2025
Controlling Acid Sites in Atomically Precise Cu/Al2O3 Clusters for Selective Methanol Production from CO2 Hydrogenation
ACS Catalysis. 2025. p. 16026 – 16038. DOI : 10.1021/acscatal.5c04952.Flame-Made Surface-Substituted Copper–Ceria as an Excellent Reverse Water–Gas Shift Reaction Catalyst via Three Reaction Pathways
Journal of the American Chemical Society. 2025. DOI : 10.1021/jacs.5c07701.Selective Production of Syringaldehyde and Vanillin from Acetal-Stabilized Lignin
ACS Sustainable Chemistry & Engineering. 2025. DOI : 10.1021/acssuschemeng.5c04387.Operando Monitoring of Delignification Processes Using 2D 1H-13C HSQC NMR
ACS Sustainable Chemistry & Engineering. 2025. DOI : 10.1021/acssuschemeng.5c04611.Size‐Selective Functionalization of Sugars and Polyols Using Zeolites for Renewable Surfactant Production
Angewandte Chemie. 2025. DOI : 10.1002/ange.202511282.Best practices for multi-fidelity Bayesian optimization in materials and molecular research
Nature Computational Science. 2025. Vol. 5, num. 7, p. 572 – 581. DOI : 10.1038/s43588-025-00822-9.Low‐Power Tunable Micro‐Plasma Device for Efficient and Scalable CO2 Valorization
Advanced Science. 2025. DOI : 10.1002/advs.202507687.Additive-Enhanced PAX Polyesters for Industrial Processing and Increased Longevity
ACS Sustainable Chemistry & Engineering. 2025. DOI : 10.1021/acssuschemeng.4c08640.Glucuronoyl esterases improve cellulose hydrolysis by lignocellulose degrading enzymes and enhance lignin extraction
International Journal of Biological Macromolecules. 2025. Vol. 314. DOI : 10.1016/j.ijbiomac.2025.144218.Encapsulated Co–Ni alloy boosts high-temperature CO2 electroreduction
Nature. 2025. DOI : 10.1038/s41586-025-08978-0.Connecting scales in reaction engineering
Nature Chemical Engineering. 2025. Vol. 2, num. 3, p. 156 – 159. DOI : 10.1038/s44286-025-00197-8.Aldehyde-Stabilization Strategies for Building Biobased Consumer Products around Intact lignocellulosic Structures
ACCOUNTS OF CHEMICAL RESEARCH. 2025. DOI : 10.1021/acs.accounts.4c00819.Characterization of Biobased Polymers at the Gas-Solid Interface─Analysis of Surface and Bulk Properties during Artificial Degradation
Environmental Science and Technology. 2025. DOI : 10.1021/acs.est.4c10925.2024
Synthesis of High-Surface-Area Alumina using Carbon Templating and Liquid Phase Atomic Layer Deposition
Advanced Materials Interfaces. 2024. Vol. 11, num. 36, p. 2400520. DOI : 10.1002/admi.202400520.O2 -permeable membrane reactor for continuous oxidative depolymerization of lignin
Joule. 2024. Vol. 8, num. 12, p. 3336 – 3346. DOI : 10.1016/j.joule.2024.08.015. A solution for 4-propylguaiacol hydrodeoxygenation without ring saturation
Nature communications. 2024. Vol. 15, num. 1. DOI : 10.1038/s41467-024-50724-z.Atom-by-atom design of Cu/ZrOx clusters on MgO for CO2 hydrogenation using liquid-phase atomic layer deposition
Nature Catalysis. 2024. Vol. 7, num. 11, p. 1199 – 1212. DOI : 10.1038/s41929-024-01236-y. Machine learning-supported solvent design for lignin-first biorefineries and lignin upgrading
