Publications

2025

Ligand-Directed Site-Selective Cysteine Bioconjugation of the KELCH Domain of KEAP1 with Hypervalent Iodine Reagents

C. A. J. Marty; X. Ji; S. Nicolai; C. Heinis; J. Waser 

Journal of the American Chemical Society

2025

DOI : 10.1021/jacs.5c13391

Yeast display technology enables rapid discovery of low-nanomolar macrocyclic peptide inhibitors of human angiotensin-converting enzyme 2

A. Angelini; Z. Romanyuk; G. Bettin; P. Brear; S. Linciano et al. 

2025

Screening macrocyclic peptide libraries by yeast display allows control of selection process and affinity ranking

S. Linciano; Y. Mazzocato; Z. Romanyuk; F. Vascon; L. Farrera‐Soler et al. 

Nature Communications

2025

Vol. 16 , num. 1.

DOI : 10.1038/s41467-025-60907-x

Biodiversity2Drugs—Renaissance of exploring nature‐derived peptides for GPCR ligand discovery

C. W. Gruber; I. Beets; P. T. Boudreault; V. da Silva Bolzani; J. Carlsson et al. 

British Journal of Pharmacology

2025

DOI : 10.1111/bph.70072

Structure‐affinity relationship analysis and affinity maturation of a calprotectin‐binding peptide

L. Farrera Soler; C-W. Hu; B. Ricken; C. Diaz-Perlas; C-B. Gerhold et al. 

ChemBioChem

2025

DOI : 10.1002/cbic.202500071

Bulk measurement of membrane permeability for random cyclic peptides in living cells to guide drug development

A. L. Nielsen; C. R. O. Bartling; A. Zarda; N. M. De Sadeleer; R. M. Neeser et al. 

Angewandte Chemie

2025

DOI : 10.1002/ange.202500493

Discovery of De Novo Macrocycle Inhibitors of Histone Deacetylase 11

D. Danková; A. L. Nielsen; A. Zarda; T. N. Hansen; M. Hesse et al. 

JACS Au

2025

DOI : 10.1021/jacsau.4c01148

2024

Large Libraries of Structurally Diverse Macrocycles Suitable for Membrane Permeation

A. L. Nielsen; Z. Bognar; G. K. Mothukuri; A. S. L. Zarda; M. Schuttel et al. 

Angewandte Chemie International Edition

2024

DOI : 10.1002/anie.202400350

Solid-phase peptide synthesis in 384-well plates

M. Schuttel; E. Will; G. Sangouard; A. S. L. Zarda; S. Habeshian et al. 

Journal Of Peptide Science

2024

DOI : 10.1002/psc.3555

Cyclic Peptides for Drug Development

X. Ji; A. L. Nielsen; C. Heinis 

Angewandte Chemie International Edition

2024

Vol. 63 , num. 3.

DOI : 10.1002/anie.202308251

Methods for high-throughput synthesis and screening of peptide libraries

Z. Bognár / Director(s) : C. Heinis 

Lausanne: EPFL

2024

p. 173.

DOI : 10.5075/epfl-thesis-10747

Discovery of macrocyclic inhibitors of challenging protein-protein interactions

E. J. Will / Director(s) : C. Heinis 

Lausanne: EPFL

2024

p. 184.

DOI : 10.5075/epfl-thesis-10882

2023

De novo development of small cyclic peptides that are orally bioavailable

M. L. Merz; S. Habeshian; B. Li; J-A. G. L. David; A. L. Nielsen et al. 

Nature Chemical Biology

2023

DOI : 10.1038/s41589-023-01496-y

Development of cyclic peptides that can be administered orally to inhibit disease targets

M. L. Merz; C. Heinis 

Nature Chemical Biology

2023

DOI : 10.1038/s41589-023-01505-0

High-Density Immobilization of TCEP on Silica Beads for Efficient Disulfide Reduction and Thiol Alkylation in Peptides

M. Schuettel; C. Heinis 

Chembiochem

2023

Vol. 25 , num. 3.

DOI : 10.1002/cbic.202300592

Peptide-Hypervalent Iodine Reagent Chimeras: Enabling Peptide Functionalization and Macrocyclization

X-Y. Liu; X. Ji; C. Heinis; J. Waser 

Angewandte Chemie International Edition

2023

Vol. 62 , num. 33, p. e202306036.

DOI : 10.1002/anie.202306036

High-affinity peptides developed against calprotectin and their application as synthetic ligands in diagnostic assays

C. Diaz-Perlas; B. Ricken; L. Farrera-Soler; D. Guschin; F. Pojer et al. 

Nature Communications

2023

Vol. 14 , num. 1, p. 2774.

