Animal-robot interactions

Our research develops and uses robotic devices that interact with animal groups to observe and modulate their behaviour, in order to better understand them, e.g. their collective decision making.

This work has goals in behavioural sciences, collective dynamics and systems modelling; and employs tools and techniques from mobile robotics, microengineering, machine learning, computer vision, and complex systems.


Honeybees and robots

photograph by ArtLifeLab Graz. Hardware by MOBOTS-EPFL

     

We are developing robotic devices that live inside beehives and continually interact with entire honeybee colonies. The robots modulate the internal hive environment with vibrations and heat; these are used to explore how behaviours can be steered at individual and colony levels (Ilgun et al, 2021). We have recently demonstrated the capacity of our robotic system to interact with an intact winter cluster, comprising thousands of animals (Barmak et al, 2023; see also our press release). This research is part of the FET-EU project HIVEOPOLIS, in which we also contribute to core systems (e.g., Komasilovs et al, 2024) and educational activities. Overall a main aim is to better understand how our long-term live-in robotics (Barmak et al, 2024) can support honeybees in an increasingly hostile environment for these crucial pollinators. 

Our previous work studied collective behaviours in honeybee-robot interactions in laboratory conditions (Schmickl et al 2021Halloy et al 2013Zahadat et al 2014), investigating how reactive thermal environments influence decision-making.


Fish and robots

Photographer: Catherine Leutenegger, EPFL
     

We are developing systems comprising of multiple mobile robots interacting with small groups of fish such as zebrafish (Danio rerio) and rummy-nose tetra (Hemigramus rhodostomus). The robotic agents (Bonnet et al 2017, Bonnet et al 2016, Papaspyros et al 2019, Papaspyros et al, 2023) were controlled via a closed-loop system using computer vision analysis (Bonnet et al 2017), and have been shown to be capable of integrating into groups of fish (Bonnet et al 2018) and modulating collective decisions (Bonnet et al 2018, Chemtob et al 2020). More generally, we work on modelling the dynamics of fish (Escodebo et al 2020), so to design robotic interactions with increased bio-acceptance (Papaspyros et al 2019). Most recently we have shown that  deep learning models of fish social interactions  are competitive with analytical approaches (Papaspyros et al, 2024) as well as being generalisable. 


Interspecies interactions mediated by bio-hybrid robots

Our research within the FET-EU project ASSISIbf included the
breakthrough of developing inter-species interactions between
honeybees and zebrafish, mediated via robots (Bonnet et al, 2019).

Our press release includes a further summary of this research:


Animals and robots – other research

 

 
     
  • The LEURRE project constructed the first robots that were shown to infiltrate an animal group – being accepted like conspecifics – and, through acting as “agent provocateur”, were able to modulate group decisions from within. (Halloy et al 2007). Here, our robots interacted with cockroaches.
  • We developed mobile robots that interacted with domestic chickens, (Gribovskiy et al 2018, 2008, 2012). This system made use of visual and auditory channels for both observation (animals ⇒ robots) and modulation (robots ⇒ animals). 
  • Across all animal-robot interaction studies, the robotic devices must be capable of transmitting cues or signals that are relevant to the animal, of sensing the animal’s response to the presented information, and finally of reacting to it. The design of such animal-interacting robots is highly non-trivial, depending on understanding the animals, modelling, robot design, and embodiment. We developed a general methodology to address these interconnected challenges (Mondada et al 2013).

Related publications

2025

Conference Papers

Extending Sensory Capabilities of a Biohybrid System: Prediction of Honeycomb Fill

C. F. Monette; R. Mills; F. Mondada 

2024 12th International Conference on Control, Mechatronics and Automation (ICCMA)

2025

12th International Conference on Control, Mechatronics and Automation, London, UK, 2024-11-11 – 2024-11-13.

p. 142 – 147

DOI : 10.1109/ICCMA63715.2024.10843927

2024

Journal Articles

Predicting the long-term collective behaviour of fish pairs with deep learning

V. Papaspyros; R. Escobedo; A. Alahi; G. Theraulaz; C. Sire et al. 

Journal of The Royal Society Interface

2024

Vol. 21 , num. 212.

