Publications

2025

Controlling Acid Sites in Atomically Precise Cu/Al2O3 Clusters for Selective Methanol Production from CO2 Hydrogenation

S. Jin; Y-C. Lin; B. Karakurt; T. Nelis; M. Tanchev et al. 

ACS Catalysis. 2025.  p. 16026 – 16038. DOI : 10.1021/acscatal.5c04952.

Flame-Made Surface-Substituted Copper–Ceria as an Excellent Reverse Water–Gas Shift Reaction Catalyst via Three Reaction Pathways

B. Xie; Y. Zhu; Shakeri; S. Jin; G. E. P. O’Connell et al. 

Journal of the American Chemical Society. 2025. DOI : 10.1021/jacs.5c07701.

Selective Production of Syringaldehyde and Vanillin from Acetal-Stabilized Lignin

J. Behaghel de Bueren; W. Lan; A. Colantuoni; R. Fontaine; T. Nelis et al. 

ACS Sustainable Chemistry & Engineering. 2025. DOI : 10.1021/acssuschemeng.5c04387.

Operando Monitoring of Delignification Processes Using 2D 1H-13C HSQC NMR

C. L. Bourmaud; S. Sun; A. Bornet; J. S. Luterbacher 

ACS Sustainable Chemistry & Engineering. 2025. DOI : 10.1021/acssuschemeng.5c04611.

Size‐Selective Functionalization of Sugars and Polyols Using Zeolites for Renewable Surfactant Production

S. Sun; Z. J. Li; Y. Lin; M. Rolland; T. Nelis et al. 

Angewandte Chemie. 2025. DOI : 10.1002/ange.202511282.

Best practices for multi-fidelity Bayesian optimization in materials and molecular research

V. S. Gil; R. Barbano; D. P. Gutiérrez; J. S. Luterbacher; J. M. Hernández-Lobato et al. 

Nature Computational Science. 2025. Vol. 5, num. 7, p. 572 – 581. DOI : 10.1038/s43588-025-00822-9.

Low‐Power Tunable Micro‐Plasma Device for Efficient and Scalable CO2 Valorization

B. Karakurt; H. Zhu; O. Soydal; G. Sun; J. S. Luterbacher et al. 

Advanced Science. 2025. DOI : 10.1002/advs.202507687.

Additive-Enhanced PAX Polyesters for Industrial Processing and Increased Longevity

L. P. Manker; M. A. Hedou; R. Marti; M. P. Shaver; J. S. Luterbacher 

ACS Sustainable Chemistry & Engineering. 2025. DOI : 10.1021/acssuschemeng.4c08640.

Glucuronoyl esterases improve cellulose hydrolysis by lignocellulose degrading enzymes and enhance lignin extraction

P. A. Martins; C. Bourmaud; J. S. Luterbacher; J. W. Agger 

International Journal of Biological Macromolecules. 2025. Vol. 314. DOI : 10.1016/j.ijbiomac.2025.144218.

Encapsulated Co–Ni alloy boosts high-temperature CO2 electroreduction

W. Ma; J. Morales‐Vidal; J. Tian; M. Liu; S. Jin et al. 

Nature. 2025. DOI : 10.1038/s41586-025-08978-0.

Connecting scales in reaction engineering

J. Luterbacher; B. Weckhuysen; S. Haussener; B. R. Cuenya; D. E. Resasco et al. 

Nature Chemical Engineering. 2025. Vol. 2, num. 3, p. 156 – 159. DOI : 10.1038/s44286-025-00197-8.

Aldehyde-Stabilization Strategies for Building Biobased Consumer Products around Intact lignocellulosic Structures

S. Zheng; S. Sun; L. P. Manker; J. S. Luterbacher 

ACCOUNTS OF CHEMICAL RESEARCH. 2025. DOI : 10.1021/acs.accounts.4c00819.

Characterization of Biobased Polymers at the Gas-Solid Interface─Analysis of Surface and Bulk Properties during Artificial Degradation

T. Borgmeyer; Y. Kupper; M. J. Rossi; J. S. Luterbacher; C. Ludwig 

Environmental Science and Technology. 2025. DOI : 10.1021/acs.est.4c10925.

2024

Synthesis of High-Surface-Area Alumina using Carbon Templating and Liquid Phase Atomic Layer Deposition

F. Talebkeikhah; Y. C. Lin; J. S. Luterbacher 

Advanced Materials Interfaces. 2024. Vol. 11, num. 36, p. 2400520. DOI : 10.1002/admi.202400520.

O2-permeable membrane reactor for continuous oxidative depolymerization of lignin

E. P. Weeda; C. M. Holland; J. Behaghel de Bueren; Z. Yuan; M. Alherech et al. 

Joule. 2024. Vol. 8, num. 12, p. 3336 – 3346. DOI : 10.1016/j.joule.2024.08.015.

A solution for 4-propylguaiacol hydrodeoxygenation without ring saturation

Z. Zhang; Q. Li; X. Wu; C. Bourmaud; D. G. Vlachos et al. 

Nature communications. 2024. Vol. 15, num. 1. DOI : 10.1038/s41467-024-50724-z.