DOI : 10.1038/s41467-023-38075-7

Motifs for making tricycles

C. Heinis 

Nature Chemical Biology

2023

DOI : 10.1038/s41589-023-01329-y

Development of methods for the synthesis of large combinatorial libraries of macrocyclic compounds

M. Schüttel / Director(s) : C. Heinis 

Lausanne: EPFL

2023

p. 242.

DOI : 10.5075/epfl-thesis-9951

2022

Solid-phase peptide synthesis on disulfide-linker resin followed by reductive release affords pure thiol-functionalized peptides

Z. Bognar; G. K. Mothukuri; A. L. Nielsen; M. L. Merz; P. M. F. Panzar et al. 

Organic & Biomolecular Chemistry

2022

Vol. 20 , num. 29, p. 5699 – 5703.

DOI : 10.1039/d2ob00910b

Synthesis and direct assay of large macrocycle diversities by combinatorial late-stage modification at picomole scale

S. Habeshian; M. L. Merz; G. Sangouard; G. K. Mothukuri; M. Schüttel et al. 

Nature Communications

2022

Vol. 13 , num. 1, p. 3823.

DOI : 10.1038/s41467-022-31428-8

Phage Display Selected Cyclic Peptide Inhibitors of Kallikrein-Related Peptidases 5 and 7 and Their In Vivo Delivery to the Skin

P. Gonschorek; A. Zorzi; T. Maric; M. Le Jeune; M. Schuettel et al. 

Journal Of Medicinal Chemistry

2022

Vol. 65 , num. 14, p. 9735 – 9749.

DOI : 10.1021/acs.jmedchem.2c00306

Cyclative Release Strategy to Obtain Pure Cyclic Peptides Directly from the Solid Phase

S. Habeshian; G. A. Sable; M. Schuettel; M. L. Merz; C. Heinis 

Acs Chemical Biology

2022

Vol. 17 , num. 1, p. 181 – 186.

DOI : 10.1021/acschembio.1c00843

Generating macrocyclic inhibitors of protein-protein interactions

G. Sangouard / Director(s) : C. Heinis 

Lausanne: EPFL

2022

p. 189.

DOI : 10.5075/epfl-thesis-9431

2021

Picomole-Scale Synthesis and Screening of Macrocyclic Compound Libraries by Acoustic Liquid Transfer

G. Sangouard; A. Zorzi; Y. Wu; E. Ehret; M. Schuettel et al. 

Angewandte Chemie International Edition

2021

Vol. 60 , num. 40, p. 21702 – 21707.

DOI : 10.1002/anie.202107815

Generation of a 100-billion cyclic peptide phage display library having a high skeletal diversity

V. Carle; X-D. Kong; A. Comberlato; C. Edwards; C. Diaz-Perlas et al. 

Protein Engineering Design & Selection

2021

Vol. 34 , p. gzab018.

DOI : 10.1093/protein/gzab018

Towards the Development of Orally Available Peptide Therapeutics

X-D. Kong; C. Heinis 

CHIMIA

2021

Vol. 75 , num. 6, p. 514 – 517.

DOI : 10.2533/chimia.2021.514

Combining biological and chemical diversity

C. Heinis 

Nature Chemistry

2021

Vol. 13 , num. 6, p. 512 – 513.

DOI : 10.1038/s41557-021-00722-1

Development of Selective FXIa Inhibitors Based on Cyclic Peptides and Their Application for Safe Anticoagulation

V. Carle; Y. Wu; R. Mukherjee; X-D. Kong; C. Rogg et al. 

Journal Of Medicinal Chemistry

2021

Vol. 64 , num. 10, p. 6802 – 6813.

DOI : 10.1021/acs.jmedchem.1c00056

In Vitro-Evolved Peptides Bind Monomeric Actin and Mimic Actin-Binding Protein Thymosin-β4

R. J. Gübeli; D. Bertoldo; K. Shimada; C. B. Gerhold; V. Hurst et al. 

ACS Chemical Biology

2021

Vol. 16 , num. 5, p. 820 – 828.

DOI : 10.1021/acschembio.0c00825

Combination of polycarboxybetaine coating and factor XII inhibitor reduces clot formation while preserving normal tissue coagulation during extracorporeal life support

N. Naito; R. Ukita; J. Wilbs; K. Wu; X. Lin et al. 

Biomaterials

2021

Vol. 272 , p. 120778.

DOI : 10.1016/j.biomaterials.2021.120778

Cys-Cys and Cys-Lys Stapling of Unprotected Peptides Enabled by Hypervalent Iodine Reagents

J. Ceballos; E. Grinhagena; G. Sangouard; C. Heinis; J. Waser 

Angewandte Chemie International Edition

2021

Vol. 60 , num. 16, p. 9022 – 9031.

