Aerosols in current and future Arctic climate

J. Schmale; P. Zieger; A. M. L. Ekman 

Nature Climate Change. 2021. Vol. 11, p. 95 – 105. DOI : 10.1038/s41558-020-00969-5.

Towards understanding the characteristics of new particle formation in the Eastern Mediterranean

R. Baalbaki; M. Pikridas; T. Jokinen; T. Laurila; L. Dada et al. 

Atmospheric Chemistry and Physics. 2021. Vol. 21, num. 11, p. 9223 – 9251. DOI : 10.5194/acp-21-9223-2021.

Towards a concentration closure of sub-6 nm aerosol particles and sub-3 nm atmospheric clusters

M. Kulmala; D. Stolzenburg; L. Dada; R. Cai; J. Kontkanen et al. 

Journal of Aerosol Science. 2021. Vol. 159, p. 105878. DOI : 10.1016/j.jaerosci.2021.105878.

Aerosol formation and growth rates from chamber experiments using Kalman smoothing

M. Ozon; D. Stolzenburg; L. Dada; A. Seppänen; K. E. J. Lehtinen 

Atmospheric Chemistry and Physics. 2021. Vol. 21, num. 16, p. 12595 – 12611. DOI : 10.5194/acp-21-12595-2021.

2020

Journal Articles

Ship-based measurements of ice nuclei concentrations over the Arctic, Atlantic, Pacific and Southern oceans

A. Welti; E. K. Bigg; P. J. DeMott; X. Gong; M. Hartmann et al. 

Atmospheric Chemistry and Physics. 2020. Vol. 20, num. 23, p. 15191 – 15206. DOI : 10.5194/acp-20-15191-2020.

Prepare Scientists to Engage in Science‐Policy

E. Schneidemesser; M. Melamed; J. Schmale 

Earth’s Future. 2020. Vol. 8, num. 11, p. 1 – 7. DOI : 10.1029/2020EF001628.

Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions

A. Baccarini; L. Karlsson; J. Dommen; P. Duplessis; J. Vüllers et al. 

Nature Communications. 2020. Vol. 11, p. 4924. DOI : 10.1038/s41467-020-18551-0.

The value of remote marine aerosol measurements for constraining radiative forcing uncertainty

L. A. Regayre; J. Schmale; J. S. Johnson; C. Tatzelt; A. Baccarini et al. 

Atmospheric Chemistry and Physics. 2020. Vol. 20, num. 16, p. 10063 – 10072. DOI : 10.5194/acp-20-10063-2020.

Black Carbon Aerosols in the Lower Free Troposphere are Heavily Coated in Summer but Largely Uncoated in Winter at Jungfraujoch in the Swiss Alps

G. Motos; J. C. Corbin; J. Schmale; R. L. Modini; M. Bertò et al. 

Geophysical Research Letters. 2020. Vol. 47, num. 14, p. e2020GL088011. DOI : 10.1029/2020GL088011.

Satellite retrieval of cloud condensation nuclei concentrations in marine stratocumulus by using clouds as CCN chambers

A. Efraim; D. Rosenfeld; J. Schmale; Y. Zhu 

Journal of Geophysical Research: Atmospheres. 2020. Vol. 125, num. 16, p. e2020JD032409. DOI : 10.1029/2020JD032409.

Overview: Integrative and Comprehensive Understanding on Polar Environments (iCUPE) – concept and initial results

T. Petäjä; E-M. Duplissy; K. Tabakova; J. Schmale; B. Altstädter et al. 

Atmospheric Chemistry and Physics. 2020. Vol. 20, num. 14, p. 8551 – 8592. DOI : 10.5194/acp-20-8551-2020.

Using global reanalysis data to quantify and correct airflow distortion bias in shipborne wind speed measurements

S. Landwehr; I. Thurnherr; N. Cassar; M. Gysel-Beer; J. Schmale 

Atmospheric Measurement Techniques. 2020. Vol. 13, num. 6, p. 3487 – 3506. DOI : 10.5194/amt-13-3487-2020.

Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean

I. Thurnherr; A. Kozachek; P. Graf; Y. Weng; D. Bolshiyanov et al. 

Atmospheric Chemistry And Physics. 2020. Vol. 20, num. 9, p. 5811 – 5835. DOI : 10.5194/acp-20-5811-2020.