Chemical Engineering Journal. 2024. Vol. 495, p. 153524. DOI : 10.1016/j.cej.2024.153524.Sustainable One-Pot Production and Scale-Up of the New Platform Chemical Diformylxylose (DFX) from Agricultural Biomass
ACS Sustainable Chemistry and Engineering. 2024. Vol. 12, num. 34, p. 12879 – 12889. DOI : 10.1021/acssuschemeng.4c03799.Quantification of Native Lignin Structural Features with Gel-Phase 2D-HSQC0 Reveals Lignin Structural Changes During Extraction
Angewandte Chemie International Edition. 2024. DOI : 10.1002/anie.202404442.Performance polyamides built on a sustainable carbohydrate core
Nature Sustainability. 2024. DOI : 10.1038/s41893-024-01298-7.Xylose Acetals – a New Class of Sustainable Solvents and Their Application in Enzymatic Polycondensation
ChemSusChem. 2024. DOI : 10.1002/cssc.202401877.Carbon-carbon Bond Cleavage for a Lignin Refinery
NATURE CHEMICAL ENGINEERING. 2024. Vol. 1, num. 1, p. 61 – 72. DOI : 10.1038/s44286-023-00006-0.2023
Integrated Conversion of Lignocellulosic Biomass to Bio-Based Amphiphiles using a Functionalization-Defunctionalization Approach
Angewandte Chemie International Edition. 2023. Vol. 63, num. 5. DOI : 10.1002/anie.202312823.Selecting Suitable Near-Native Lignins for Research
Journal Of Agricultural And Food Chemistry. 2023. Vol. 71, num. 51, p. 20751 – 20761. DOI : 10.1021/acs.jafc.3c04973.Sustainable Materials: Production Methods and End-of-life Strategies
Chimia. 2023. Vol. 77, num. 12, p. 848 – 857. DOI : 10.2533/chimia.2023.848.Tuning the Mechanical Properties of Poly(butylene xylosediglyoxylate) via Compounding Strategies
Acs Applied Polymer Materials. 2023. Vol. 5, num. 12, p. 9732 – 9741. DOI : 10.1021/acsapm.3c01219.Kinetic Network Modeling of the Catalytic Upgrading of Biomass’s Acetate Fraction to Aromatics
Energy & Fuels. 2023. Vol. 37, num. 20, p. 16172 – 16180. DOI : 10.1021/acs.energyfuels.3c02300.Synergistic interactions between PtRu catalyst and nitrogen-doped carbon support boost hydrogen oxidation
Nature Catalysis. 2023. Vol. 6, p. 773 – 783. DOI : 10.1038/s41929-023-01007-1.Lignin Hydrogenolysis: Phenolic Monomers from Lignin and Associated Phenolates across Plant Clades
Acs Sustainable Chemistry & Engineering. 2023. Vol. 11, num. 27, p. 10001 – 10017. DOI : 10.1021/acssuschemeng.3c01320.Current strategies for industrial plastic production from non-edible biomass
Current Opinion In Green And Sustainable Chemistry. 2023. Vol. 41, p. 100780. DOI : 10.1016/j.cogsc.2023.100780.Sinter-Resistant Nickel Catalyst for Lignin Hydrogenolysis Achieved by Liquid Phase Atomic Layer Deposition of Alumina
Advanced Energy Materials. 2023. DOI : 10.1002/aenm.202203377.High-throughput computational solvent screening for lignocellulosic biomass processing
Chemical Engineering Journal. 2023. Vol. 452, p. 139476. DOI : 10.1016/j.cej.2022.139476.2022
Understanding Your Support System: The Design of a Stable Metal-Organic Framework/Polyazoamine Support for Biomass Conversion
Chemistry Of Materials. 2022. DOI : 10.1021/acs.chemmater.2c01731.Lignin: A Sustainable Antiviral Coating Material
Acs Sustainable Chemistry & Engineering. 2022. DOI : 10.1021/acssuschemeng.2c04284.From Non-edible Biomass to Performance Thermoplastics with Sustainable End-of-life