DOI : 10.1098/rsif.2023.0630

Architecture of a decentralised decision support system for futuristic beehives

V. Komasilovs; R. Mills; A. Kviesis; F. Mondada; A. Zacepins 

Biosystems Engineering

2024

Vol. 240 , p. 56 – 61.

DOI : 10.1016/j.biosystemseng.2024.02.017

Quantifying the biomimicry gap in biohybrid robot-fish pairs

V. Papaspyros; G. Theraulaz; C. Sire; F. Mondada 

Bioinspiration & Biomimetics

2024

Vol. 19 , num. 4, p. 046020.

DOI : 10.1088/1748-3190/ad577a

2023

Journal Articles

A biohybrid interaction framework for the integration of robots in animal societies

V. Papaspyros; D. Burnier; R. Cherfan; G. Theraulaz; C. Sire et al. 

IEEE Access

2023

p. 1 – 1.

DOI : 10.1109/ACCESS.2023.3290960

A robotic honeycomb for interaction with a honeybee colony

R. Barmak; M. Stefanec; D. N. Hofstadler; L. Piotet; S. Schönwetter-Fuchs-Schistek et al. 

Science Robotics

2023

Vol. 8 , num. 76.

DOI : 10.1126/scirobotics.add7385

Conference Papers

Optimising Redundancy in Distributed Sensor Networks

C. Monette; J. Wilson 

SAC ’23: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing

2023

38th ACM/SIGAPP Symposium on Applied Computing, Tallinn, Estonia, March 27-31, 2023.

p. 783 – 786

DOI : 10.1145/3555776.3577797

Theses

Challenges and approaches in bridging the biomimicry gap in biohybrid systems of fish and robots

V. Papaspyros / Director(s) : F. Mondada 

Lausanne: EPFL

2023

p. 246.

DOI : 10.5075/epfl-thesis-9728

2022

Journal Articles

The role of feedback and guidance as intervention methods to foster computational thinking in educational robotics learning activities for primary school

M. Chevalier; C. Giang; L. El-Hamamsy; E. Bonnet; V. Papaspyros et al. 

Computers & Education

2022

Vol. 180 , p. 104431.

DOI : 10.1016/j.compedu.2022.104431

Conference Papers

A study model for reconstructing urban ecological niches

A. Ilgün; R. Mills; F. Mondada; T. Schmickl 

Structures and Architecture A Viable Urban Perspective?

2022

Fifth International Conference on Structures and Architecture (ICSA2022), Aalborg, Denmark, July 6–8, 2022.

p. 75 – 82

2021

Journal Articles

Social Integrating Robots Suggest Mitigation Strategies for Ecosystem Decay

T. Schmickl; M. Szopek; F. Mondada; R. Mills; M. Stefanec et al. 

Frontiers In Bioengineering And Biotechnology

2021

Vol. 9 , p. 612605.

DOI : 10.3389/fbioe.2021.612605

Conference Papers

Exploring a Handwriting Programming Language for Educational Robots

L. El-Hamamsy; V. Papaspyros; T. Kangur; L. Mathex; C. Giang et al. 

Robotics in Education

2021

12th International Conference on Robotics in Education (Rie 2021), Bratislava, Slovakia, April 28-30, 2021.

p. 268 – 275

DOI : 10.1007/978-3-030-82544-7_25

Bio-Hybrid Systems for Ecosystem Level Effects

A. Ilgün; K. Angelov; M. Stefanec; S. Schönwetter-Fuchs; V. Stokanic et al. 

ALIFE 2021: The 2021 Conference on Artificial Life

2021

The 2021 Conference on Artificial Life, July 19–23, 2021.

DOI : 10.1162/isal_a_00396

Reviews

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

D. J. Klionsky; A. K. Abdel-Aziz; S. Abdelfatah; M. Abdellatif; A. Abdoli et al. 

Autophagy

2021

Vol. 17 , num. 1, p. 1 – 382.

DOI : 10.1080/15548627.2020.1797280

2020

Journal Articles

Strategies to modulate zebrafish collective dynamics with a closed-loop biomimetic robotic system

Y. Chemtob; L. Cazenille; F. Bonnet; A. Gribovskiy; F. Mondada et al. 

Bioinspiration & Biomimetics

2020

Vol. 15 , num. 4, p. 046004.

