Publications

2024

Androgen Receptor Signaling in in vivo models of Estrogen Receptor-positive Breast Cancer and Normal Breast Epithelium

A. Agnoletto / C. Brisken (Dir.)  

Lausanne, EPFL, 2024. 

2023

Tumor dormancy: EMT beyond invasion and metastasis

P. Aouad; H. M. Quinn; A. Berger; C. Brisken 

Genesis. 2023-09-30. DOI : 10.1002/dvg.23552.

Optimized Modeling of Metastatic Triple-Negative Invasive Lobular Breast Carcinoma

G. Sflomos; N. Schaumann; M. Christgen; H. Christgen; S. Bartels et al. 

Cancers. 2023-07-01. Vol. 15, num. 13, p. 3299. DOI : 10.3390/cancers15133299.

Epigenetic silencing of selected hypothalamic neuropeptides in narcolepsy with cataplexy

A. Seifinejad; M. Ramosaj; L. Shan; S. Li; M-L. Possovre et al. 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2023-05-01. Vol. 120, num. 19, p. 2220911120. DOI : 10.1073/pnas.2220911120.

TGF beta-mediated MMP13 secretion drives myoepithelial cell dependent breast cancer progression

S. V. Gibson; E. Tomas Bort; L. Rodriguez-Fernandez; M. D. Allen; J. J. Gomm et al. 

Npj Breast Cancer. 2023-03-02. Vol. 9, num. 1, p. 9. DOI : 10.1038/s41523-023-00513-6.

Targeting the Progesterone Receptor in Breast Cancer: Mind the Short Form!

C. Ronchi; C. Brisken 

Clinical Cancer Research. 2023-03-01. Vol. 29, num. 5, p. 833-834. DOI : 10.1158/1078-0432.CCR-22-3374.

Method for hormone or drug screening in a tissue sample

Y. Zhang; C. Merten; C. Brisken 

WO2023161231.

2023.

2022

Epithelial-mesenchymal plasticity determines estrogen receptor positive breast cancer dormancy and epithelial reconversion drives recurrence

P. Aouad; Y. Zhang; F. De Martino; C. Stibolt; S. Ali et al. 

Nature Communications. 2022-08-25. Vol. 13, num. 1, p. 4975 . DOI : 10.1038/s41467-022-32523-6.

RNA sequencing-based single sample predictors of molecular subtype and risk of recurrence for clinical assessment of early-stage breast cancer

J. Staaf; J. Hakkinen; C. Hegardt; L. H. Saal; S. Kimbung et al. 

Npj Breast Cancer. 2022-08-16. Vol. 8, num. 1, p. 94. DOI : 10.1038/s41523-022-00465-3.

ADAMTS18(+) villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels

J. Bernier-Latmani; C. Mauri; R. Marcone; F. Renevey; S. Durot et al. 

Nature Communications. 2022-07-09. Vol. 13, num. 1, p. 3983. DOI : 10.1038/s41467-022-31571-2.

Estrogen receptor positive breast cancers have patient specific hormone sensitivities and rely on progesterone receptor

V. Scabia; A. Ayyanan; F. De Martino; A. Agnoletto; L. Battista et al. 

Nature Communications. 2022-06-06. Vol. 13, num. 1, p. 3127. DOI : 10.1038/s41467-022-30898-0.

Role of the androgen receptor in the human breast epithelium

F. De Martino / C. Brisken (Dir.)  

Lausanne, EPFL, 2022. 

Estrogen receptor signaling in the human breast epithelium

C. B. Constantin / C. Brisken (Dir.)  

Lausanne, EPFL, 2022. 

2021

Atlas of Lobular Breast Cancer Models: Challenges and Strategic Directions

G. Sflomos; K. Schipper; T. Koorman; A. Fitzpatrick; S. Oesterreich et al. 

Cancers. 2021-11-01. Vol. 13, num. 21, p. 5396. DOI : 10.3390/cancers13215396.

Abstract 2993: Intraductal xenografts model ERα-positive invasive lobular carcinoma of the breast

G. Sflomos; L. Battista; P. Aouad; F. De Martino; V. Scabia et al. 

2021-07-01.  p. 2993-2993. DOI : 10.1158/1538-7445.AM2021-2993.