DOI : 10.1002/anie.202014511

Methods for the generation of large combinatorial macrocycle libraries

S. M. Habeshian / Director(s) : C. Heinis 

Lausanne: EPFL

2021

p. 152.

DOI : 10.5075/epfl-thesis-9095

2020

Generation of a Large Peptide Phage Display Library by Self-Ligation of Whole-Plasmid PCR Product

X-D. Kong; V. Carle; C. Díaz-Perlas; K. Butler; C. Heinis 

ACS Chemical Biology

2020

Vol. 15 , num. 11, p. 2907 – 2915.

DOI : 10.1021/acschembio.0c00497

Cyclic peptide FXII inhibitor provides safe anticoagulation in a thrombosis model and in artificial lungs

J. Wilbs; X-D. Kong; S. J. Middendorp; R. Prince; A. Cooke et al. 

Nature Communications

2020

Vol. 11 , num. 1, p. 3890.

DOI : 10.1038/s41467-020-17648-w

Macrocycle synthesis strategy based on step-wise “adding and reacting” three components enables screening of large combinatorial libraries

G. K. Mothukuri; S. S. Kale; C. L. Stenbratt; A. Zorzi; J. Vesin et al. 

Chemical Science

2020

Vol. 11 , num. 30, p. 7858 – 7863.

DOI : 10.1039/D0SC01944E

De novo development of proteolytically resistant therapeutic peptides for oral administration

X-D. Kong; J. Moriya; V. Carle; F. Pojer; L. A. Abriata et al. 

Nature Biomedical Engineering

2020

Vol. 4 , p. 560 – 571.

DOI : 10.1038/s41551-020-0556-3

A releasable disulfide-linked peptide tag facilitates the synthesis and purification of short peptides

Y. Wu; A. Zorzi; J. Williams; C. Heinis 

Chemical Communications (ChemComm)

2020

Vol. 56 , num. 19, p. 2917 – 2920.

DOI : 10.1039/c9cc09247a

Synthesis of DNA‐encoded disulfide‐ and thioether‐cyclized peptides

M. V. Pham; M. Bergeron‐Brlek; C. Heinis 

ChemBioChem

2020

Vol. 21 , num. 4, p. 543 – 549.

DOI : 10.1002/cbic.201900390

2019

Engineered peptide macrocycles can inhibit matrix metalloproteinases with high selectivity

K. Maola; J. Wilbs; J. Touati; M. Sabisz; X. Kong et al. 

Angewandte Chemie

2019

Vol. 131 , num. 34, p. 11927 – 11931.

DOI : 10.1002/ange.201906791

Development of cyclic peptide inhibitors of coagulation factor XIa for safer anticoagulation

V. Carle / Director(s) : C. Heinis 

Lausanne: EPFL

2019

p. 168.

DOI : 10.5075/epfl-thesis-7223

Novel Molecular Probes for Non-invasive Optical Imaging of Fatty Acid and Triglyceride Uptake in Living Animals

G. Karateev / Director(s) : C. Heinis 

Lausanne: EPFL

2019

p. 151.

DOI : 10.5075/epfl-thesis-8437

Development of Tissue Kallikrein Inhibitors for the Treatment of Netherton Syndrome

P. A. Gonschorek / Director(s) : C. Heinis 

Lausanne: EPFL

2019

p. 184.

DOI : 10.5075/epfl-thesis-7676

2018

Development of cyclic peptide inhibitors of coagulation factor XII and matrix metalloproteinase 2

J. A. K. Wilbs / Director(s) : C. Heinis 

Lausanne: EPFL

2018

p. 195.

DOI : 10.5075/epfl-thesis-8467

2017

Bypassing bacterial infection in phage display by sequencing DNA released from phage particles

C. Villequey; X-D. Kong; C. Heinis 

Protein Engineering, Design and Selection

2017

Vol. 30 , num. 11, p. 761 – 768.

DOI : 10.1093/protein/gzx057

Peptide macrocycle inhibitor of coagulation factor XII with subnanomolar affinity and high target selectivity

S. J. Middendorp; J. Wilbs; C. Quarroz; S. Calzavarini; A. Angelillo-Scherrer et al. 

Journal Of Medicinal Chemistry

2017

Vol. 60 , num. 3, p. 1151 – 1158.

DOI : 10.1021/acs.jmedchem.6b01548

Cyclic peptide therapeutics: past, present and future

A. Zorzi; K. Deyle; C. Heinis 

Current Opinion In Chemical Biology

2017

Vol. 38 , p. 24 – 29.

DOI : 10.1016/j.cbpa.2017.02.006

Development of an albumin-binding ligand for prolonging the plasma half-life of peptide therapeutics

A. Zorzi / Director(s) : C. Heinis 

Lausanne: EPFL

2017

p. 206.