Atom-by-atom design of Cu/ZrOx clusters on MgO for CO2 hydrogenation using liquid-phase atomic layer deposition

S. Jin; C. Kwon; A. Bugaev; B. Karakurt; Y. C. Lin et al. 

Nature Catalysis. 2024. Vol. 7, num. 11, p. 1199 – 1212. DOI : 10.1038/s41929-024-01236-y.

Machine learning-supported solvent design for lignin-first biorefineries and lignin upgrading

L. König-Mattern; E. I. Sanchez Medina; A. O. Komarova; S. Linke; L. Rihko-Struckmann et al. 

Chemical Engineering Journal. 2024. Vol. 495, p. 153524. DOI : 10.1016/j.cej.2024.153524.

Sustainable One-Pot Production and Scale-Up of the New Platform Chemical Diformylxylose (DFX) from Agricultural Biomass

A. O. Komarova; Z. J. Li; M. J. Jones; O. Erni; F. Neuenschwander et al. 

ACS Sustainable Chemistry and Engineering. 2024. Vol. 12, num. 34, p. 12879 – 12889. DOI : 10.1021/acssuschemeng.4c03799.

Quantification of Native Lignin Structural Features with Gel-Phase 2D-HSQC0 Reveals Lignin Structural Changes During Extraction

C. L. M. C. Bourmaud; S. Bertella; A. B. Rico; S. D. Karlen; J. Ralph et al. 

Angewandte Chemie International Edition. 2024. DOI : 10.1002/anie.202404442.

Performance polyamides built on a sustainable carbohydrate core

L. P. Manker; M. A. C. Hedou; C. Broggi; M. J. F. Jones; K. Kortsen et al. 

Nature Sustainability. 2024. DOI : 10.1038/s41893-024-01298-7.

Xylose Acetals – a New Class of Sustainable Solvents and Their Application in Enzymatic Polycondensation

A. O. Komarova; C. M. Warne; H. Pétremand; L. König-Mattern; J. Stöckelmaier et al. 

ChemSusChem. 2024. DOI : 10.1002/cssc.202401877.

Carbon-carbon Bond Cleavage for a Lignin Refinery

Z. Luo; C. Liu; A. Radu; D. F. de Waard; Y. Wang et al. 

NATURE CHEMICAL ENGINEERING. 2024. Vol. 1, num. 1, p. 61 – 72. DOI : 10.1038/s44286-023-00006-0.

2023

Integrated Conversion of Lignocellulosic Biomass to Bio-Based Amphiphiles using a Functionalization-Defunctionalization Approach

S. Sun; G. De Angelis; S. Bertella; M. J. F. Jones; G. R. Dick et al. 

Angewandte Chemie International Edition. 2023. Vol. 63, num. 5. DOI : 10.1002/anie.202312823.

Selecting Suitable Near-Native Lignins for Research

M. Chen; J. Ralph; J. S. Luterbacher; Q-S. Shi; X. Xie 

Journal Of Agricultural And Food Chemistry. 2023. Vol. 71, num. 51, p. 20751 – 20761. DOI : 10.1021/acs.jafc.3c04973.

Sustainable Materials: Production Methods and End-of-life Strategies

A. Ghosh; R. Buser; F. Heroguel; J. Luterbacher 

Chimia. 2023. Vol. 77, num. 12, p. 848 – 857. DOI : 10.2533/chimia.2023.848.

Tuning the Mechanical Properties of Poly(butylene xylosediglyoxylate) via Compounding Strategies

M. Vieli; M. A. C. Hedou; P. B. V. Scholten; A. Demongeot; L. P. Manker et al. 

Acs Applied Polymer Materials. 2023. Vol. 5, num. 12, p. 9732 – 9741. DOI : 10.1021/acsapm.3c01219.

Kinetic Network Modeling of the Catalytic Upgrading of Biomass’s Acetate Fraction to Aromatics

A. M. I. Elkhaiary; B. Rozmyslowicz; J. H. Yeap; M. H. Studer; J. S. Luterbacher 

Energy & Fuels. 2023. Vol. 37, num. 20, p. 16172 – 16180. DOI : 10.1021/acs.energyfuels.3c02300.

Synergistic interactions between PtRu catalyst and nitrogen-doped carbon support boost hydrogen oxidation

W. Ni; J. L. Meibom; N. Ul Hassan; M. Chang; Y-C. Chu et al. 

Nature Catalysis. 2023. Vol. 6, p. 773 – 783. DOI : 10.1038/s41929-023-01007-1.

Lignin Hydrogenolysis: Phenolic Monomers from Lignin and Associated Phenolates across Plant Clades

M. Chen; Y. Li; F. Lu; J. S. S. Luterbacher; J. Ralph 

Acs Sustainable Chemistry & Engineering. 2023. Vol. 11, num. 27, p. 10001 – 10017. DOI : 10.1021/acssuschemeng.3c01320.

Current strategies for industrial plastic production from non-edible biomass

L. P. Manker; M. J. Jones; S. Bertella; J. B. de Bueren; J. S. Luterbacher 

Current Opinion In Green And Sustainable Chemistry. 2023. Vol. 41, p. 100780. DOI : 10.1016/j.cogsc.2023.100780.