Contraceptive progestins with androgenic properties stimulate breast epithelial cell proliferation

M. Shamseddin; F. De Martino; C. Constantin; V. Scabia; A-S. Lancelot et al. 

Embo Molecular Medicine. 2021-05-27.  p. e14314. DOI : 10.15252/emmm.202114314.

Deep Learning Enables Individual Xenograft Cell Classification in Histological Images by Analysis of Contextual Features

Q. Juppet; F. De Martino; E. Marcandalli; M. Weigert; O. Burri et al. 

Journal of Mammary Gland Biology and Neoplasia. 2021-05-17. Vol. 26, p. 101–112. DOI : 10.1007/s10911-021-09485-4.

Intraductal xenografts show lobular carcinoma cells rely on their own extracellular matrix and LOXL1

G. Sflomos; L. Battista; P. Aouad; F. De Martino; V. Scabia et al. 

EMBO Molecular Medicine. 2021-02-22. Vol. 13, num. 3, p. 1-19, e13180. DOI : 10.15252/emmm.202013180.

Intraductal xenografts model estrogen receptor-positive (ER+) breast cancer dormancy and reveal a critical role for epithelial-mesenchymal transition (EMT) in its establishment

P. Aouad / C. Brisken (Dir.)  

Lausanne, EPFL, 2021. 

2020

IL6/STAT3 Signaling Hijacks Estrogen Receptor α Enhancers to Drive Breast Cancer Metastasis

R. Siersbæk; V. Scabia; S. Nagarajan; I. Chernukhin; E. K. Papachristou et al. 

Cancer Cell. 2020-09-14. Vol. 38, num. 3, p. 412-423.e9. DOI : 10.1016/j.ccell.2020.06.007.

A novel culture method that sustains ER alpha signaling in human breast cancer tissue microstructures

A. L. Cartaxo; M. F. Estrada; G. Domenici; R. Roque; F. Silva et al. 

Journal Of Experimental & Clinical Cancer Research. 2020-08-17. Vol. 39, num. 1, p. 161. DOI : 10.1186/s13046-020-01653-4.

Characterization of circulating breast cancer cells with tumorigenic and metastatic capacity

C. Koch; A. Kuske; S. A. Joosse; G. Yigit; G. Sflomos et al. 

EMBO Molecular Medicine. 2020-07-15.  p. e11908. DOI : 10.15252/emmm.201911908.

90 YEARS OF PROGESTERONE Progesterone receptor signaling in the normal breast and its implications for cancer

C. Brisken; V. Scabia 

Journal Of Molecular Endocrinology. 2020-07-01. Vol. 65, num. 1, p. T81-T94. DOI : 10.1530/JME-20-0091.

The secreted protease Adamts18 links hormone action to activation of the mammary stem cell niche

D. Ataca; P. Aouad; C. Constantin; C. Laszlo; M. Beleut et al. 

Nature Communications. 2020-03-26. Vol. 11, num. 1, p. 1571. DOI : 10.1038/s41467-020-15357-y.

Membrane expression of the estrogen receptor ER alpha is required for intercellular communications in the mammary epithelium

L. Gagniac; M. Rusidze; F. Boudou; S. Cagnet; M. Adlanmerini et al. 

Development. 2020-03-01. Vol. 147, num. 5, p. dev182303. DOI : 10.1242/dev.182303.

miR363-3p mediates maintenance of breast cancer stem cells (BCSCs) and predicts resistance to neoadjuvant chemotherapy and disease recurrence

S. Renaud; A. Stravodimou; M. Fiche; I. Xenarios; S. Valentina et al. 

2020-02-01. San Antonio Breast Cancer Symposium, San Antonio, TX, Dec 10-14, 2019. DOI : 10.1158/1538-7445.SABCS19-P6-10-22.

Variably Scaled Kernels Improve Classification of Hormonally-Treated Patient-Derived Xenografts

F. Marchetti; F. De Martino; M. Shamseddin; S. De Marchi; C. Brisken 

2020-01-01. 12th IEEE International Conference on Evolving and Adaptive Intelligent Systems (IEEE EAIS), ELECTR NETWORK, May 27-29, 2020. DOI : 10.1109/EAIS48028.2020.9122767.

