
Download the list of publications in PDF format
2025
Deterministic soliton microcombs in Cu-free photonic integrated circuits
Nature. 2025. Vol. 646, num. 8086, p. 843 – 849. DOI : 10.1038/s41586-025-09598-4.Electrons herald non-classical light
Nature Physics. 2025. DOI : 10.1038/s41567-025-03033-1.Correction: A chip-scale second-harmonic source via self-injection-locked all-optical poling
Light: Science & Applications. 2025. Vol. 14, num. 1. DOI : 10.1038/s41377-025-02002-w.Optical arbitrary waveform generation (OAWG) using actively phase-stabilized spectral stitching
Light: Science & Applications. 2025. Vol. 14, num. 1. DOI : 10.1038/s41377-025-01937-4.Unifying frequency metrology across microwave, optical, and free-electron domains
Nature Communications. 2025. Vol. 16, num. 1. DOI : 10.1038/s41467-025-62808-5.Monolithic piezoelectrically tunable hybrid integrated laser with sub-fiber laser coherence
Optica. 2025. Vol. 12, num. 9. DOI : 10.1364/optica.557578.320 GHz photonic-electronic analogue-to-digital converter (ADC) exploiting Kerr soliton microcombs
Light: Science & Applications. 2025. Vol. 14, num. 1. DOI : 10.1038/s41377-025-01778-1.Arrayed waveguide gratings in lithium tantalate integrated photonics
Optica. 2025. Vol. 12, num. 7. DOI : 10.1364/optica.565570.Compact Superconducting Vacuum-gap Capacitors with Low Microwave Loss and High Mechanical Coherence for Scalable Quantum Circuits
Physical Review Applied. 2025. Vol. 23, num. 6, p. 064071. DOI : 10.1103/q5bc-y54w.An ultra-broadband photonic-chip-based parametric amplifier
NATURE. 2025. DOI : 10.1038/s41586-025-08666-z.Motional Sideband Asymmetry of a Solid-State Mechanical Resonator at Room Temperature
Physical Review Letters. 2025. Vol. 134, num. 7, p. 073602. DOI : 10.1103/PhysRevLett.134.073602.Ultrafast tunable photonic-integrated extended-DBR Pockels laser
Nature Photonics. 2025. DOI : 10.1038/s41566-025-01687-0.2024
Ultrabroadband thin-film lithium tantalate modulator for high-speed communications
Optica. 2024. Vol. 11, num. 12, p. 1614 – 1620. DOI : 10.1364/OPTICA.537730.Quantum collective motion of macroscopic mechanical oscillators
Science. 2024. Vol. 386, num. 6728, p. 1383 – 1388. DOI : 10.1126/science.adr8187.Bidirectional microwave-optical transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits
Nature communications. 2024. Vol. 15, num. 1. DOI : 10.1038/s41467-024-49467-8.Efficient mass manufacturing of high-density, ultra-low-loss Si3 N4 photonic integrated circuits
Optica. 2024. Vol. 11, num. 10, p. 1397 – 1407. DOI : 10.1364/OPTICA.529673. Integrated chirped photonic-crystal cavities in gallium phosphide for broadband soliton generation
Optica. 2024. Vol. 11, num. 10, p. 1454 – 1461. DOI : 10.1364/OPTICA.530247.New photonic integrated circuits offer high performance and scalable manufacturing
NATURE. 2024. DOI : 10.1038/d41586-024-02582-4.Temporally and longitudinally tailored dynamic space-time wave packets
Optics express. 2024. Vol. 32, num. 15, p. 26653 – 26666. DOI : 10.1364/OE.527713.A fully hybrid integrated erbium-based laser
Nature Photonics. 2024. DOI : 10.1038/s41566-024-01454-7.Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms
Nature Communications. 2024. Vol. 15, num. 1, p. 3950. DOI : 10.1038/s41467-024-48230-3.Lithium tantalate photonic integrated circuits for volume manufacturing