Sinter-Resistant Nickel Catalyst for Lignin Hydrogenolysis Achieved by Liquid Phase Atomic Layer Deposition of Alumina

F. Talebkeikhah; S. Sun; J. S. Luterbacher 

Advanced Energy Materials. 2023. DOI : 10.1002/aenm.202203377.

High-throughput computational solvent screening for lignocellulosic biomass processing

L. Koenig-Mattern; A. O. Komarova; A. Ghosh; S. Linke; L. K. Rihko-Struckmann et al. 

Chemical Engineering Journal. 2023. Vol. 452, p. 139476. DOI : 10.1016/j.cej.2022.139476.

2022

Understanding Your Support System: The Design of a Stable Metal-Organic Framework/Polyazoamine Support for Biomass Conversion

V. V. Karve; N. A. Nekrasova; M. Asgari; O. Trukhina; I. Kochetygov et al. 

Chemistry Of Materials. 2022. DOI : 10.1021/acs.chemmater.2c01731.

Lignin: A Sustainable Antiviral Coating Material

A. Boarino; H. Wang; F. Olgiati; F. Artusio; M. Ozkan et al. 

Acs Sustainable Chemistry & Engineering. 2022. DOI : 10.1021/acssuschemeng.2c04284.

From Non-edible Biomass to Performance Thermoplastics with Sustainable End-of-life

L. P. Manker; J. S. Luterbacher 

Chimia. 2022. Vol. 76, num. 10, p. 864 – 864. DOI : 10.2533/chimia.2022.864.

Sustainable polyesters via direct functionalization of lignocellulosic sugars

L. P. Manker; G. R. Dick; A. Demongeot; M. A. Hedou; C. Rayroud et al. 

Nature Chemistry. 2022. Vol. 14, p. 976 – 984. DOI : 10.1038/s41557-022-00974-5.

Extraction and Surfactant Properties of Glyoxylic Acid-Functionalized Lignin

S. Bertella; M. B. Figueiredo; G. De Angelis; M. Mourez; C. Bourmaud et al. 

Chemsuschem. 2022.  p. e202200270. DOI : 10.1002/cssc.202200270.

An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells

W. Ni; T. Wang; F. Heroguel; A. Krammer; S. Lee et al. 

Nature Materials. 2022. DOI : 10.1038/s41563-022-01221-5.

Atom-by-Atom Synthesis of Multiatom-Supported Catalytic Clusters by Liquid-Phase Atomic Layer Deposition

B. P. Le Monnier; L. Savereide; M. Kilic; R. Schnyder; M. D. Mensi et al. 

Acs Sustainable Chemistry & Engineering. 2022. Vol. 10, num. 11, p. 3455 – 3465. DOI : 10.1021/acssuschemeng.1c07056.

Restructuring Ni/Al2O3 by addition of Ga to shift product selectivity in CO2 hydrogenation: The role of hydroxyl groups

A. M. Bahmanpour; R. J. G. Nuguid; L. M. Savereide; M. D. Mensi; D. Ferri et al. 

Journal Of Co2 Utilization. 2022. Vol. 56, p. 101881. DOI : 10.1016/j.jcou.2021.101881.

Controlling lignin solubility and hydrogenolysis selectivity by acetal-mediated functionalization

G. R. Dick; A. O. Komarova; J. S. Luterbacher 

Green Chemistry. 2022. Vol. 24, num. 3, p. 1285 – 1293. DOI : 10.1039/d1gc02575a.

2021

Ternary Alloys Enable Efficient Production of Methoxylated Chemicals via Selective Electrocatalytic Hydrogenation of Lignin Monomers

T. Peng; T. Zhuang; Y. Yan; J. Qian; G. R. Dick et al. 

Journal Of The American Chemical Society. 2021. Vol. 143, num. 41, p. 17226 – 17235. DOI : 10.1021/jacs.1c08348.

Techno-economic analysis and life cycle assessment of a biorefinery utilizing reductive catalytic fractionation

A. W. Bartling; M. L. Stone; R. J. Hanes; A. Bhatt; Y. Zhang et al. 

Energy & Environmental Science. 2021. Vol. 14, num. 8, p. 4147 – 4168. DOI : 10.1039/d1ee01642c.

Dual Valorization of Lignin as a Versatile and Renewable Matrix for Enzyme Immobilization and (Flow) Bioprocess Engineering

A. I. Benitez-Mateos; S. Bertella; J. Behaghel de Bueren; J. S. Luterbacher; F. Paradisi 

Chemsuschem. 2021. Vol. 14, num. 15, p. 3198 – 3207. DOI : 10.1002/cssc.202100926.

Diformylxylose as a new polar aprotic solvent produced from renewable biomass

J. S. Luterbacher; A. O. Komarova; G. R. Dick 

Green Chemistry. 2021. Vol. 23, num. 9, p. 3459 – 3467. DOI : 10.1039/D1GC00641J.

Investigating the effects of substrate morphology and experimental conditions on the enzymatic hydrolysis of lignocellulosic biomass through modeling

J. C. Rohrbach; J. S. Luterbacher 

Biotechnology For Biofuels. 2021. Vol. 14, num. 1, p. 103. DOI : 10.1186/s13068-021-01920-2.