2019

A high resolution LC-MS targeted method for the concomitant analysis of 11 contraceptive progestins and 4 steroids

C. F. Laszlo; J. P. Montoya; M. Shamseddin; F. De Martino; A. Beguin et al. 

Journal Of Pharmaceutical And Biomedical Analysis. 2019-10-25. Vol. 175, p. 112756. DOI : 10.1016/j.jpba.2019.07.004.

C/EBP alpha mediates the growth inhibitory effect of progestins on breast cancer cells

A. Silvina Nacht; R. Ferrari; R. Zaurin; V. Scabia; J. Carbonell-Caballero et al. 

Embo Journal. 2019-09-16. Vol. 38, num. 18, p. e101426. DOI : 10.15252/embj.2018101426.

Two-Tier Mapper, an unbiased topology-based clustering method for enhanced global gene expression analysis

R. Jeitziner; M. Carrière; J. Rougemont; S. Oudot; K. Hess et al. 

Bioinformatics. 2019-02-07. Vol. 35, num. 18, p. 3339–3347. DOI : 10.1093/bioinformatics/btz052.

Novel human cell line xenograft models of ER alpha-positive metastatic invasive lobular breast carcinoma as pre-clinical platforms for validating candidate genetic drivers

N. Tasdemir; J. Scott; J. Laotche; W. Hou; E. A. Bossart et al. 

2019-02-01. San Antonio Breast Cancer Symposium, San Antonio, TX, Dec 04-08, 2018. DOI : 10.1158/1538-7445.SABCS18-PD7-02.

Investigating cortactin as a genetic driver of disease progression in invasive lobular carcinoma

N. Tasdemir; M. J. Sikora; L. Zhu; K. M. Levine; J. Scott et al. 

2019-02-01. DOI : 10.1158/1538-7445.SABCS18-PD7-03.

Hormone receptor signaling in estrogen receptor positive breast cancer

V. Scabia / C. Brisken (Dir.)  

Lausanne, EPFL, 2019. 

Adamts18 Function in Mammary Gland Development

D. Ataca / C. Brisken (Dir.)  

Lausanne, EPFL, 2019. 

2018

Intraductal patient-derived xenografts of estrogen receptor α-positive breast cancer recapitulate the histopathological spectrum and metastatic potential of human lesions

M. Fiche; V. Scabia; P. Aouad; L. Battista; A. Treboux et al. 

The Journal of Pathology. 2018-12-27. Vol. 247, num. 3, p. 287-292. DOI : 10.1002/path.5200.

Oestrogen receptor alpha AF-1 and AF-2 domains have cell population-specific functions in the mammary epithelium

S. Cagnet; D. Ataca; G. Sflomos; P. Aouad; S. Schuepbach-Mallepell et al. 

Nature Communications. 2018-11-09. Vol. 9, p. 4723. DOI : 10.1038/s41467-018-07175-0.

Investigating genetic drivers of disease progression in invasive lobular carcinoma

N. Tasdemir; M. Sikora; L. Zhu; K. Levine; A. Basudan et al. 

2018-08-01. AACR Special Conference on Advances in Breast Cancer Research, Hollywood, CA, Oct 07-10, 2017. p. 89-89.

Development of topological tools for the analysis of biological data

R. Jeitziner / C. Brisken; K. Hess Bellwald (Dir.)  

Lausanne, EPFL, 2018. 

Progestins used for hormonal contraception in Switzerland: study of their effects on the breast epithelium

M. Shamseddin / C. Brisken (Dir.)  

Lausanne, EPFL, 2018. 

The challenges of modeling hormone receptor-positive breast cancer in mice

B. C. Özdemir; G. Sflomos; C. Brisken 

Endocrine-Related Cancer. 2018. Vol. 2018, num. 25, p. R319-R330. DOI : 10.1530/ERC-18-0063.