Chimia. 2022. Vol. 76, num. 10, p. 864 – 864. DOI : 10.2533/chimia.2022.864.Sustainable polyesters via direct functionalization of lignocellulosic sugars
Nature Chemistry. 2022. Vol. 14, p. 976 – 984. DOI : 10.1038/s41557-022-00974-5.Extraction and Surfactant Properties of Glyoxylic Acid-Functionalized Lignin
Chemsuschem. 2022. p. e202200270. DOI : 10.1002/cssc.202200270.An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells
Nature Materials. 2022. DOI : 10.1038/s41563-022-01221-5.Atom-by-Atom Synthesis of Multiatom-Supported Catalytic Clusters by Liquid-Phase Atomic Layer Deposition
Acs Sustainable Chemistry & Engineering. 2022. Vol. 10, num. 11, p. 3455 – 3465. DOI : 10.1021/acssuschemeng.1c07056.Restructuring Ni/Al2O3 by addition of Ga to shift product selectivity in CO2 hydrogenation: The role of hydroxyl groups
Journal Of Co2 Utilization. 2022. Vol. 56, p. 101881. DOI : 10.1016/j.jcou.2021.101881.Controlling lignin solubility and hydrogenolysis selectivity by acetal-mediated functionalization
Green Chemistry. 2022. Vol. 24, num. 3, p. 1285 – 1293. DOI : 10.1039/d1gc02575a.2021
Ternary Alloys Enable Efficient Production of Methoxylated Chemicals via Selective Electrocatalytic Hydrogenation of Lignin Monomers
Journal Of The American Chemical Society. 2021. Vol. 143, num. 41, p. 17226 – 17235. DOI : 10.1021/jacs.1c08348.Techno-economic analysis and life cycle assessment of a biorefinery utilizing reductive catalytic fractionation
Energy & Environmental Science. 2021. Vol. 14, num. 8, p. 4147 – 4168. DOI : 10.1039/d1ee01642c.Dual Valorization of Lignin as a Versatile and Renewable Matrix for Enzyme Immobilization and (Flow) Bioprocess Engineering
Chemsuschem. 2021. Vol. 14, num. 15, p. 3198 – 3207. DOI : 10.1002/cssc.202100926.Diformylxylose as a new polar aprotic solvent produced from renewable biomass
Green Chemistry. 2021. Vol. 23, num. 9, p. 3459 – 3467. DOI : 10.1039/D1GC00641J.Investigating the effects of substrate morphology and experimental conditions on the enzymatic hydrolysis of lignocellulosic biomass through modeling
Biotechnology For Biofuels. 2021. Vol. 14, num. 1, p. 103. DOI : 10.1186/s13068-021-01920-2.Simultaneous extraction and controlled chemical functionalization of hardwood lignin for improved phenolation
Green Chemistry. 2021. Vol. 23, num. 9, p. 3459 – 3467. DOI : 10.1039/d1gc00358e.Fe-57-Enrichment effect on the composition and performance of Fe-based O-2-reduction electrocatalysts
Physical Chemistry Chemical Physics. 2021. Vol. 23, num. 15, p. 9147 – 9157. DOI : 10.1039/d1cp00707f.Increasing the activity of the Cu/CuAl2O4/Al2O3 catalyst for the RWGS through preserving the Cu2+ ions
Chemical Communications (ChemComm). 2021. Vol. 57, num. 9, p. 1153 – 1156. DOI : 10.1039/d0cc07142k.Continuous hydrogenolysis of acetal-stabilized lignin in flow
Green Chemistry. 2021. Vol. 23, num. 1, p. 320 – 327. DOI : 10.1039/d0gc02928a.Guidelines for performing lignin-first biorefining
Energy & Environmental Science. 2021. Vol. 14, num. 1, p. 262 – 292. DOI : 10.1039/d0ee02870c.2020
Aldehyde-Assisted Fractionation Enhances Lignin Valorization in Endocarp Waste Biomass