Simultaneous extraction and controlled chemical functionalization of hardwood lignin for improved phenolation

S. Bertella; J. S. Luterbacher 

Green Chemistry. 2021. Vol. 23, num. 9, p. 3459 – 3467. DOI : 10.1039/d1gc00358e.

Fe-57-Enrichment effect on the composition and performance of Fe-based O-2-reduction electrocatalysts

K. Ebner; L. Ni; V. A. Saveleva; B. P. Le Monnier; A. H. Clark et al. 

Physical Chemistry Chemical Physics. 2021. Vol. 23, num. 15, p. 9147 – 9157. DOI : 10.1039/d1cp00707f.

Increasing the activity of the Cu/CuAl2O4/Al2O3 catalyst for the RWGS through preserving the Cu2+ ions

A. M. Bahmanpour; B. P. Le Monnier; Y-P. Du; F. Heroguel; J. S. Luterbacher et al. 

Chemical Communications (ChemComm). 2021. Vol. 57, num. 9, p. 1153 – 1156. DOI : 10.1039/d0cc07142k.

Continuous hydrogenolysis of acetal-stabilized lignin in flow

W. Lan; Y. P. Du; S. Sun; J. B. de Bueren; F. Heroguel et al. 

Green Chemistry. 2021. Vol. 23, num. 1, p. 320 – 327. DOI : 10.1039/d0gc02928a.

Guidelines for performing lignin-first biorefining

M. M. Abu-Omar; K. Barta; G. T. Beckham; J. S. Luterbacher; J. Ralph et al. 

Energy & Environmental Science. 2021. Vol. 14, num. 1, p. 262 – 292. DOI : 10.1039/d0ee02870c.

2020

Aldehyde-Assisted Fractionation Enhances Lignin Valorization in Endocarp Waste Biomass

J. B. de Bueren; F. Heroguel; C. Wegmann; G. R. Dick; R. Buser et al. 

Acs Sustainable Chemistry & Engineering. 2020. Vol. 8, num. 45, p. 16737 – 16745. DOI : 10.1021/acssuschemeng.0c03360.

Aldehyde-Assisted Lignocellulose Fractionation Provides Unique Lignin Oligomers for the Design of Tunable Polyurethane Bioresins

R. Vendamme; J. B. de Bueren; J. Gracia-Vitoria; F. Isnard; M. M. Mulunda et al. 

Biomacromolecules. 2020. Vol. 21, num. 10, p. 4135 – 4148. DOI : 10.1021/acs.biomac.0c00927.

Engineering the ZrO2–Pd Interface for Selective CO2 Hydrogenation by Overcoating an Atomically Dispersed Pd Precatalyst

Y-P. Du; A. M. Bahmanpour; L. Milošević; F. Héroguel; M. D. Mensi et al. 

ACS Catalysis. 2020. Vol. 10, num. 20, p. 12058 – 12070. DOI : 10.1021/acscatal.0c02146.

A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose

R. L. Shahab; S. Brethauer; M. P. Davey; A. G. Smith; S. Vignolini et al. 

Science. 2020. Vol. 369, num. 6507, p. eabb12141073. DOI : 10.1126/science.abb1214.

Stabilization strategies in biomass depolymerization using chemical functionalization

Y. M. Questell-Santiago; M. V. Galkin; K. Barta; J. S. Luterbacher 

Nature Reviews Chemistry. 2020. Vol. 4, p. 311 – 330. DOI : 10.1038/s41570-020-0187-y.

Lignin Functionalization for the Production of Novel Materials

S. Bertella; J. S. Luterbacher 

Trends In Chemistry. 2020. Vol. 2, num. 5, p. 440 – 453. DOI : 10.1016/j.trechm.2020.03.001.

Mechanistic Study of Diaryl Ether Bond Cleavage during Palladium-Catalyzed Lignin Hydrogenolysis

Y. Li; S. D. Karlen; B. Demir; H. Kim; J. Luterbacher et al. 

Chemsuschem. 2020. Vol. 13, num. 17, p. 4487 – 4494. DOI : 10.1002/cssc.202000753.

Engineering of ecological niches to create stable artificial consortia for complex biotransformations

R. L. Shahab; S. Brethauer; J. S. Luterbacher; M. H. Studer 

Current Opinion In Biotechnology. 2020. Vol. 62, p. 129 – 136. DOI : 10.1016/j.copbio.2019.09.008.

Essential role of oxygen vacancies of Cu-Al and Co-Al spinel oxides in their catalytic activity for the reverse water gas shift reaction

A. Bahmanpour; F. E. Héroguel; M. Kiliç; C. J. Baranowski; P. A. Schouwink et al. 

Applied Catalysis B: Environmental. 2020. Vol. 266, p. 118669. DOI : 10.1016/j.apcatb.2020.118669.

Efficient reductive amination of HMF with well dispersed Pd nanoparticles immobilized in a porous MOF/polymer composite

V. V. Karve; D. T. Sun; O. Trukhina; S. Yang; E. Oveisi et al. 

Green Chemistry. 2020. Vol. 22, num. 2, p. 368 – 378. DOI : 10.1039/c9gc03140e.