DOI : 10.1088/1748-3190/ab8706

2019

Journal Articles

Bidirectional interactions facilitate the integration of a robot into a shoal of zebrafish Danio rerio

V. Papaspyros; F. Bonnet; B. E. Collignon; F. Mondada 

PLoS One

2019

Vol. 14 , num. 8, p. e0220559.

DOI : 10.1371/journal.pone.0220559

Combinations of single-top-quark production cross-section measurements and |f$_{LV}$V$_{tb}$| determinations at $ \sqrt{s} $ = 7 and 8 TeV with the ATLAS and CMS experiments

M. Aaboud; G. Aad; B. Abbott; D. C. Abbott; O. Abdinov et al. 

Journal of High Energy Physics

2019

p. 88.

DOI : 10.1007/JHEP05(2019)088

Robots mediating interactions between animals for interspecies collective behaviors

F. Bonnet; R. Mills; M. Szopek; S. Schoenwetter-Fuchs; J. Halloy et al. 

Science Robotics

2019

Vol. 4 , num. 28, p. eaau7897.

DOI : 10.1126/scirobotics.aau7897

LSST: From Science Drivers to Reference Design and Anticipated Data Products

Z. Ivezic; S. M. Kahn; J. A. Tyson; B. Abel; E. Acosta et al. 

The Astrophysical Journal

2019

Vol. 873 , num. 2, p. 111.

DOI : 10.3847/1538-4357/ab042c

Books

Shoaling with Fish: Using Miniature Robotic Agents to Close the Interaction Loop with Groups of Zebrafish Danio rerio

F. Bonnet; F. Mondada 

Springer, 2019.

DOI : 10.1007/978-3-030-16781-3

Patents

Device and method for sorting biological entities

F. Bonnet; N. Crot; F. Mondada 

Patent number(s) :

  • ES2914362 (T3)
  • EP3717889 (B1)
  • US11099118 (B2)
  • US2021072142 (A1)
  • EP3717889 (A1)
  • WO2019102422 (A1)

2019

2018

Journal Articles

Closed-loop interactions between a shoal of zebrafish and a group of robotic fish in a circular corridor

F. Bonnet; A. Gribovskiy; J. Halloy; F. Mondada 

Swarm Intelligence

2018

Vol. 12 , num. 3, p. 227 – 244.

DOI : 10.1007/s11721-017-0153-6

How mimetic should a robotic fish be to socially integrate into zebrafish groups ?

L. Cazenille; B. E. Collignon; Y. Chemtob; F. Bonnet; A. Gribovskiy et al. 

Bioinspiration & Biomimetics

2018

Vol. 13 , num. 2, p. 025001.

DOI : 10.1088/1748-3190/aa8f6a

Conference Papers

Follow the dummy: measuring the influence of a biomimetic robotic fish-lure on the collective decisions of a zebrafish shoal inside a circular corridor

F. Bonnet; J. Halloy; F. Mondada 

Proceedings of the first IEEE-RAS International Conference on Soft Robotics (Robosoft 2018)

2018

Robosoft 2018: The first IEEE-RAS International Conference on Soft Robotics, Livorno, Italy, April 24-28, 2018.

p. 504 – 509

DOI : 10.1109/ROBOSOFT.2018.8405376

How to Blend a Robot Within a Group of Zebrafish: Achieving Social Acceptance Through Real-Time Calibration of a Multi-level Behavioural Model

L. Cazenille; Y. Chemtob; F. Bonnet; A. Gribovskiy; F. Mondada et al. 

Biomimetic And Biohybrid Systems

2018

7th International Conference on Biomimetic and Biohybrid Systems, Living Machines (LM), Paris, FRANCE, Jul 17-20, 2018.

p. 73 – 84

DOI : 10.1007/978-3-319-95972-6_9

2017

Journal Articles

Design of a modular robotic system that mimics small fish locomotion and body movements for ethological studies

F. Bonnet; L. Cazenille; A. Séguret; A. Gribovskiy; B. E. Collignon et al. 

International Journal of Advanced Robotic Systems

2017

Vol. 14 , num. 3, p. 1729881417706628.