Acs Sustainable Chemistry & Engineering. 2020. Vol. 8, num. 45, p. 16737 – 16745. DOI : 10.1021/acssuschemeng.0c03360.Aldehyde-Assisted Lignocellulose Fractionation Provides Unique Lignin Oligomers for the Design of Tunable Polyurethane Bioresins
Biomacromolecules. 2020. Vol. 21, num. 10, p. 4135 – 4148. DOI : 10.1021/acs.biomac.0c00927.Engineering the ZrO2–Pd Interface for Selective CO2 Hydrogenation by Overcoating an Atomically Dispersed Pd Precatalyst
ACS Catalysis. 2020. Vol. 10, num. 20, p. 12058 – 12070. DOI : 10.1021/acscatal.0c02146.A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose
Science. 2020. Vol. 369, num. 6507, p. eabb12141073. DOI : 10.1126/science.abb1214.Stabilization strategies in biomass depolymerization using chemical functionalization
Nature Reviews Chemistry. 2020. Vol. 4, p. 311 – 330. DOI : 10.1038/s41570-020-0187-y.Lignin Functionalization for the Production of Novel Materials
Trends In Chemistry. 2020. Vol. 2, num. 5, p. 440 – 453. DOI : 10.1016/j.trechm.2020.03.001.Mechanistic Study of Diaryl Ether Bond Cleavage during Palladium-Catalyzed Lignin Hydrogenolysis
Chemsuschem. 2020. Vol. 13, num. 17, p. 4487 – 4494. DOI : 10.1002/cssc.202000753.Engineering of ecological niches to create stable artificial consortia for complex biotransformations
Current Opinion In Biotechnology. 2020. Vol. 62, p. 129 – 136. DOI : 10.1016/j.copbio.2019.09.008.Essential role of oxygen vacancies of Cu-Al and Co-Al spinel oxides in their catalytic activity for the reverse water gas shift reaction
Applied Catalysis B: Environmental. 2020. Vol. 266, p. 118669. DOI : 10.1016/j.apcatb.2020.118669.Efficient reductive amination of HMF with well dispersed Pd nanoparticles immobilized in a porous MOF/polymer composite
Green Chemistry. 2020. Vol. 22, num. 2, p. 368 – 378. DOI : 10.1039/c9gc03140e.Catalyst Evolution Enhances Production of Xylitol from Acetal-Stabilized Xylose
ACS Sustainable Chemistry & Engineering. 2020. Vol. 8, num. 4, p. 1709 – 1714. DOI : 10.1021/acssuschemeng.9b06456.2019
Topology of Pretreated Wood Fibers Using Dynamic Nuclear Polarization
Journal Of Physical Chemistry C. 2019. Vol. 123, num. 50, p. 30407 – 30415. DOI : 10.1021/acs.jpcc.9b09272.Atomic Layer Deposition on Dispersed Materials in Liquid Phase by Stoichiometrically Limited Injections
Advanced Materials. 2019. p. 1904276. DOI : 10.1002/adma.201904276.A Road to Profitability from Lignin via the Production of Bioactive Molecules
ACS Central Science. 2019. Vol. 5, num. 10, p. 1642 – 1644. DOI : 10.1021/acscentsci.9b00954.Catalyst support and solvent effects during lignin depolymerization and hydrodeoxygenation
ACS Sustainable Chemistry & Engineering. 2019. Vol. 7, num. 20, p. 16952 – 16958. DOI : 10.1021/acssuschemeng.9b03843.Designing Heterogeneous Catalysts for Renewable Catalysis Applications Using Metal Oxide Deposition
CHIMIA. 2019. Vol. 73, num. 9, p. 698 – 706. DOI : 10.2533/chimia.2019.698.Preventing Lignin Condensation to Facilitate Aromatic Monomer Production
Chimia. 2019. Vol. 73, num. 7-8, p. 591 – 598. DOI : 10.2533/chimia.2019.591.Establishing Lignin Structure-Upgradeability Relationships Using Quantitative 1H-13C Heteronuclear Single Quantum Coherence Nuclear Magnetic Resonance (HSQC-NMR) Spectroscopy