Catalyst Evolution Enhances Production of Xylitol from Acetal-Stabilized Xylose

Y. M. Questell-Santiago; J. H. Yeap; M. Talebi Amiri; B. P. Le Monnier; J. S. Luterbacher 

ACS Sustainable Chemistry & Engineering. 2020. Vol. 8, num. 4, p. 1709 – 1714. DOI : 10.1021/acssuschemeng.9b06456.

2019

Topology of Pretreated Wood Fibers Using Dynamic Nuclear Polarization

J. Viger-Gravel; W. Lan; A. C. Pinon; P. Berruyer; L. Emsley et al. 

Journal Of Physical Chemistry C. 2019. Vol. 123, num. 50, p. 30407 – 30415. DOI : 10.1021/acs.jpcc.9b09272.

Atomic Layer Deposition on Dispersed Materials in Liquid Phase by Stoichiometrically Limited Injections

B. P. Le Monnier; F. Wells; F. Talebkeikhah; J. S. Luterbacher 

Advanced Materials. 2019.  p. 1904276. DOI : 10.1002/adma.201904276.

A Road to Profitability from Lignin via the Production of Bioactive Molecules

W. Lan; J. S. Luterbacher 

ACS Central Science. 2019. Vol. 5, num. 10, p. 1642 – 1644. DOI : 10.1021/acscentsci.9b00954.

Catalyst support and solvent effects during lignin depolymerization and hydrodeoxygenation

F. E. Héroguel; X. T. Nguyen; J. Luterbacher 

ACS Sustainable Chemistry & Engineering. 2019. Vol. 7, num. 20, p. 16952 – 16958. DOI : 10.1021/acssuschemeng.9b03843.

Designing Heterogeneous Catalysts for Renewable Catalysis Applications Using Metal Oxide Deposition

Y-P. Du; J. S. Luterbacher 

CHIMIA. 2019. Vol. 73, num. 9, p. 698 – 706. DOI : 10.2533/chimia.2019.698.

Preventing Lignin Condensation to Facilitate Aromatic Monomer Production

W. Lan; J. S. Luterbacher 

Chimia. 2019. Vol. 73, num. 7-8, p. 591 – 598. DOI : 10.2533/chimia.2019.591.

Establishing Lignin Structure-Upgradeability Relationships Using Quantitative 1H-13C Heteronuclear Single Quantum Coherence Nuclear Magnetic Resonance (HSQC-NMR) Spectroscopy

M. Talebi Amiri; S. Bertella; Y. Questell-Santiago; J. Luterbacher 

Chemical Science. 2019. Vol. 10, num. 35, p. 8135 – 8142. DOI : 10.1039/C9SC02088H.

Cu–Al Spinel as a Highly Active and Stable Catalyst for the Reverse Water Gas Shift Reaction

A. M. Bahmanpour; F. Héroguel; M. Kılıç; C. J. Baranowski; L. Artiglia et al. 

ACS Catalysis. 2019. Vol. 9, num. 7, p. 6243 – 6251. DOI : 10.1021/acscatal.9b01822.

Insights into the Nature of the Active Sites of Tin‐Montmorillonite for the Synthesis of Polyoxymethylene Dimethyl Ethers (OME)

C. J. Baranowski; A. M. Bahmanpour; F. Héroguel; J. S. Luterbacher; O. Kröcher 

Chemcatchem. 2019. Vol. 11, num. 13, p. 3010 – 3021. DOI : 10.1002/cctc.201900502.

Highly Selective Oxidation and Depolymerization of α,γ-Diol Protected Lignin

W. Lan; J. B. de Bueren; J. S. Luterbacher 

Angewandte Chemie International Edition. 2019. Vol. 58, num. 9, p. 2649 – 2654. DOI : 10.1002/anie.201811630.

Fractionation of lignocellulosic biomass to produce uncondensed aldehyde-stabilized lignin

M. Talebi Amiri; G. R. Dick; Y. M. Questell-Santiago; J. S. Luterbacher 

Nature Protocols. 2019. Vol. 14, p. 921 – 954. DOI : 10.1038/s41596-018-0121-7.

Optimization of Lignin Extraction from Pine Wood for Fast Pyrolysis by Using γ-valerolactone-Based Binary Solvent System

S. Jampa; A. Puente-Urbina; Z. Ma; S. Wongkasemjit; J. S. Luterbacher et al. 

ACS Sustainable Chemistry & Engineering. 2019. Vol. 7, num. 4, p. 4058 – 4068. DOI : 10.1021/acssuschemeng.8b05498.

Post-synthesis deposition of mesoporous niobic acid with improved thermal stability by kinetically controlled sol–gel overcoating

Y-P. Du; F. Héroguel; X. T. Nguyen; J. S. Luterbacher 

Journal of Materials Chemistry A. 2019. Vol. 7, num. 41, p. 23803 – 23811. DOI : 10.1039/C9TA01459D.