2017

In vivo reprogramming of non-mammary cells to an epithelial cell fate is independent of amphiregulin signaling

A. L. George; C. A. Boulanger; L. H. Anderson; S. Cagnet; C. Brisken et al. 

Journal of Cell Science. 2017. Vol. 130, p. 2018-2025. DOI : 10.1242/jcs.200030.

2016

Analysis of Mammary Gland Phenotypes by Transplantation of the Genetically Marked Mammary Epithelium

D. Buric; C. Brisken 

Methods in Molecular Biology. 2016-10-29. Vol. 1501, p. 115-129. DOI : 10.1007/978-1-4939-6475-8_4.

Patient-derived xenograft (PDX) models in basic and translational breast cancer research

L. E. Dobrolecki; S. D. Airhart; D. G. Alferez; S. Aparicio; F. Behbod et al. 

Cancer And Metastasis Reviews. 2016. Vol. 35, num. 4, p. 547-573. DOI : 10.1007/s10555-016-9653-x.

Adamts18 deletion results in distinct developmental defects and provides a model for congenital disorders of lens, lung, and female reproductive tract development

D. Ataca; M. Caikovski; A. Piersigilli; A. Moulin; C. Benarafa et al. 

Biology open. 2016. Vol. 5, p. 1585-1594. DOI : 10.1242/bio.019711.

A Preclinical Model for ERα-Positive Breast Cancer Points to the Epithelial Microenvironment as Determinant of Luminal Phenotype and Hormone Response

G. Sflomos; V. Dormoy; T. Metsalu; R. Jeitziner; L. Battista et al. 

Cancer cell. 2016. Vol. 29, num. 3, p. 407-22. DOI : 10.1016/j.ccell.2016.02.002.

2015

Progesterone and Overlooked Endocrine Pathways in Breast Cancer Pathogenesis

C. Brisken; K. Hess Bellwald; R. Jeitziner 

Endocrinology. 2015. Vol. 156, num. 10, p. 3442-50. DOI : 10.1210/en.2015-1392.

Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation

M-G. Procopio; C. Laszlo; D. Al Labban; D. E. Kim; P. Bordignon et al. 

Nature Cell Biology. 2015. Vol. 17, num. 9, p. 1193-1204. DOI : 10.1038/ncb3228.

Progesterone and Wnt4 control mammary stem cells via myoepithelial crosstalk

R. D. Rajaram; D. Buric; M. Caikovski; A. Ayyanan; J. Rougemont et al. 

Embo Journal. 2015. Vol. 34, num. 5, p. 641-652. DOI : 10.15252/embj.201490434.

Mechanisms underlying cell-fate determination in the mammary gland development

D. Buric / C. Brisken (Dir.)  

Lausanne, EPFL, 2015. 

An Ex vivo Model to Study Hormone Action in the Human Breast

G. Sflomos; M. Shamsheddin; C. Brisken 

Journal of visualized experiments : JoVE. 2015. num. 95, p. e52436. DOI : 10.3791/52436.

Endocrine hormones and local signals during the development of the mouse mammary gland

C. Brisken; D. Ataca 

Wiley interdisciplinary reviews. Developmental biology. 2015. Vol. 4, num. 3, p. 181-195. DOI : 10.1002/wdev.172.

2014

Reply to Is progesterone a neutral or protective factor for breast cancer?

C. Brisken 

Nature reviews. Cancer. 2014. Vol. 14, num. 2, p. 146. DOI : 10.1038/nrc3518-c2.

2013

A new Achilles Heel in breast cancer?

G. Sflomos; C. Brisken 

Oncotarget. 2013. Vol. 4, num. 8, p. 1126-7. DOI : 10.18632/oncotarget.1178.

Progesterone/RANKL Is a Major Regulatory Axis in the Human Breast

T. Tanos; G. Sflomos; P. C. Echeverria; A. Ayyanan; M. Gutierrez et al. 

Science Translational Medicine. 2013. Vol. 5, num. 182, p. 182ra55. DOI : 10.1126/scitranslmed.3005654.

Does Cancer Start in the Womb? Altered Mammary Gland Development and Predisposition to Breast Cancer due to in Utero Exposure to Endocrine Disruptors

A. M. Soto; C. Brisken; C. Schaeberle; C. Sonnenschein 

Journal Of Mammary Gland Biology And Neoplasia. 2013. Vol. 18, num. 2, p. 199-208. DOI : 10.1007/s10911-013-9293-5.