Chemical Science. 2019. Vol. 10, num. 35, p. 8135 – 8142. DOI : 10.1039/C9SC02088H.Cu–Al Spinel as a Highly Active and Stable Catalyst for the Reverse Water Gas Shift Reaction
ACS Catalysis. 2019. Vol. 9, num. 7, p. 6243 – 6251. DOI : 10.1021/acscatal.9b01822.Insights into the Nature of the Active Sites of Tin‐Montmorillonite for the Synthesis of Polyoxymethylene Dimethyl Ethers (OME)
Chemcatchem. 2019. Vol. 11, num. 13, p. 3010 – 3021. DOI : 10.1002/cctc.201900502.Highly Selective Oxidation and Depolymerization of α,γ-Diol Protected Lignin
Angewandte Chemie International Edition. 2019. Vol. 58, num. 9, p. 2649 – 2654. DOI : 10.1002/anie.201811630.Fractionation of lignocellulosic biomass to produce uncondensed aldehyde-stabilized lignin
Nature Protocols. 2019. Vol. 14, p. 921 – 954. DOI : 10.1038/s41596-018-0121-7.Optimization of Lignin Extraction from Pine Wood for Fast Pyrolysis by Using γ-valerolactone-Based Binary Solvent System
ACS Sustainable Chemistry & Engineering. 2019. Vol. 7, num. 4, p. 4058 – 4068. DOI : 10.1021/acssuschemeng.8b05498.Post-synthesis deposition of mesoporous niobic acid with improved thermal stability by kinetically controlled sol–gel overcoating
Journal of Materials Chemistry A. 2019. Vol. 7, num. 41, p. 23803 – 23811. DOI : 10.1039/C9TA01459D.Catalytic valorization of the acetate fraction of biomass to aromatics and its integration into the carboxylate platform
Green Chemistry. 2019. Vol. 21, num. 10, p. 2801 – 2809. DOI : 10.1039/c9gc00513g.Prominent role of mesopore surface area and external acid sites for the synthesis of polyoxymethylene dimethyl ethers (OME) on a hierarchical H-ZSM-5 zeolite
Catalysis Science & Technology. 2019. Vol. 9, num. 2, p. 366 – 376. DOI : 10.1039/C8CY02194E.2018
Selectivity control during the single-step conversion of aliphatic carboxylic acids to linear olefins
ACS Catalysis. 2018. Vol. 8, p. 10769 – 10773. DOI : 10.1021/acscatal.8b03370.An “ideal lignin” facilitates full biomass utilization
Science Advances. 2018. Vol. 4, num. 9, p. eaau2968. DOI : 10.1126/sciadv.aau2968.Slowing the Kinetics of Alumina Sol-Gel Chemistry for Controlled Catalyst Overcoating and Improved Catalyst Stability and Selectivity
Small. 2018. p. 1801733. DOI : 10.1002/smll.201801733.Protection Group Effects During α,γ-Diol Lignin Stabilization Promote High-Selectivity Monomer Production
Angewandte Chemie International Edition. 2018. Vol. 57, num. 5, p. 1356 – 1360. DOI : 10.1002/anie.201710838.Controlled deposition of titanium oxide overcoats by non-hydrolytic sol gel for improved catalyst selectivity and stability
Journal of Catalysis. 2018. Vol. 358, p. 50 – 61. DOI : 10.1016/j.jcat.2017.11.023.Simulation of Gas- and Liquid-Phase Layer-By-Layer Deposition of Metal Oxides by Coarse-Grained Modeling
Journal of Physical Chemistry C. 2018. Vol. 122, num. 12, p. 6713 – 6720. DOI : 10.1021/acs.jpcc.8b00197.Carbohydrate stabilization extends the kinetic limits of chemical polysaccharide depolymerization
Nature Chemistry. 2018. Vol. 10, num. 12, p. 1222 – 1228. DOI : 10.1038/s41557-018-0134-4.Selective synthesis of dimethyl ether on eco-friendly K10 montmorillonite clay