Catalytic valorization of the acetate fraction of biomass to aromatics and its integration into the carboxylate platform

B. Rozmysłowicz; J. H. Yeap; A. Elkhaiary; M. Talebi Amiri; R. L. Shahab et al. 

Green Chemistry. 2019. Vol. 21, num. 10, p. 2801 – 2809. DOI : 10.1039/c9gc00513g.

Prominent role of mesopore surface area and external acid sites for the synthesis of polyoxymethylene dimethyl ethers (OME) on a hierarchical H-ZSM-5 zeolite

C. J. Baranowski; A. M. Bahmanpour; F. Héroguel; J. S. Luterbacher; O. Kröcher 

Catalysis Science & Technology. 2019. Vol. 9, num. 2, p. 366 – 376. DOI : 10.1039/C8CY02194E.

2018

Selectivity control during the single-step conversion of aliphatic carboxylic acids to linear olefins

J. H. Yeap; F. Héroguel; R. L. Shahab; B. Rozmyslowicz; M. H. Studer et al. 

ACS Catalysis. 2018. Vol. 8, p. 10769 – 10773. DOI : 10.1021/acscatal.8b03370.

An “ideal lignin” facilitates full biomass utilization

Y. Li; L. Shuai; H. Kim; A. H. Motagamwala; J. K. Mobley et al. 

Science Advances. 2018. Vol. 4, num. 9, p. eaau2968. DOI : 10.1126/sciadv.aau2968.

Slowing the Kinetics of Alumina Sol-Gel Chemistry for Controlled Catalyst Overcoating and Improved Catalyst Stability and Selectivity

Y-P. Du; F. Héroguel; J. S. Luterbacher 

Small. 2018.  p. 1801733. DOI : 10.1002/smll.201801733.

Protection Group Effects During α,γ-Diol Lignin Stabilization Promote High-Selectivity Monomer Production

W. Lan; M. T. Amiri; C. M. Hunston; J. S. Luterbacher 

Angewandte Chemie International Edition. 2018. Vol. 57, num. 5, p. 1356 – 1360. DOI : 10.1002/anie.201710838.

Controlled deposition of titanium oxide overcoats by non-hydrolytic sol gel for improved catalyst selectivity and stability

F. Héroguel; L. Silvioli; Y-P. Du; J. S. Luterbacher 

Journal of Catalysis. 2018. Vol. 358, p. 50 – 61. DOI : 10.1016/j.jcat.2017.11.023.

Simulation of Gas- and Liquid-Phase Layer-By-Layer Deposition of Metal Oxides by Coarse-Grained Modeling

K. S. Brown; C. Saggese; B. P. Le Monnier; F. Héroguel; J. S. Luterbacher 

Journal of Physical Chemistry C. 2018. Vol. 122, num. 12, p. 6713 – 6720. DOI : 10.1021/acs.jpcc.8b00197.

Carbohydrate stabilization extends the kinetic limits of chemical polysaccharide depolymerization

Y. M. Questell-Santiago; R. Zambrano-Varela; M. Talebi Amiri; J. S. Luterbacher 

Nature Chemistry. 2018. Vol. 10, num. 12, p. 1222 – 1228. DOI : 10.1038/s41557-018-0134-4.

Selective synthesis of dimethyl ether on eco-friendly K10 montmorillonite clay

A. M. Bahmanpour; F. Héroguel; C. J. Baranowski; J. S. Luterbacher; O. Kröcher 

Applied Catalysis A: General. 2018. Vol. 560, p. 165 – 170. DOI : 10.1016/j.apcata.2018.05.006.

Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium

R. L. Shahab; J. S. Luterbacher; S. Brethauer; M. H. Studer 

Biotechnology and Bioengineering. 2018. Vol. 115, num. 5, p. 1207 – 1215. DOI : 10.1002/bit.26541.

Densely Packed, Ultra Small SnO Nanoparticles for Enhanced Activity and Selectivity in Electrochemical CO2 Reduction

J. Gu; F. Héroguel; J. Luterbacher; X. Hu 

Angewandte Chemie International Edition. 2018. Vol. 130, num. 11, p. 2993 – 2997. DOI : 10.1002/anie.201713003.

2017

Clean, cleaved surfaces of the photovoltaic perovskite

M. Kollár; L. Ćirić; J. H. Dil; A. Weber; S. Muff et al. 

Scientific Reports. 2017. Vol. 7, p. 695. DOI : 10.1038/s41598-017-00799-0.

Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO

M. Schreier; F. Héroguel; L. Steier; S. Ahmad; J. S. Luterbacher et al. 

Nature Energy. 2017. Vol. 2, p. 17087. DOI : 10.1038/nenergy.2017.87.

Catalyst stabilization by stoichiometrically limited layer-by-layer overcoating in liquid media

F. Héroguel; B. P. Le Monnier; K. S. Brown; J. C. Siu; J. S. Luterbacher 

Applied Catalysis B: Environmental. 2017. Vol. 218, p. 643 – 649. DOI : 10.1016/j.apcatb.2017.07.006.