Monitoring proliferative activities of hormone-like odorants in human breast cancer cells by gene transcription profiling and electrical impedance spectroscopy

H. Pick; S. Terrettaz; O. Baud; O. Laribi; C. Brisken et al. 

Biosensors and Bioelectronics. 2013. Vol. 50, p. 431-436. DOI : 10.1016/j.bios.2013.06.052.

Progesterone signalling in breast cancer: a neglected hormone coming into the limelight

C. Brisken 

Nature Reviews Cancer. 2013. Vol. 13, num. 6, p. 385-396. DOI : 10.1038/nrc3518.

2012

ER and PR signaling nodes during mammary gland development

T. Tanos; L. Jimenez Rojo; P. Echeverria; C. Brisken 

Breast Cancer Research. 2012. Vol. 14, num. 4, p. 14:210. DOI : 10.1186/bcr3166.

Paracrine signaling by progesterone

R. D. Rajaram; C. Brisken 

Molecular And Cellular Endocrinology. 2012. Vol. 357, num. 1-2, p. 80-90. DOI : 10.1016/j.mce.2011.09.018.

2011

Breast stem cells and hormonal mechanisms in carcinogenesis

C. Brisken; O. Yalcin-Ozuysal; M. Beleut; R. D. Rajaram; M. Caikovski et al. 

2011.  p. S6-S6.

miR-148b is a major coordinator in a relapse-associated miR signature in breast tumors

D. Cimino; C. D. Pitta; F. Orso; S. Casara; M. Zampini et al. 

2011. 36th FEBS Congress of the Biochemistry for Tomorrows Medicine, Torino, ITALY, Jun 25-30, 2011. p. 199-200.

ID4 regulates mammary gland development by suppressing p38MAPK activity

J. Dong; S. Huang; M. Caikovski; S. Ji; A. Mcgrath et al. 

Development. 2011. Vol. 138, num. 23, p. 5247-5256. DOI : 10.1242/dev.069203.

Perinatal Exposure to Bisphenol A Increases Adult Mammary Gland Progesterone Response and Cell Number

A. Ayyanan; O. Laribi; S. Schuepbach-Mallepell; C. Schrick; M. Gutierrez et al. 

Molecular Endocrinology. 2011. Vol. 25, num. 11, p. 1915–1923. DOI : 10.1210/me.2011-1129.

High hopes for RANKL: will the mouse model live up to its promise?

T. Tanos; C. Brisken 

Breast Cancer Research. 2011. Vol. 13, num. 1, p. 302. DOI : 10.1186/bcr2805.

2010

Hormone Action in the Mammary Gland

C. Brisken; B. O’Malley 

Cold Spring Harbor Perspectives in Biology. 2010. Vol. 2, num. 12, p. a003178. DOI : 10.1101/cshperspect.a003178.

Control of hair follicle cell fate by underlying mesenchyme through a CSL-Wnt5a-FoxN1 regulatory axis

B. Hu; K. Lefort; W. Qiu; B-C. Nguyen; R. D. Rajaram et al. 

Genes & development. 2010. Vol. 24, num. 14, p. 1519-32. DOI : 10.1101/gad.1886910.

Rapid chromium quantification in solid oxide fuel cell cathodes

J. A. Schuler; P. Tanasini; A. Hessler; J. Van herle 

Scripta Materialia. 2010. Vol. 63, num. 8, p. 895-898. DOI : 10.1016/j.scriptamat.2010.06.046.

Epithelial-Mesenchymal Transition-Derived Cells Exhibit Multi-Lineage Differentiation Potential Similar to Mesenchymal Stem Cells

V. L. Battula; K. W. Evans; B. G. Hollier; Y. Shi; F. C. Marini et al. 

STEM CELLS. 2010.  p. 1435-1445. DOI : 10.1002/stem.467.