Nature. 2024. Vol. 629, p. 784 – 790. DOI : 10.1038/s41586-024-07369-1.Photonic-electronic integrated circuit-based coherent LiDAR engine
Nature Communications. 2024. Vol. 15, num. 1, p. 3134. DOI : 10.1038/s41467-024-47478-z.Room-temperature quantum optomechanics using an ultralow noise cavity
Nature. 2024. Vol. 626, num. 7999. DOI : 10.1038/s41586-023-06997-3.Free-electron interaction with nonlinear optical states in microresonators
Science. 2024. Vol. 383, num. 6679, p. 168 – 173. DOI : 10.1126/science.adk2489.2023
Voltage-tunable optical parametric oscillator with an alternating dispersion dimer integrated on a chip
Optica. 2023. Vol. 10, num. 11, p. 1582 – 1586. DOI : 10.1364/OPTICA.503022.Towards efficient broadband parametric conversion in ultra-long Si3N4 waveguides
Optics Express. 2023. Vol. 31, num. 24, p. 40916 – 40927. DOI : 10.1364/OE.502648.Nonlinear dynamics and Kerr frequency comb formation in lattices of coupled microresonators
Communications Physics. 2023. Vol. 6, num. 1, p. 317. DOI : 10.1038/s42005-023-01438-z.Space-time wave packets with reduced divergence and tunable group velocity generated in free space after multi-mode fiber propagation
Optics Letters. 2023. Vol. 48, num. 21, p. 5695 – 5698. DOI : 10.1364/OL.504531.A squeezed mechanical oscillator with millisecond quantum decoherence
Nature Physics. 2023. DOI : 10.1038/s41567-023-02135-y.High density lithium niobate photonic integrated circuits
Nature Communications. 2023. Vol. 14, num. 1. DOI : 10.1038/s41467-023-40502-8.Non-sliced optical arbitrary waveform measurement (OAWM) using soliton microcombs
Optica. 2023. Vol. 10, num. 7, p. 888 – 896. DOI : 10.1364/OPTICA.484200.Chaotic microcomb-based parallel ranging
Nature Photonics. 2023. DOI : 10.1038/s41566-023-01246-5.Electron-Photon Quantum State Heralding Using Photonic Integrated Circuits
Prx Quantum. 2023. Vol. 4, num. 2, p. 020351. DOI : 10.1103/PRXQuantum.4.020351.A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform
Nature Communications. 2023. Vol. 14, num. 1, p. 3499. DOI : 10.1038/s41467-023-39047-7.Sub-kHz-Linewidth External-Cavity Laser (ECL) With Si3N4 Resonator Used as a Tunable Pump for a Kerr Frequency Comb
Journal of Lightwave Technology. 2023. Vol. 41, num. 11, p. 3479 – 3490. DOI : 10.1109/JLT.2023.3243471.Single-frequency violet and blue laser emission from AlGaInN photonic integrated circuit chips
Optics Letters. 2023. Vol. 48, num. 11, p. 2781 – 2784. DOI : 10.1364/OL.486758.Integrated photon-pair source with monolithic piezoelectric frequency tunability
Physical Review A. 2023. Vol. 107, num. 5, p. 052602. DOI : 10.1103/PhysRevA.107.052602.Chaotic microcomb inertia-free parallel ranging
Apl Photonics. 2023. Vol. 8, num. 5, p. 056102. DOI : 10.1063/5.0141384.Dissipative Solitons and Switching Waves in Dispersion-Modulated Kerr Cavities
Physical Review X (PRX). 2023. Vol. 13, num. 1, p. 011040. DOI : 10.1103/PhysRevX.13.011040.Ultrafast tunable lasers using lithium niobate integrated photonics
Nature. 2023. Vol. 615, num. 7952, p. 411 – +. DOI : 10.1038/s41586-023-05724-2.Time-Resolved Hanbury Brown-Twiss Interferometry of On-Chip Biphoton Frequency Combs Using Vernier Phase Modulation
Physical Review Applied. 2023. Vol. 19, num. 3, p. 034019. DOI : 10.1103/PhysRevApplied.19.034019.Architecture for integrated RF photonic downconversion of electronic signals
Optics Letters. 2023. Vol. 48, num. 1, p. 159 – 162. DOI : 10.1364/OL.474710.A chip-scale second-harmonic source via self-injection-locked all-optical poling