Promotion Effect of Alkali Metal Hydroxides on Polymer-Stabilized Pd Nanoparticles for Selective Hydrogenation of C–C Triple Bonds in Alkynols

L. Z. Nikoshvili; A. V. Bykov; T. E. Khudyakova; T. Lagrange; F. Héroguel et al. 

Industrial & Engineering Chemistry Research. 2017. Vol. 56, num. 45, p. 13219 – 13227. DOI : 10.1021/acs.iecr.7b01612.

2016

A mild biomass pretreatment using gamma-valerolactone for concentrated sugar production

L. Shuai; Y. M. Questell-Santiago; J. S. Luterbacher 

Green Chemistry. 2016. Vol. 18, num. 4, p. 937 – 943. DOI : 10.1039/c5gc02489g.

The influence of interunit carbon–carbon linkages during lignin upgrading

L. Shuai; M. Talebi Amiri; J. Luterbacher 

Current Opinion in Green and Sustainable Chemistry. 2016. Vol. 2, p. 59 – 63. DOI : 10.1016/j.cogsc.2016.10.001.

Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization

L. Shuai; M. T. Amiri; Y. M. Questell-Santiago; F. Heroguel; Y. Li et al. 

Science. 2016. Vol. 354, num. 6310, p. 329 – 333. DOI : 10.1126/science.aaf7810.

Organic Solvent Effects in Biomass Conversion Reactions

L. Shuai; J. Luterbacher 

Chemsuschem. 2016. Vol. 9, num. 2, p. 133 – 155. DOI : 10.1002/cssc.201501148.

Patents

2025

Method for preparing an acetal-protected sugar

M. Hedou; R. Marti; T. Nelis; A. Cattaneo; L. Manker et al. 

WO2025016942.

2025.

2024

Biobased surfactant

S. Bertella; A. Komarova; S. Sun; J. Luterbacher 

EP4311831; WO2023198682.

2024.

Biobased surfactant

S. Bertella; A. Komarova; S. Sun; J. Luterbacher 

EP4311826.

2024.

Method for preparing an at least partially acetal-protected sugar

Z. Li; T. Nelis; L. P. Manker; S. Sun; A. Komarova et al. 

WO2024105051.

2024.

2023

Biobased surfactants

A. Komarova; S. Sun; S. Bertella; J. Luterbacher 

EP4311831; WO2023198682.

2023.

2022

Green solvents for chemical reactions

A. Komarova; J. Luterbacher 

EP4326725; CN117321060; BR112023019753; WO2022223480; CA3215288.

2022.

2021

Production of fragments of lignin with functional groups

J. Luterbacher; G. Dick; S. Bertella 

US2024150385; JP2022551188; EP4045513; BR112022007225; CN114616265; CA3155731; WO2021074210; EP3808755.

2021.

Renewable monomer and polymer thereof

J. Luterbacher; L. Manker; G. Dick; S. Bertella 

US2024140961; CN114630833; JP2022551187; EP4045514; BR112022007169; CN114630833; CA3155744; WO2021074211; EP3808757.

2021.

2020

Aqueous effluent treatment system

G. Peng; F. Juillard; J. Luterbacher; R. Zambranovarela; L. Bertschy 

EP3931156; EP3931156; CN113474305; US2022111345; EP3931156; CN113474305; WO2020173888; EP3699150.

2020.

2017

Production of monomers from lignin during depolymerisation of lignocellulose-containing composition

J. S. Luterbacher; L. Shuai 

US11639324; US2023023803; BR112018071060; US11444703; CN109328185; US2021107851; US2021111745; US10906856; US10903866; US10903915; RU2739567; RU2018134925; RU2018134925; BR112018071060; US2019127304; EP3442938; CN109328185; CA3029301; WO2017178513.

2017.

Publications before EPFL

2015

A lignocellulosic ethanol strategy via nonenzymatic sugar production: Process synthesis and analysis

J. Han; J. S. Luterbacher; D. M. Alonso; J. A. Dumesic; C. T. Maravelias 

Bioresource Technology. 2015. Vol. 182, p. 258 – 266. DOI : 10.1016/j.biortech.2015.01.135.

Lignin monomer production integrated into the γ-valerolactone sugar platform

J. S. Luterbacher; A. Azarpira; A. H. Motagamwala; F. Lu; J. Ralph et al. 

Energy & Environmental Science. 2015. Vol. 8, num. 9, p. 2657 – 2663. DOI : 10.1039/C5EE01322D.

Solvent-Enabled Nonenyzmatic Sugar Production from Biomass for Chemical and Biological Upgrading

J. S. Luterbacher; D. M. Alonso; J. M. Rand; Y. M. Questell-Santiago; J. H. Yeap et al. 

ChemSusChem. 2015. Vol. 8, num. 8, p. 1317 – 1322. DOI : 10.1002/cssc.201403418.

Process systems engineering studies for the synthesis of catalytic biomass-to-fuels strategies

J. Han; S. Murat Sen; J. S. Luterbacher; D. M. Alonso; J. A. Dumesic et al. 

Computers & Chemical Engineering. 2015. Vol. 81, p. 57 – 69. DOI : 10.1016/j.compchemeng.2015.04.007.