DOI : 10.1177/1729881417706628

Conference Papers

Automated Calibration of a Biomimetic Space-Dependent Model for Zebrafish and Robot Collective Behaviour in a Structured Environment

L. Cazenille; Y. Chemtob; F. Bonnet; A. Gribovskiy; F. Mondada et al. 

Living Machines 2017: Biomimetic and Biohybrid Systems

2017

Living Machines 2017, Stanford University, July 25-28, 2017.

p. 107 – 118

DOI : 10.1007/978-3-319-63537-8_10

Multi-robot control and tracking framework for bio-hybrid systems with closed-loop interaction

F. Bonnet; L. Cazenille; A. Gribovskiy; J. Halloy; F. Mondada 

2017

Robotics and Automation (ICRA), 2017 IEEE International Conference on, Singapore, Singapore, 29 May-3 June 2017.

DOI : 10.1109/ICRA.2017.7989515

Theses

Shoaling with fish: using miniature robotic agents to close the interaction loop with groups of zebrafish Danio rerio

F. Bonnet / Director(s) : F. Mondada 

Lausanne: EPFL

2017

p. 201.

DOI : 10.5075/epfl-thesis-7577

2016

Journal Articles

Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $ \sqrt{s}=7 $ and 8 TeV

G. Aad; B. Abbott; J. Abdallah; O. Abdinov; B. Abeloos et al. 

Journal of High Energy Physics

2016

Vol. 2016 , num. 8, p. 45.

DOI : 10.1007/JHEP08(2016)045

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

D. J. Klionsky; K. Abdelmohsen; A. Abe; M. J. Abedin; H. Abeliovich et al. 

Autophagy

2016

Vol. 12 , num. 1, p. 1 – 222.

DOI : 10.1080/15548627.2015.1100356

Conference Papers

Design Methods for Miniature Underwater Soft Robots

F. Bonnet; N. Crot; D. Burnier; F. Mondada 

Proceedings of the 6th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2016)

2016

6th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2016), Singapore, June 26-29, 2016.

p. 1365 – 1370

DOI : 10.1109/BIOROB.2016.7523823

2015

Journal Articles

Sustained impact of drought on wet shrublands mediated by soil physical changes

M. T. Dominguez; A. Sowerby; A. R. Smith; D. A. Robinson; S. Van Baarsel et al. 

Biogeochemistry

2015

Vol. 122 , num. 2-3, p. 151 – 163.

DOI : 10.1007/s10533-014-0059-y

Conference Papers

Infiltrating the Zebrafish Swarm: Design, Implementation and Experimental Tests of a Miniature Robotic Fish Lure for Fish-Robot Interaction Studies

F. Bonnet; Y. Kato; J. Halloy; F. Mondada 

Artificial Life And Robotics

2015

SWARM 2015: The First International Symposium on Swarm Behavior and Bio-Inspired Robotics, Kyoto, Japan, October 28-30, 2015.

p. 239 – 246

DOI : 10.1007/s10015-016-0291-8

Talks

Interacting with zebrafish using robotic agents

F. Bonnet; A. Séguet; L. Cazenille; M. Elias de Oliveira; B. Collignon et al. 

8th annual Swiss zebrafish meeting, Fribourg, Switzerland, April 10, 2015.

2014

Conference Papers

A Miniature Mobile Robot Developed to be Socially Integrated with Species of Small Fish

F. Bonnet; S. Binder; M. Elias de Oliveira; J. Halloy; F. Mondada 

2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)

2014

IEEE International Conference on Robotics and Biomimetics, Bali, Indonesia, December 5-10.

p. 747 – 752

DOI : 10.1109/ROBIO.2014.7090421

Social Adaptation of Robots for Modulating Self-Organization in Animal Societies

P. Zahadat; M. Bodi; Z. Salem; F. Bonnet; M. Elias de Oliveira et al. 

2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops (SASOW)

2014

2nd FoCAS Workshop on Fundamentals of Collective Systems, London, UK, September 8th, 2014.

p. 55 – 60

DOI : 10.1109/SASOW.2014.13

Posters

Climate change, vegetation dynamics and carbon cycling in peatlands: the role of vascular plants in CO2 sequestration

K. Gavazov; M. Garnett; R. Mills; B. Robroek; L. Bragazza 

15th Swiss Global Change Day, Bern, Switzerland, 2, April 2014.