Light: Science & Applications. 2023. Vol. 12, num. 96. DOI : 10.1038/s41377-023-01329-6.2022
Topological lattices realized in superconducting circuit optomechanics
Nature. 2022. Vol. 612, num. 7941, p. 666 – +. DOI : 10.1038/s41586-022-05367-9.Photo-induced cascaded harmonic and comb generation in silicon nitride microresonators
Science Advances. 2022. Vol. 8, num. 50, p. eadd8252. DOI : 10.1126/sciadv.add8252.Generation of OAM-carrying space-time wave packets with time-dependent beam radii using a coherent combination of multiple LG modes on multiple frequencies
Optics Express. 2022. Vol. 30, num. 25, p. 45267 – 45278. DOI : 10.1364/OE.472745.A photonic integrated continuous-travelling-wave parametric amplifier
Nature. 2022. Vol. 612, num. 7938, p. 56 – +. DOI : 10.1038/s41586-022-05329-1.Tunability of space-time wave packet carrying tunable and dynamically changing OAM value
Optics Letters. 2022. Vol. 47, num. 21, p. 5751 – 5754. DOI : 10.1364/OL.472363.Experimental demonstration of dynamic spatiotemporal structured beams that simultaneously exhibit two orbital angular momenta by combining multiple frequency lines, each carrying multiple Laguerre-Gaussian modes
Optics Letters. 2022. Vol. 47, num. 16, p. 4044 – 4047. DOI : 10.1364/OL.466058.Zero dispersion Kerr solitons in optical microresonators
Nature Communications. 2022. Vol. 13, num. 1, p. 4764. DOI : 10.1038/s41467-022-31916-x.Cavity-mediated electron-photon pairs
Science. 2022. Vol. 377, num. 6607, p. 777 – 780. DOI : 10.1126/science.abo5037.Reduced material loss in thin-film lithium niobate waveguides
Apl Photonics. 2022. Vol. 7, num. 8, p. 081301. DOI : 10.1063/5.0095146.Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements
Nature Communications. 2022. Vol. 13, num. 1, p. 4338. DOI : 10.1038/s41467-022-31639-z.Low-noise frequency-agile photonic integrated lasers for coherent ranging
Nature Communications. 2022. Vol. 13, num. 1, p. 3522. DOI : 10.1038/s41467-022-30911-6.A photonic integrated circuit-based erbium-doped amplifier
Science. 2022. Vol. 376, num. 6599, p. eabo2631. DOI : 10.1126/science.abo2631.Probing material absorption and optical nonlinearity of integrated photonic materials
Nature Communications. 2022. Vol. 13, num. 1, p. 3323. DOI : 10.1038/s41467-022-30966-5.Dual chirped microcomb based parallel ranging at megapixel-line rates
Nature Communications. 2022. Vol. 13, num. 1, p. 3280. DOI : 10.1038/s41467-022-30542-x.Hierarchical tensile structures with ultralow mechanical dissipation
Nature Communications. 2022. Vol. 13, num. 1, p. 3097. DOI : 10.1038/s41467-022-30586-z.Perimeter Modes of Nanomechanical Resonators Exhibit Quality Factors Exceeding 10(9) at Room Temperature
Physical Review X (PRX). 2022. Vol. 12, num. 2, p. 021036. DOI : 10.1103/PhysRevX.12.021036.Synthesis of near-diffraction-free orbital-angular-momentum space-time wave packets having a controllable group velocity using a frequency comb
Optics Express. 2022. Vol. 30, num. 10, p. 16712 – 16724. DOI : 10.1364/OE.456781.Dissipative Quantum Feedback in Measurements Using a Parametrically Coupled Microcavity
Prx Quantum. 2022. Vol. 3, num. 2, p. 020309. DOI : 10.1103/PRXQuantum.3.020309.Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits
Communications Physics. 2022. Vol. 5, num. 1, p. 84. DOI : 10.1038/s42005-022-00851-0.Protected generation of dissipative Kerr solitons in supermodes of coupled optical microresonators