Applied Catalysis A: General. 2018. Vol. 560, p. 165 – 170. DOI : 10.1016/j.apcata.2018.05.006.Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium
Biotechnology and Bioengineering. 2018. Vol. 115, num. 5, p. 1207 – 1215. DOI : 10.1002/bit.26541.Densely Packed, Ultra Small SnO Nanoparticles for Enhanced Activity and Selectivity in Electrochemical CO2 Reduction
Angewandte Chemie International Edition. 2018. Vol. 130, num. 11, p. 2993 – 2997. DOI : 10.1002/anie.201713003.2017
Clean, cleaved surfaces of the photovoltaic perovskite
Scientific Reports. 2017. Vol. 7, p. 695. DOI : 10.1038/s41598-017-00799-0.Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO
Nature Energy. 2017. Vol. 2, p. 17087. DOI : 10.1038/nenergy.2017.87.Catalyst stabilization by stoichiometrically limited layer-by-layer overcoating in liquid media
Applied Catalysis B: Environmental. 2017. Vol. 218, p. 643 – 649. DOI : 10.1016/j.apcatb.2017.07.006.Promotion Effect of Alkali Metal Hydroxides on Polymer-Stabilized Pd Nanoparticles for Selective Hydrogenation of C–C Triple Bonds in Alkynols
Industrial & Engineering Chemistry Research. 2017. Vol. 56, num. 45, p. 13219 – 13227. DOI : 10.1021/acs.iecr.7b01612.2016
A mild biomass pretreatment using gamma-valerolactone for concentrated sugar production
Green Chemistry. 2016. Vol. 18, num. 4, p. 937 – 943. DOI : 10.1039/c5gc02489g.The influence of interunit carbon–carbon linkages during lignin upgrading
Current Opinion in Green and Sustainable Chemistry. 2016. Vol. 2, p. 59 – 63. DOI : 10.1016/j.cogsc.2016.10.001.Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization
Science. 2016. Vol. 354, num. 6310, p. 329 – 333. DOI : 10.1126/science.aaf7810.Organic Solvent Effects in Biomass Conversion Reactions
Chemsuschem. 2016. Vol. 9, num. 2, p. 133 – 155. DOI : 10.1002/cssc.201501148.Patents
2025
Method for preparing an acetal-protected sugar
WO2025016942.
2025.2024
Biobased surfactant
EP4311831; WO2023198682.
2024.Biobased surfactant
EP4311826.
2024.Method for preparing an at least partially acetal-protected sugar
WO2024105051.
2024.2023
Biobased surfactants
EP4311831; WO2023198682.
2023.2022
Green solvents for chemical reactions
EP4326725; CN117321060; BR112023019753; WO2022223480; CA3215288.
2022.2021
Production of fragments of lignin with functional groups
US2024150385; JP2022551188; EP4045513; BR112022007225; CN114616265; CA3155731; WO2021074210; EP3808755.
2021.Renewable monomer and polymer thereof
US2024140961; CN114630833; JP2022551187; EP4045514; BR112022007169; CN114630833; CA3155744; WO2021074211; EP3808757.
2021.2020
Aqueous effluent treatment system
EP3931156; EP3931156; CN113474305; US2022111345; EP3931156; CN113474305; WO2020173888; EP3699150.
2020.2017
Production of monomers from lignin during depolymerisation of lignocellulose-containing composition
US11639324; US2023023803; BR112018071060; US11444703; CN109328185; US2021107851; US2021111745; US10906856; US10903866; US10903915; RU2739567; RU2018134925; RU2018134925; BR112018071060; US2019127304; EP3442938; CN109328185; CA3029301; WO2017178513.
2017.