Cyclin D1 Enhances the Response to Estrogen and Progesterone by Regulating Progesterone Receptor Expression

C. Yang; L. Chen; C. Li; M. C. Lynch; C. Brisken et al. 

Molecular and Cellular Biology. 2010. Vol. 30, num. 12, p. 3111-3125. DOI : 10.1128/MCB.01398-09.

Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland

M. Beleut; R. RD; M. Caikovski; A. Ayyanan; D. Germano et al. 

Proceedings of the National Academy of Sciences of the United States of America. 2010. Vol. 107, num. 7, p. 2989-2994. DOI : 10.1073/pnas.0915148107.

Antagonistic roles of Notch and p63 in controlling mammary epithelial cell fates

Ö. Yalcin-Ozuysal; M. Fiche; M. Guitierrez; K-U. Wagner; W. Raffoul et al. 

Cell Death and Differentiation. 2010. Vol. 17, num. 10, p. 1600-1612. DOI : 10.1038/cdd.2010.37.

Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics

B. W. Booth; C. A. Boulanger; L. H. Anderson; L. Jimenez-Rojo; C. Brisken et al. 

Experimental Cell Research. 2010. Vol. 316, num. 3, p. 422-432. DOI : 10.1016/j.yexcr.2009.11.006.

Role of canonical Wnt signaling in mammary gland development

R. D. Rajaram / C. Brisken (Dir.)  

Lausanne, EPFL, 2010. 

2009

Stem cells in chemical carcinogenesis

C. Dietrich; C. Weiss; E. Bockamp; C. Brisken; T. Roskams et al. 

Archives of toxicology. 2009. Vol. 84, num. 3, p. 245-251. DOI : 10.1007/s00204-009-0491-2.

From normal cell types to malignant phenotypes

O. Yalcin-Ozuysal; C. Brisken 

Breast cancer research : BCR. 2009. Vol. 11, num. 6, p. 306. DOI : 10.1186/bcr2418.

The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells

A. Cicalese; G. Bonizzi; C. Pasi; M. Faretta; S. Ronzoni et al. 

Cell. 2009. Vol. 138, num. 6, p. 1083-95. DOI : 10.1016/j.cell.2009.06.048.

2008

Fourier Domain Optical Coherence Microscopy with Extended Depth of Field

M. Villiger; A. H. Bachmann; M. Leutenegger; L. Steinmann; T. Lasser et al. 

BMPN DAY AT EPMT, Lausanne, Switzerland, June 4, 2008.

Hormonal regulation of Stat5 in the mammary gland – from signaling to morphogenesis

S. Klinke 

2008.

What signals operate in the mammary niche?

T. Tanos; C. Brisken 

Breast Disease. 2008. Vol. 29, p. 69-82. DOI : 10.3233/BD-2008-29108.

Epidermal Receptor Activator of NF-{kappa}B Ligand Controls Langerhans Cells Numbers and Proliferation

J. Barbaroux; M. Beleut; C. Brisken; C. Mueller; R. Groves 

Journal of Immunology. 2008. Vol. 181, num. 2, p. 1103-1108. DOI : 10.4049/jimmunol.181.2.1103.

Endocrine Disruptors and Breast Cancer

C. Brisken 

Chimia. 2008. Vol. 62, p. 406-409. DOI : 10.2533/chimia.2008.406.

The Ret receptor tyrosine kinase pathway functionally interacts with the ERalpha pathway in breast cancer

A. Boulay; M. Breuleux; C. Stephan; C. Fux; C. Brisken et al. 

Cancer Research. 2008. Vol. 68, num. 10, p. 3743-51. DOI : 10.1158/0008-5472.CAN-07-5100.

The epithelial-mesenchymal transition generates cells with properties of stem cells

S. A. Mani; W. Guo; M. J. Liao; E. N. Eaton; A. Ayyanan et al. 

Cell. 2008. Vol. 133, num. 4, p. 704-15. DOI : 10.1016/j.cell.2008.03.027.

2007

New Frontiers in Asymmetric Catalysis edited by Koichi Mikami and Mark Lautens

J. Zhu 

Angewandte Chemie, International Edition. 2007. Vol. 46, num. 47, p. 8938-8940. DOI : 10.1002/anie.200785522.

