DCACPs

Dispersion-Corrected Atom-Centered Potentials

 

 

 

Kohn-Sham density functional theory (KS-DFT), with local density approximation or present-day generalized gradient approximation (GGA) exchange-correlation functionals, either gives sporadic results or fails completely to account for London dispersion forces. Considerable efforts have been made to address this shortfall.
      The use of dispersion-corrected atom-centered potentials (DCACPs) represents an alternative approach to include London dispersion forces within the framework of KS-DFT.
      Results so far have indicated that these weak forces can be well described within DFT-GGA with the DCACP approach without introducing any significant intramolecular distortions on geometries and electronic structures. Furthermore, DCACPs display a strong transferability to systems other than the calibration ones, i.e., once calibrated, DCACPs can be applied in various chemical environments without further tuning of the parameters. More elaborate applications of DCACPs on chemical and biological systems are in progress.

Publications

  1. Optimization of effective atom centered potentials for London dispersion forces in density functional theory
    O. A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, and D. Sebastiani
    Phys. Rev. Lett., 93, 153004 (2004)
    DOI: 10.1103/PhysRevLett.93.153004
  2. Performance of optimized effective atom centered potentials for weakly bonded systems using density functional theory
    O. A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, and D. Sebastiani
    Phys. Rev. B, 71, 195119 (2005)
    DOI: 10.1103/PhysRevB.71.195119
  3. Atom centered potentials for the description and the design of chemical compounds within density functional theory
    O. A. von Lilienfeld
    Thesis EPFL No. 3240 (2005)
  4. Library of dispersion-corrected atom-centered potentials for generalized gradient approximation functionals: Elements H, C, N, O, He, Ne, Ar, and Kr
    I-C. Lin, M. D. Coutinho-Neto, C. Felsenheimer, O. A. von Lilienfeld, I. Tavernelli, and U. Rothlisberger
    Phys. Rev. B, 75, 205131 (2007)
    DOI: 10.1103/PhysRevB.75.205131
  5. Weakly bonded complexes of aliphatic and aromatic carbon compounds described with dispersion corrected density functional theory
    E. Tapavicza, I-C. Lin, O. A. von Lilienfeld, I. Tavernelli, M. D. Coutinho-Neto, and U. Rothlisberger
    J. Chem. Theory Comput., 3, 1673 (2007)
    DOI: 10.1021/ct700049s
  6. Predicting noncovalent interactions between aromatic biomolecules with London-dispersion-corrected DFT
    I-C. Lin, O. A. von Lilienfeld, M. D. Coutinho-Neto, I. Tavernelli, and U. Rothlisberger
    J. Phys. Chem. B, 111, 14346 (2007)
    DOI: 10.1021/jp0750102
  7. Describing weak interactions of biomolecules with dispersion-corrected density functional theory
    I-C. Lin and U. Rothlisberger
    Phys. Chem. Chem. Phys., 10, 2730 (2008)
    DOI: 10.1039/b718594d
  8. Atom-centered potentials to describe dispersion forces in density functional theory
    I-C. Lin and U. Rothlisberger
    CHIMIA, 62, 231 (2008)
    DOI: 10.2533/chimia.2008.231
  9. Atom-centered potentials for describing London dispersion forces in density functional theory
    I-C. Lin
    Thesis EPFL No. 4058 (2008)
  10. Accurate DFT descriptions for weak interactions of molecules containing sulfur
    P. Aeberhard, J. S. Arey, I-C. Lin, and U. Rothlisberger
    J. Chem. Theory Comput., 5(1), 23 (2008)
    DOI: 10.1021/ct800299y
  11. ispersion Corrected Atom-Centered Potentials for Phosphorus
    M. Cascella, I-C. Lin, I. Tavernelli and U. Rothlisberger
    J. Chem. Theory Comput., 5(11), 2930 (2009)
    DOI: 10.1021/ct9003756
  12. Hydrogen bonding described using dispersion-corrected density functional theory
    J. S. Arey, P. Aeberhard, I-C. Lin, and U. Rothlisberger
    J. Phys Chem. B, 113(14), 4726 (2009)
    DOI: 10.1021/jp810323m
  13. Multi-center type functional corrections to standard DFT exchange-correlation functionals
    I. Tavernelli, I-C. Lin and U. Rothlisberger
    Phys. Rev. B, 79, 045106 (2009)
    DOI: 10.1103/PhysRevB.79.045106
  14. Importance of van der Waals interactions in liquid water
    I-C. Lin, A. P. Seitsonen, M. D. Coutinho-Neto, I. Tavernelli and U. Rothlisberger
    J. Phys. Chem. B, 13, 1127 (2009)
    DOI: 10.1021/jp806376e

Download

  • Supplementary materials (.pdf) for Ref. [4]
  • DCACP library as in Ref. [4]

Dispersion-Corrected Atom-Centered Potentials in Goedecker Format

Elements H, C, N, O, He, Ne, Ar and Kr: Phys. Rev. B, 75, 205131 (2007)

DOI: 10.1103/PhysRevB.75.205131

Element S:

J. Chem. Theory Comput., 5(1), 23 (2008)

DOI: 10.1021/ct800299y

BLYP / PBE / BP / Misc

DCACPs for BLYP functional

 

H                                 He
Li Be                     B C N O F Ne
Na Mg                     Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

DCACPs for PBE functional

 

H                                 He
Li Be                     B C N O F Ne
Na Mg                     Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

DCACPs for BP functional

 

H                                 He
Li Be                     B C N O F Ne
Na Mg                     Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

Misc

  • README (.pdf)
  • Script to transform Goedecker-Teter-Hutter format to Troullier-Martins’

DCACP2TM.sh (script) / README

 

Dispersion-Corrected Atom-Centered Potentials in Troullier-Martins Format

 

Elements H, C, N, O, He, Ne, Ar and Kr:

 

Phys. Rev. B, 75, 205131 (2007) DOI: 10.1103/PhysRevB.75.205131

Element S:

J. Chem. Theory Comput., 5(1), 23 (2008) DOI: 10.1021/ct800299y

BLYP / PBE / BP / Misc

DCACPs for BLYP functional

 

 

H                                 He
Li Be                     B C N O F Ne
Na Mg                     Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

DCACPs for PBE functional

 

 

H                                 He
Li Be                     B C N O F Ne
Na Mg                     Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

DCACPs for BP functional

 

 

H                                 He
Li Be                     B C N O F Ne
Na Mg                     Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

Misc

  • README (.pdf)
  • Script to transform Goedecker-Teter-Hutter format to Troullier-Martins’

DCACP2TM.sh (script) / README