Online Aerosol Chemical Characterization by Extractive Electrospray Ionization-Ultrahigh-Resolution Mass Spectrometry (EESI-Orbitrap)

C. P. Lee; M. Riva; D. Wang; S. Tomaz; D. Li et al. 

Environmental Science & Technology. 2020. Vol. 54, num. 7, p. 3871 – 3880. DOI : 10.1021/acs.est.9b07090.

Fostering multidisciplinary research on interactions between chemistry, biology, and physics within the coupled cryosphere-atmosphere system

J. L. Thomas; J. Stutz; M. M. Frey; T. Bartels-Rausch; K. Altieri et al. 

Elementa-Science Of The Anthropocene. 2020. Vol. 7, p. 58. DOI : 10.1525/elementa.396.

2019

Journal Articles

Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation

G. S. Fanourgakis; M. Kanakidou; A. Nenes; S. E. Bauer; T. Bergman et al. 

Atmospheric Chemistry And Physics. 2019. Vol. 19, num. 13, p. 8591 – 8617. DOI : 10.5194/acp-19-8591-2019.

Dissolved organic carbon in snow cover of the Chinese Altai Mountains, Central Asia: Concentrations, sources and light-absorption properties

Y. Zhang; S. Kang; T. Gao; J. Schmale; Y. Liu et al. 

Science of The Total Environment. 2019. Vol. 647, p. 1385 – 1397. DOI : 10.1016/j.scitotenv.2018.07.417.

Overview of the Antarctic Circumnavigation Expedition: Study of Preindustrial-like Aerosols and Their Climate Effects (ACE-SPACE)

A. Baccarini; J. Schmale; I. Thurnherr; S. Henning; A. Efraim et al. 

Bulletin of the American Meteorological Society. 2019. Vol. 100, num. 11, p. 2260 – 2283. DOI : 10.1175/BAMS-D-18-0187.1.

Cloud droplet activation properties and scavenged fraction of black carbon in liquid-phase clouds at the high-alpine research station Jungfraujoch (3580 m a.s.l.)

G. Motos; J. Schmale; J. C. Corbin; R. L. Modini; N. Karlen et al. 

Atmospheric Chemistry and Physics. 2019. Vol. 19, num. 6, p. 3833 – 3855. DOI : 10.5194/acp-19-3833-2019.

Droplet activation behaviour of atmospheric black carbon particles in fog as a function of their size and mixing state

G. Motos; J. Schmale; J. C. Corbin; M. Zanatta; U. Baltensperger et al. 

Atmospheric Chemistry and Physics. 2019. Vol. 19, num. 4, p. 2183 – 2207. DOI : 10.5194/acp-19-2183-2019.

Variation of Ice Nucleating Particles in the European Arctic Over the Last Centuries

M. Hartmann; T. Blunier; S. Brügger; J. Schmale; M. Schwikowski et al. 

Geophysical Research Letters. 2019. Vol. 46, num. 7, p. 4007 – 4016. DOI : 10.1029/2019GL082311.

2018

Journal Articles

Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories

J. Schmale; S. Henning; S. Decesari; B. Henzing; H. Keskinen et al. 

Atmospheric Chemistry and Physics. 2018. Vol. 18, p. 2853 – 2881. DOI : 10.5194/acp-18-2853-2018.

Long-term monitoring of black carbon across Germany

R. D. Kutzner; E. von Schneidemesser; F. Kuik; J. Quedenau; E. C. Weatherhead et al. 

Atmospheric Environment. 2018. Vol. 185, p. 41 – 52. DOI : 10.1016/j.atmosenv.2018.04.039.

Local Arctic Air Pollution: A Neglected but Serious Problem

J. Schmale; S. R. Arnold; K. S. Law; T. Thorp; S. Anenberg et al. 

Earth’s Future. 2018. Vol. 6, num. 10, p. 1385 – 1412. DOI : 10.1029/2018EF000952.

2017

Journal Articles

A survey on the perceived need and value of decision-support tools for joint mitigation of air pollution and climate change in cities

E. Von Schneidemesser; R. D. Kutzner; J. Schmale 

Elementa Science of the Anthropocene. 2017. Vol. 5, p. 68. DOI : 10.1525/elementa.126.

Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

J. Schmale; S. Henning; B. Henzing; H. Keskinen; K. Sellegri et al. 

Scientific Data. 2017. Vol. 4, p. 170003. DOI : 10.1038/sdata.2017.3.

Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon

J. Schmale; M. Flanner; S. Kang; M. Sprenger; Q. Zhang et al. 

Scientific Reports. 2017. Vol. 7, num. 1, p. 40501. DOI : 10.1038/srep40501.

Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan plateau

Y. Zhang; S. Kang; Z. Cong; J. Schmale; M. Sprenger et al. 

Journal of Geophysical Research: Atmospheres. 2017. Vol. 122, num. 13, p. 6915 – 6933. DOI : 10.1002/2016JD026397.

2016

Journal Articles

Measurement of ammonia emissions from temperate and sub-polar seabird colonies

S. Riddick; T. Blackall; U. Dragosits; F. Daunt; M. Newell et al. 

Atmospheric Environment. 2016. Vol. 134, p. 40 – 50. DOI : 10.1016/j.atmosenv.2016.03.016.

Sustainable policy—key considerations for air quality and climate change

M. L. Melamed; J. Schmale; E. von Schneidemesser 

Current Opinion in Environmental Sustainability. 2016. Vol. 23, p. 85 – 91. DOI : 10.1016/j.cosust.2016.12.003.

2015

Journal Articles

Short-term solutions

J. Schmale 

Nature Climate Change. 2015. Vol. 6, num. 3, p. 234 – 235. DOI : 10.1038/nclimate2897.

An Integrated Assessment Method for Sustainable Transport System Planning in a Middle Sized German City

J. Schmale; E. von Schneidemesser; A. Dörrie 

Sustainability. 2015. Vol. 7, num. 2, p. 1329 – 1354. DOI : 10.3390/su7021329.

2014

Journal Articles

New Directions: Support for integrated decision-making in air and climate policies – Development of a metrics-based information portal

J. Schmale; J. van Aardenne; E. von Schneidemesser 

Atmospheric Environment. 2014. Vol. 90, p. 146 – 148. DOI : 10.1016/j.atmosenv.2014.03.016.

Air pollution: Clean up our skies

J. Schmale; D. Shindell; E. von Schneidemesser; I. Chabay; M. Lawrence 

Nature. 2014. Vol. 515, num. 7527, p. 335 – 337. DOI : 10.1038/515335a.

2013

Journal Articles

Sub-Antarctic marine aerosol: dominant contributions from biogenic sources

J. Schmale; J. Schneider; E. Nemitz; Y. S. Tang; U. Dragosits et al. 

Atmospheric Chemistry and Physics. 2013. Vol. 13, num. 17, p. 8669 – 8694. DOI : 10.5194/acp-13-8669-2013.

2011

Journal Articles

Physical and chemical properties of pollution aerosol particles transported from North America to Greenland as measured during the POLARCAT summer campaign

B. Quennehen; A. Schwarzenboeck; J. Schmale; J. Schneider; H. Sodemann et al. 

Atmospheric Chemistry and Physics. 2011. Vol. 11, num. 21, p. 10947 – 10963. DOI : 10.5194/acp-11-10947-2011.

Source identification and airborne chemical characterisation of aerosol pollution from long-range transport over Greenland during POLARCAT summer campaign 2008

J. Schmale; J. Schneider; G. Ancellet; B. Quennehen; A. Stohl et al. 

Atmospheric Chemistry and Physics. 2011. Vol. 11, num. 19, p. 10097 – 10123. DOI : 10.5194/acp-11-10097-2011.

2010

Journal Articles

Aerosol layers from the 2008 eruptions of Mount Okmok and Mount Kasatochi: In situ upper troposphere and lower stratosphere measurements of sulfate and organics over Europe

J. Schmale; J. Schneider; T. Jurkat; C. Voigt; H. Kalesse et al. 

Journal of Geophysical Research. 2010. Vol. 115, p. D00L07. DOI : 10.1029/2009JD013628.

Airborne stratospheric ITCIMS measurements of SO2, HCl, and HNO3in the aged plume of volcano Kasatochi

T. Jurkat; C. Voigt; F. Arnold; H. Schlager; H. Aufmhoff et al. 

Journal of Geophysical Research. 2010. Vol. 115, p. 1 – 14. DOI : 10.1029/2010JD013890.

In-situ observations of young contrails – overview and selected results from the CONCERT campaign

C. Voigt; U. Schumann; T. Jurkat; D. Schäuble; H. Schlager et al. 

Atmospheric Chemistry and Physics. 2010. Vol. 10, num. 18, p. 9039 – 9056. DOI : 10.5194/acp-10-9039-2010.