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Exercise 1 : Double slit experiment

The kinetic energy of the electrons coming out of the lamp will be roughly given by

kBT ∼ 0.86
(

T

104K

)
eV. (1)

So that the emitted electrons are non-relativistic for any possible thermionic lamp on Earth
(me = 0.511 · 106eV):

E = mev
2/2

p = mev.

The DeBroglie wavelength of such electrons is

λ = 2π
~
p
.

If a � λ, the waves simply pass through, and we obtain two peaks on the screen. To have
interference we have to consider :

a� λ (2)

In a system with point like slits d would play no role. We assume to work in such a setup,
corrections to the plane-wave approximation will enter through the ratio b/d.

If (2) is satisfied the two slits are a source for spherical waves

ψi(x, t) =
Ai

|x− xi|
exp i

(
p |x− xi|

~
− E t

~
+ φi

)
(3)

where (x, t) is a generic point and xi is the position of the point like sources (slits). On a
generic point on the screen the two wave amplitudes are summed

Ψ(x, t) = ψ1(x, t) + ψ2(x, t). (4)

Some simplifications are in order. First, both the amplitudes A1,2 and the phases φ1,2 are
equal, since the two waves coming out of the two slits come from the same plane wave behind
the first screen. Second, the time of observation is the same, so that also the E dependent
terms in the amplitudes are equal and irrelevant. To maximize the interference we will assume
a large L limit

L� b, |x| (5)

so that |x− x1| ∼ |x− x2|. So up to a normalization factor

Ψ(x) ∝ exp i
(
p |x− x1|

~

)
+ exp i

(
p |x− x2|

~

)
(6)

and

|x− x1,2| =
√

(b/2∓ x)2 + L2 ∼ L
(

1 + 1
2

(b/2∓ x)2

L2

)
(7)

The interference pattern is thus given, as a function of x (the coordinate on the screen), and
up to a normalization factor independent of x by

|Ψ|2(x) = |ψ1(x, t) + ψ2(x, t)|2 ∝ cos
(
π
bx

λL

)2

. (8)
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The positions of the maxima are

x(1)
max = n

λL

b
. (9)

Too see at least one maximum, x(1), must be within the range of the approximation we made,
that is x(1) � L so that in terms of the other parameters

L� b, x . (10)

Exercise 2 : Gaussian integral 1

For all integrals, α > 0.

• One usual trick is to compute the square of the integral :

G2
Re =

(∫ +∞

−∞
dx e−αx

2
)(∫ +∞

−∞
dy e−αy

2
)

=
∫

R2
dxdy e−α(x2+y2)

= 2π
∫ ∞

0

dr re−αr
2

= −π
α

∣∣∣e−αr2∣∣∣∞
0

=
π

α

GRe =
√
π

α
(11)

I fill in the following some mathematical detail left open during the class about the
evaluation of G+

Im. The intuitive procedure was to tilt the countour of integration 45
degrees counterclockwise. This can indeed be justified using Cauchy theorem.

Consider the contour of integration indicated below with R fixed and big∫
C

=
∫
θ=0,−R→R

+
∫
CR 0→π/4

+
∫
θ=π/4,R→−R

+
∫
CR π→5/4π

= (a)+(b)+(c)+(d). (12)

1

2 3

4

π/4

For finite R ∫
C

dz exp iαz2 = 0 (13)
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by Cauchy theorem being exp iαz2 an entire function. Assuming for the moment
limR→∞ (b) + (d) = 0,

lim
R→∞

∫
θ=0,−R→R

=
∫ ∞
−∞

dx exp iαx2 = − lim
R→∞

∫
θ=π/4,R→−R

= ei
π
4

∫ ∞
−∞

exp−αx2 = ei
π
4

√
π

α

(14)
that is what you already proved during the class. To show limR→∞ (b) = 0, we
parametrize the arc countour as z(θ) = R exp iθ

|(b)| =

∣∣∣∣∣
∫
CR 0→π/4

∣∣∣∣∣ =

∣∣∣∣∣
∫ π/4

0

dθ iR exp
(
iαR2e2iθ

)∣∣∣∣∣ = (15)

= R

∣∣∣∣∣
∫ π/4

0

dθ exp
(
−αR2 sin 2θ

)∣∣∣∣∣ ≤ R
∫ π/4

0

dθ
∣∣exp

(
−αR2 sin 2θ

)∣∣ (16)

Since sin 2θ > 0 for 0 ≤ θ ≤ π/4, R → ∞ imply |(b)| → 0 as we desired. the same
reasonings works for (d).

What does go wrong the integral?∫ ∞
−∞

exp αx2, α > 0. (17)

You may think to evaluate it tilting the contour of integration by 90 degrees counter-
clockwise. This time we must ask for

lim
R→∞

∣∣∣∣∣
∫
CR 0→π/2

∣∣∣∣∣+

∣∣∣∣∣
∫
CR π→3/2π

∣∣∣∣∣ = 0. (18)

As it can be readily checked in the same way I explained before, this time both integrals
diverge in the large R limit.

The evaluation of G−Im proceeds in the same way. The countour this time must be tilted
by 45 degrees but in the clockwise direction. The result is

G−Im =
∫ ∞
−∞

dx exp−iαx2 = e−i
π
4

√
π

α
(19)

• The integral is vanishing for odd n, since the integrand would be an odd function of x.
For even values of n∫ ∞

−∞
x2ke−αx

2
= (−1)k

∫ ∞
−∞

x2k d
k

dλk
e−λx

2
∣∣∣∣
λ=α

= (−1)k
dk

dλk

√
π

λ

∣∣∣∣
λ=α

= (20)

=
√
πα−k−1/2 (2k − 1)!!

2k
(21)

• For the real integral, the naive guess would be that the error is of order e−αL
2
. But

there is actually a further suppression. The error δ is defined by

δRe = 2
∫ ∞
L

dx e−αx
2

= − 2√
α

∫ ∞
√
αL

dx
1

2x
d

dx

(
e−x

2
)

= (22)

= − 2√
α

[
− e
−αL2

2
√
αL

+
∫ ∞
√
αL

dx
1

2x2
e−x

2

]
=
e−αL

2

αL
+O(

e−αL
2

α2L3
). (23)

3



For the imaginary gaussian integral the exponential damping of the error turns into a
phase and only the 1/αL suppression remains

|δIm| =
1
αL

+O(
1

α2L3
), (24)

so that the convergence in terms of L is much slower.

Exercise 3 : Gaussian integral 2

• A can be diagonalized with help of an orthogonal matrix. This change of variables has
a determinant = 1; thus we end up with a product of n integrals of eı̇λix̃

2
i , where λi are

the eigenvalues with eigenvector x̃i. The n-dimensional integral factors into a product
of n integrals that we already calculated. Recall that the sign of the eigenvalues λi
determined the overall phase of the result through the contour rotation:

GA(0) =
ei(n+−n−)π4√∣∣det

(
A
π

)∣∣ (25)

The factor ei(n+−n−)π4 keeps track of these sign counting the difference of the number
of the positive eigenvalues (n+) and that of the negative ones (n−).

• The exponent can be rewritten as

xTAx+JTx = (x+JA−1/2)TA(x+A−1J/2)−JTA−1J/4 ≡ x′TAx′−JTA−1J/4 (26)

Since the transformation x→ x′ is just a shift, the measure of integration is invariant
and the final result is simply

GA(J) = exp
(
− ı̇

4
Ji(A−1)ijJj

)
GA(0) (27)
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