Science Advances. 2022. Vol. 8, num. 13, p. eabm6982. DOI : 10.1126/sciadv.abm6982.Near ultraviolet photonic integrated lasers based on silicon nitride
Apl Photonics. 2022. Vol. 7, num. 4, p. 046108. DOI : 10.1063/5.0081660.Platicon microcomb generation using laser self-injection locking
Nature Communications. 2022. Vol. 13, num. 1, p. 1771. DOI : 10.1038/s41467-022-29431-0.Strained crystalline nanomechanical resonators with quality factors above 10 billion
Nature Physics. 2022. Vol. 18, p. 436 – 441. DOI : 10.1038/s41567-021-01498-4.Microresonator Dissipative Kerr Solitons Synchronized to an Optoelectronic Oscillator
Physical Review Applied. 2022. Vol. 17, num. 2, p. 024030. DOI : 10.1103/PhysRevApplied.17.024030.Polarization selective ultra-broadband wavelength conversion in silicon nitride waveguides
Optics Express. 2022. Vol. 30, num. 3, p. 4342 – 4350. DOI : 10.1364/OE.446357.Roadmap on multimode light shaping
Journal Of Optics. 2022. Vol. 24, num. 1, p. 013001. DOI : 10.1088/2040-8986/ac3a9d.2021
Integrated photonics enables continuous-beam electron phase modulation
Nature. 2021. Vol. 600, num. 7890, p. 653 – 658. DOI : 10.1038/s41586-021-04197-5.Continuous-wave frequency upconversion with a molecular optomechanical nanocavity
Science. 2021. Vol. 374, num. 6572, p. 1264 – 1267. DOI : 10.1126/science.abk3106.Quantum coherent microwave-optical transduction using high-overtone bulk acoustic resonances
Physical Review A. 2021. Vol. 104, num. 5, p. 052601. DOI : 10.1103/PhysRevA.104.052601.Magnetic-free silicon nitride integrated optical isolator
Nature Photonics. 2021. Vol. 15, p. 828 – 836. DOI : 10.1038/s41566-021-00882-z.Ultrafast optical circuit switching for data centers using integrated soliton microcombs
Nature Communications. 2021. Vol. 12, num. 1, p. 5867. DOI : 10.1038/s41467-021-25841-8.Entanglement swapping between independent and asynchronous integrated photon-pair sources
Quantum Science And Technology. 2021. Vol. 6, num. 4, p. 045024. DOI : 10.1088/2058-9565/abf599.Coherent terahertz-to-microwave link using electro-optic-modulated Turing rolls
Physical Review A. 2021. Vol. 104, num. 2, p. 023511. DOI : 10.1103/PhysRevA.104.023511.Nanofabrication meets open science
Nature Nanotechnology. 2021. Vol. 16, p. 850 – 852. DOI : 10.1038/s41565-021-00944-x.Dissipative Kerr solitons in a photonic dimer on both sides of exceptional point
Communications Physics. 2021. Vol. 4, num. 1, p. 159. DOI : 10.1038/s42005-021-00661-w.Laser soliton microcombs heterogeneously integrated on silicon
Science. 2021. Vol. 373, num. 6550, p. 99 – 103. DOI : 10.1126/science.abh2076.Photonic chip-based resonant supercontinuum via pulse-driven Kerr microresonator solitons
Optica. 2021. Vol. 8, num. 6, p. 771 – 779. DOI : 10.1364/OPTICA.403302.Intrinsic luminescence blinking from plasmonic nanojunctions
Nature Communications. 2021. Vol. 12, num. 1, p. 2731. DOI : 10.1038/s41467-021-22679-y.A cryogenic electro-optic interconnect for superconducting devices
Nature Electronics. 2021. Vol. 4, num. 5, p. 326 – 332. DOI : 10.1038/s41928-021-00570-4.Difference-frequency generation in optically poled silicon nitride waveguides
Nanophotonics. 2021. Vol. 10, num. 7, p. 1923 – 1930. DOI : 10.1515/nanoph-2021-0080.High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits
Nature Communications. 2021. Vol. 12, num. 1, p. 2236. DOI : 10.1038/s41467-021-21973-z.Low-Loss Integrated Nanophotonic Circuits with Layered Semiconductor Materials
Nano Letters. 2021. Vol. 21, num. 7, p. 2709 – 2718. DOI : 10.1021/acs.nanolett.0c04149.Gain-switched semiconductor laser driven soliton microcombs
Nature Communications. 2021. Vol. 12, num. 1, p. 1425. DOI : 10.1038/s41467-021-21569-7.Automated wide-ranged finely tunable microwave cavity for narrowband phase noise filtering
Review Of Scientific Instruments. 2021. Vol. 92, num. 3, p. 034710. DOI : 10.1063/5.0034696.Emergent nonlinear phenomena in a driven dissipative photonic dimer
Nature Physics. 2021. Vol. 17, p. 604 – 610. DOI : 10.1038/s41567-020-01159-y.Soliton microcomb based spectral domain optical coherence tomography
Nature Communications. 2021. Vol. 12, num. 1, p. 427. DOI : 10.1038/s41467-020-20404-9.Dynamics of soliton self-injection locking in optical microresonators
Nature Communications. 2021. Vol. 12, num. 1, p. 235. DOI : 10.1038/s41467-020-20196-y.Parallel convolutional processing using an integrated photonic tensor core
Nature. 2021. Vol. 589, num. 7840, p. 52 – 58. DOI : 10.1038/s41586-020-03070-1.2020
Thermal intermodulation noise in cavity-based measurements
Optica. 2020. Vol. 7, num. 11, p. 1609 – 1616. DOI : 10.1364/OPTICA.402449.Molecular Platform for Frequency Upconversion at the Single-Photon Level
Physical Review X (PRX). 2020. Vol. 10, num. 3, p. 031057. DOI : 10.1103/PhysRevX.10.031057.Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy
Optica. 2020. Vol. 7, num. 9, p. 1181 – 1188. DOI : 10.1364/OPTICA.396542.Frequency division using a soliton-injected semiconductor gain-switched frequency comb
Science Advances. 2020. Vol. 6, num. 39, p. eaba2807. DOI : 10.1126/sciadv.aba2807.Reconfigurable radiofrequency filters based on versatile soliton microcombs
Nature Communications. 2020. Vol. 11, num. 1, p. 4377. DOI : 10.1038/s41467-020-18215-z.Broadband quasi-phase-matching in dispersion-engineered all-optically poled silicon nitride waveguides
Photonics Research. 2020. Vol. 8, num. 9, p. 1475 – 1483. DOI : 10.1364/PRJ.396489.Nonlinear states and dynamics in a synthetic frequency dimension
Physical Review A. 2020. Vol. 102, num. 2, p. 023518. DOI : 10.1103/PhysRevA.102.023518.Monolithic piezoelectric control of soliton microcombs
Nature. 2020. Vol. 583, num. 7816, p. 385 – 390. DOI : 10.1038/s41586-020-2465-8.Integrated turnkey soliton microcombs
Nature. 2020. Vol. 582, num. 7812, p. 365 – 369. DOI : 10.1038/s41586-020-2358-x.Hybrid integrated photonics using bulk acoustic resonators
Nature Communications. 2020. Vol. 11, num. 1, p. 3073. DOI : 10.1038/s41467-020-16812-6.Controlling free electrons with optical whispering-gallery modes
Nature. 2020. Vol. 582, num. 7810, p. 46 – 49. DOI : 10.1038/s41586-020-2320-y.Heteronuclear soliton molecules in optical microresonators
Nature Communications. 2020. Vol. 11, num. 1, p. 2402. DOI : 10.1038/s41467-020-15720-z.Massively parallel coherent laser ranging using a soliton microcomb
Nature. 2020. Vol. 581, num. 7807, p. 164 – 170. DOI : 10.1038/s41586-020-2239-3.Laser Cooling of a Nanomechanical Oscillator to Its Zero-Point Energy
Physical Review Letters. 2020. Vol. 124, num. 17, p. 173601. DOI : 10.1103/PhysRevLett.124.173601.Performance of chip-scale optical frequency comb generators in coherent WDM communications