DOI : 10.5075/epfl-thesis-7728

Phage Selection of Cyclic Peptides for Application in Research and Drug Development

K. Deyle; X-D. Kong; C. Heinis 

Accounts Of Chemical Research

2017

Vol. 50 , num. 8, p. 1866 – 1874.

DOI : 10.1021/acs.accounts.7b00184

Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides

A. Zorzi; S. J. Middendorp; J. Wilbs; K. Deyle; C. Heinis 

Nature Communications

2017

Vol. 8 , p. 16092.

DOI : 10.1038/ncomms16092

New methods for developing (bi)cyclic peptides by phage display

C. Villequey / Director(s) : C. Heinis 

Lausanne: EPFL

2017

p. 158.

DOI : 10.5075/epfl-thesis-8092

2016

Phage selection of chemically stabilized alpha-helical peptide ligands

P. Diderich; D. Bertoldo; P. Dessen; M. M. Khan; I. Pizzitola et al. 

ACS Chemical Biology

2016

Vol. 11 , num. 5, p. 1422 – 1427.

DOI : 10.1021/acschembio.5b00963

Phage selection of peptide macrocycles against b-catenin to interfere with Wnt signaling

D. Bertoldo; M. M. G. Khan; P. Dessen; W. Held; J. Huelsken et al. 

ChemMedChem

2016

Vol. 11 , num. 8, p. 834 – 839.

DOI : 10.1002/cmdc.201500557

Improving the binding affinity of in-vitro-evolved cyclic peptides by inserting atoms into the macrocycle backbone

J. Wilbs; S. J. Middendorp; C. Heinis 

Chembiochem

2016

Vol. 17 , num. 24, p. 2299 – 2303.

DOI : 10.1002/cbic.201600336

Development of potent and selective S. aureus sortase A inhibitors Based on Peptide Macrocycles

I. R. Rebollo; S. Mccallin; D. Bertoldo; J. M. Entenza; P. Moreillon et al. 

ACS Medicinal Chemistry Letters

2016

Vol. 7 , num. 6, p. 606 – 611.

DOI : 10.1021/acsmedchemlett.6b00045

2015

Generation of photoswitchable peptide ligands by phage display

S. Bellotto / Director(s) : C. Heinis; H. A. Wegner 

Lausanne: EPFL

2015

DOI : 10.5075/epfl-thesis-6483

2014

Improving Bicyclic Peptide Phage Display and Development of Sortase A Inhibitors

I. Rentero Rebollo / Director(s) : C. Heinis 

Lausanne: EPFL

2014

DOI : 10.5075/epfl-thesis-6413

Phage Selection of Photoswitchable Peptide Ligands

S. Bellotto; S. Chen; I. R. Rebollo; H. A. Wegner; C. Heinis 

Journal of the American Chemical Society

2014

Vol. 136 , num. 16, p. 5880 – 5883.

DOI : 10.1021/ja501861m

Peptide ligands stabilized by small molecules

S. Chen; D. Bertoldo; A. Angelini; F. Pojer; C. Heinis 

Angewandte Chemie (International ed. in English)

2014

Vol. 53 , num. 6, p. 1602 – 6.

DOI : 10.1002/anie.201309459

2013

Phage selection of cyclic peptide antagonists with increased stability toward intestinal proteases

V. Baeriswyl; C. Heinis 

Protein engineering, design & selection : PEDS

2013

Vol. 26 , num. 1, p. 81 – 89.

DOI : 10.1093/protein/gzs085

2012

Phage Selection of Bicyclic Peptide Ligands and Development of a New Peptide Cyclisation Method

J. Touati / Director(s) : C. Heinis 

Lausanne: EPFL

2012

DOI : 10.5075/epfl-thesis-5536

2011

Measuring In Vivo Protein Half-Life

K. Bojkowska; F. Santoni De Sio; I. Barde; S. Offner; S. Verp et al. 

Chemistry & Biology

2011

Vol. 18 , num. 6, p. 805 – 815.

DOI : 10.1016/j.chembiol.2011.03.014

2009

Phage-encoded combinatorial chemical libraries based on bicyclic peptides

C. Heinis; T. Rutherford; S. Freund; G. Winter 

Nature Chemical Biology

2009

Vol. 5 , num. 7, p. 502 – 507.

DOI : 10.1038/nchembio.184

2006

Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling

T. Gronemeyer; C. Chidley; A. Juillerat; C. Heinis; K. Johnsson 

Protein Engineering, Design and Selection

2006

Vol. 19 , num. 7, p. 309 – 318.

DOI : 10.1093/protein/gzl014