Improving Heterogeneous Catalyst Stability for Liquid-phase Biomass Conversion and Reforming

F. E. Héroguel; B. Rozmysłowicz; J. Luterbacher 

Chimia. 2015. Vol. 69, num. 10, p. 582 – 591. DOI : 10.2533/chimia.2015.582.

Hydrothermally-treated Na-X as efficient adsorbents for butadiene removal

G. B. Baur; F. E. Héroguel; J. Spring; J. Luterbacher; L. Kiwi 

Chemical Engineering Journal. 2015. Vol. 288, p. 19 – 27. DOI : 10.1016/j.cej.2015.11.096.

Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: Filter paper cellulose

J. S. Luterbacher; J. M. Moran-Mirabal; E. W. Burkholder; L. P. Walker 

Biotechnology and Bioengineering. 2015. Vol. 112, num. 1, p. 21 – 31. DOI : 10.1002/bit.25329.

Modeling enzymatic hydrolysis of lignocellulosic substrates using fluorescent confocal microscopy II: Pretreated biomass

J. S. Luterbacher; J. M. Moran-Mirabal; E. W. Burkholder; L. P. Walker 

Biotechnology and Bioengineering. 2015. Vol. 112, num. 1, p. 32 – 42. DOI : 10.1002/bit.25328.

2014

Solvent Effects in Acid-Catalyzed Biomass Conversion Reactions

M. A. Mellmer; C. Sener; J. M. R. Gallo; J. S. Luterbacher; D. M. Alonso et al. 

Angewandte Chemie International Edition. 2014. Vol. 53, num. 44, p. 11872 – 11875. DOI : 10.1002/anie.201408359.

Nonenzymatic Sugar Production from Biomass Using Biomass-Derived gamma-Valerolactone

J. S. Luterbacher; J. M. Rand; D. M. Alonso; J. Han; J. T. Youngquist et al. 

Science. 2014. Vol. 343, num. 6168, p. 277 – 280. DOI : 10.1126/science.1246748.

Effects of γ-valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides

M. A. Mellmer; D. Martin Alonso; J. S. Luterbacher; J. M. R. Gallo; J. A. Dumesic 

Green Chemistry. 2014. Vol. 16, num. 11, p. 4659 – 4662. DOI : 10.1039/C4GC01768D.

Selective Conversion of Cellulose to Hydroxymethylfurfural in Polar Aprotic Solvents

R. Weingarten; A. Rodriguez-Beuerman; F. Cao; J. S. Luterbacher; D. M. Alonso et al. 

Chemcatchem. 2014. Vol. 6, num. 8, p. 2229 – 2234. DOI : 10.1002/cctc.201402299.

Targeted chemical upgrading of lignocellulosic biomass to platform molecules

J. S. Luterbacher; D. Martin Alonso; J. A. Dumesic 

Green Chemistry. 2014. Vol. 16, num. 12, p. 4816 – 4838. DOI : 10.1039/C4GC01160K.

2012

Producing concentrated solutions of monosaccharides using biphasic CO2–H2O mixtures

J. S. Luterbacher; Q. Chew; Y. Li; J. W. Tester; L. P. Walker 

Energy & Environmental Science. 2012. Vol. 5, num. 5, p. 6990. DOI : 10.1039/c2ee02913h.

A pore-hindered diffusion and reaction model can help explain the importance of pore size distribution in enzymatic hydrolysis of biomass

J. S. Luterbacher; J-Y. Parlange; L. P. Walker 

Biotechnology and Bioengineering. 2012. Vol. 110, num. 1, p. 127 – 136. DOI : 10.1002/bit.24614.

Two-temperature stage biphasic CO2-H2O pretreatment of lignocellulosic biomass at high solid loadings

J. S. Luterbacher; J. W. Tester; L. P. Walker 

Biotechnology and Bioengineering. 2012. Vol. 109, num. 6, p. 1499 – 1507. DOI : 10.1002/bit.24417.

Observing and modeling BMCC degradation by commercial cellulase cocktails with fluorescently labeled

J. S. Luterbacher; L. P. Walker; J. M. Moran-Mirabal 

Biotechnology and Bioengineering. 2012. Vol. 110, num. 1, p. 108 – 117. DOI : 10.1002/bit.24597.

2011

Observing Thermobifida fusca cellulase binding to pretreated wood particles using time-lapse confocal laser scanning microscopy

P. Zhu; J. M. Moran-Mirabal; J. S. Luterbacher; L. P. Walker; H. G. Craighead 

Cellulose. 2011. Vol. 18, num. 3, p. 749 – 758. DOI : 10.1007/s10570-011-9506-2.

2010

High-solids biphasic CO2-H2O pretreatment of lignocellulosic biomass

J. S. Luterbacher; J. W. Tester; L. P. Walker 

Biotechnology and Bioengineering. 2010. Vol. 107, num. 3, p. 451 – 460. DOI : 10.1002/bit.22823.

2009

Hydrothermal Gasification of Waste Biomass: Process Design and Life Cycle Asessment

J. S. Luterbacher; M. Fröling; F. Vogel; F. Maréchal; J. W. Tester 

Environmental Science & Technology. 2009. Vol. 43, num. 5, p. 1578 – 1583. DOI : 10.1021/es801532f.