Extended focus Fourier domain optical coherence microscopy assists developmental biology

M. L. Villiger; M. Beleut; C. Brisken; T. Lasser; R. A. Leitgeb 

2007. Optical Coherence Tomography and Coherence Techniques III, Munich, Germany, Sunday 17 June 2007. p. 66271H. DOI : 10.1117/12.728370.

Stem cells and the stem cell niche in the breast: an integrated hormonal and developmental perspective

C. Brisken; S. Duss 

Stem Cell Rev. 2007. Vol. 3, num. 2, p. 147-56. DOI : 10.1007/s12015-007-0019-1.

Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development

L. Ciarloni; S. Mallepell; C. Brisken 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2007. Vol. 104, num. 13, p. 5455-60. DOI : 10.1073/pnas.0611647104.

An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells

S. Duss; S. Andre; A. L. Nicoulaz; M. Fiche; H. Bonnefoi et al. 

Breast Cancer Res. 2007. Vol. 9, num. 3, p. R38. DOI : 10.1186/bcr1734.

2006

Alveolar and Lactogenic Differentiation

C. Brisken; R. D. Rajaram 

Journal of Mammary Gland Biology and Neoplasia. 2006. Vol. 11, num. 3-4, p. 239-248. DOI : 10.1007/s10911-006-9026-0.

Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism

A. Ayyanan; G. Civenni; L. Ciarloni; C. Morel; N. Mueller et al. 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2006. Vol. 103, num. 10, p. 3799-804. DOI : 10.1073/pnas.0600065103.

Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland

S. Mallepell; A. Krust; P. Chambon; C. Brisken 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2006. Vol. 103, num. 7, p. 2196-201. DOI : 10.1073/pnas.0510974103.

2005

p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation

V. Devgan; C. Mammucari; S. E. Millar; C. Brisken; G. P. Dotto 

Genes & Development. 2005. Vol. 19, num. 12, p. 1485-95. DOI : 10.1101/gad.341405.

Identification of molecular apocrine breast tumours by microarray analysis

P. Farmer; H. Bonnefoi; V. Becette; M. Tubiana-Hulin; P. Fumoleau et al. 

Oncogene. 2005. Vol. 24, num. 29, p. 4660-71. DOI : 10.1038/sj.onc.1208561.

2004

Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis

E. Y. Chu; J. Hens; T. Andl; A. Kairo; T. P. Yamaguchi et al. 

Development. 2004. Vol. 131, num. 19, p. 4819-29. DOI : 10.1242/dev.01347.

2003

Using gene expression arrays to elucidate transcriptional profiles underlying prolactin function

S. Gass; J. Harris; C. Ormandy; C. Brisken 

Journal of Mammary Gland Biology and Neoplasia. 2003. Vol. 8, num. 3, p. 269-85. DOI : 10.1023/B:JOMG.0000010029.85796.63.

2002

Prolactin signaling and Stat5: going their own separate ways?

C. Brisken; A. Ayyanan; W. Doppler 

Breast Cancer Research. 2002. Vol. 4, num. 6, p. 209-212. DOI : 10.1186/bcr543.

Hormonal control of alveolar development and its implications for breast carcinogenesis

C. Brisken 

Journal of Mammary Gland Biology and Neoplasia. 2002. Vol. 7, num. 1, p. 39-48. DOI : 10.1023/A:1015718406329.

IGF-2 is a mediator of prolactin-induced morphogenesis in the breast

C. Brisken; A. Ayyannan; C. Nguyen; A. Heineman; F. Reinhardt et al. 

Developmental Cell. 2002. Vol. 3, num. 6, p. 877-87. DOI : 10.1016/S1534-5807(02)00365-9.

The signaling domain of the erythropoietin receptor rescues prolactin receptor-mutant mammary epithelium

C. Brisken; M. Socolovsky; H. F. Lodish; R. Weinberg 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2002. Vol. 99, num. 22, p. 14241-5. DOI : 10.1073/pnas.222549599.

2000

Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling

C. Brisken; A. Heineman; T. Chavarria; B. Elenbaas; J. Tan et al. 

Genes & Development. 2000. Vol. 14, num. 6, p. 650-654. DOI : 10.1101/gad.14.6.650.