2013

Conference Papers

ASSISI: Mixing Animals with Robots in a Hybrid Society

T. Schmickl; S. Bogdan; L. Correia; S. Kernbach; F. Mondada et al. 

Biomimetic and Biohybrid Systems

2013

Living Machines, International Conference on Biomimetic and Biohybrid Systems, London, July 29 – August 2013, 2013.

p. 441 – 443

DOI : 10.1007/978-3-642-39802-5_60

Book Chapters

A general methodology for the control of mixed natural-artificial societies

F. Mondada; A. Martinoli; N. Correll; A. Gribovskiy; J. I. Halloy et al. 

Handbook of Collective Robotics; Singapore: Pan Stanford Publishing, 2013. p. 547 – 586.

ISBN : 978-9-81431-642-2

2012

Conference Papers

Development of a mobile robot to study the collective behavior of zebrafish

F. Bonnet; P. Rétornaz; J. I. Halloy; A. Gribovskiy; F. Mondada 

Proceedings of the IEEE International Conference on Biomedical Robotics and Biomechatronics, BioRob 2012

2012

IEEE International Conference on Biomedical Robotics and Biomechatronics, Roma, Italy, June 24-28, 2012.

DOI : 10.1109/BioRob.2012.6290826

Autonomous construction with a mobile robot in a resource-limited environment: a demonstration of the integration of perception, planning and action

S. Magnenat; A. Gribovskiy; F. Mondada 

ECAI 2012

2012

ECAI 2012 European Conference on Artificial Intelligence, Montpellier, August 27-31, 2012.

p. 1015 – 1016

DOI : 10.3233/978-1-61499-098-7-1015

Autonomous Construction of a Roofed Structure: Synthesizing Planning and Stigmergy on a Mobile Robot

S. Wismer; G. Hitz; M. Bonani; A. Gribovskiy; C. Pradalier et al. 

2012 IEEE/RSJ International Conference on Intelligent Robots and Systems

2012

IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve [Portugal], October 7-12, 2012.

p. 5436 – 5437

DOI : 10.1109/IROS.2012.6386278

Building a safe robot for behavioral biology experiments

A. Gribovskiy; J. I. Halloy; J-L. Deneubourg; F. Mondada 

2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)

2012

IEEE International Conference on Robotics and Biomimetics (ROBIO 2012), Guangzhou, China, December 11-14, 2012.

p. 582 – 587

DOI : 10.1109/ROBIO.2012.6491029

2011

Theses

Animal-Robot Interaction for Ethological Studies : an Advanced Framework Based on Socially Integrated Mobile Robots

A. Gribovskiy / Director(s) : F. Mondada 

Lausanne: EPFL

2011

p. 192.

DOI : 10.5075/epfl-thesis-4981

2010

Conference Papers

Towards Mixed Societies of Chickens and Robots

A. Gribovskiy; J. I. Halloy; J-L. Deneubourg; H. Bleuler; F. Mondada 

Proceedings of the IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS 2010)

2010

The IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS 2010), Taipei, Taiwan, October 18-22, 2010.

p. 4722 – 4728

DOI : 10.1109/IROS.2010.5649542

Posters

The PoulBot: a mobile robot for ethological studies on domestic chickens

A. Gribovskiy; J. I. Halloy; J-L. Deneubourg; F. Mondada 

Symposium on AI-Inspired Biology (AIIB).

2009

Conference Papers

Real-Time Audio-Visual Calls Detection System for a Chicken Robot

A. Gribovskiy; F. Mondada 

Proceedings of the 4th International Conference on Advanced Robotics

2009

14th International Conference on Advanced Robotics (ICAR 2009), Munich, Germany, July 22-26, 2009.

p. 1 – 6

Design of Collision Avoidance System for a Chicken Robot Based on Fuzzy Relation Equations

A. Gribovskiy; F. Mondada 

Proceedings of the 2009 IEEE International Conference on Fuzzy Systems

2009

2009 IEEE International Conference on Fuzzy Systems, Jeju, Korea, August 20-24, 2009.

p. 1851 – 1856

DOI : 10.1109/FUZZY.2009.5277298

2008

Conference Papers

Audio-visual detection of multiple chirping robots

A. Gribovskiy; F. Mondada 

Intelligent Autonomous Systems 10 – IAS-10

2008

Intelligent Autonomous Systems 10, Baden Baden, Germany, July 23-26, 2008.

p. 324 – 331

DOI : 10.3233/978-1-58603-887-8-324