Optics Express. 2020. Vol. 28, num. 9, p. 12897 – 12910. DOI : 10.1364/OE.380413.Formation and Collision of Multistability-Enabled Composite Dissipative Kerr Solitons
Physical Review X (PRX). 2020. Vol. 10, num. 2, p. 021017. DOI : 10.1103/PhysRevX.10.021017.Photonic microwave generation in the X- and K-band using integrated soliton microcombs
Nature Photonics. 2020. Vol. 14, p. 486 – 491. DOI : 10.1038/s41566-020-0617-x.Parallel gas spectroscopy using mid-infrared supercontinuum from a single Si3N4 waveguide
Optics Letters. 2020. Vol. 45, num. 8, p. 2195 – 2198. DOI : 10.1364/OL.390086.Kramers Kronig detection of four 20 Gbaud 16-QAM channels using Kerr combs for a shared phase estimation
Optics Letters. 2020. Vol. 45, num. 7, p. 1794 – 1797. DOI : 10.1364/OL.387360.Optomechanical generation of a mechanical catlike state by phonon subtraction
Physical Review A. 2020. Vol. 101, num. 3, p. 033812. DOI : 10.1103/PhysRevA.101.033812.Chip-based soliton microcomb module using a hybrid semiconductor laser
Optics Express. 2020. Vol. 28, num. 3, p. 2714 – 2721. DOI : 10.1364/OE.28.002714.Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator
Nature Communications. 2020. Vol. 11, num. 1, p. 374. DOI : 10.1038/s41467-019-14059-4.Fractal-like Mechanical Resonators with a Soft-Clamped Fundamental Mode
Physical Review Letters. 2020. Vol. 124, num. 2, p. 025502. DOI : 10.1103/PhysRevLett.124.025502.Demonstration of Tunable Optical Aggregation of QPSK to 16-QAM Over Optically Generated Nyquist Pulse Trains Using Nonlinear Wave Mixing and a Kerr Frequency Comb
Journal of Lightwave Technology. 2020. Vol. 38, num. 2, p. 359 – 365. DOI : 10.1109/JLT.2019.2959803.Observation of Stimulated Brillouin Scattering in Silicon Nitride Integrated Waveguides
Physical Review Letters. 2020. Vol. 124, num. 1, p. 1 – 7, 013902. DOI : 10.1103/PhysRevLett.124.013902.Integrated gallium phosphide nonlinear photonics
Nature Photonics. 2020. Vol. 14, num. 1, p. 57 – +. DOI : 10.1038/s41566-019-0537-9.Formation Rules and Dynamics of Photoinduced χ(2) Gratings in Silicon Nitride Waveguides
ACS Photonics. 2020. Vol. 7, num. 1, p. 147 – 153. DOI : 10.1021/acsphotonics.9b01301.2019
Polychromatic Cherenkov Radiation Induced Group Velocity Symmetry Breaking in Counterpropagating Dissipative Kerr Solitons
Physical Review Letters. 2019. Vol. 123, num. 25, p. 253902. DOI : 10.1103/PhysRevLett.123.253902.Floquet dynamics in the quantum measurement of mechanical motion
Physical Review A. 2019. Vol. 100, num. 5, p. 053852. DOI : 10.1103/PhysRevA.100.053852.Two-Tone Optomechanical Instability and Its Fundamental Implications for Backaction-Evading Measurements
Physical Review X (PRX). 2019. Vol. 9, num. 4, p. 041022. DOI : 10.1103/PhysRevX.9.041022.Dynamics of soliton crystals in optical microresonators
Nature Physics. 2019. Vol. 15, num. 10, p. 1071 – 1077. DOI : 10.1038/s41567-019-0635-0.Thermally stable access to microresonator solitons via slow pump modulation
Optics Letters. 2019. Vol. 44, num. 18, p. 4447 – 4450. DOI : 10.1364/OL.44.004447.In memory of Mikhail Gorodetsky
Nature Photonics. 2019. Vol. 13, num. 8, p. 506 – 508. DOI : 10.1038/s41566-019-0490-7.High-rate photon pairs and sequential Time-Bin entanglement with Si3N4 microring resonators
Optics Express. 2019. Vol. 27, num. 14, p. 19309 – 19318. DOI : 10.1364/OE.27.019309.Thermorefractive noise in silicon-nitride microresonators
Physical Review A. 2019. Vol. 99, num. 6, p. 061801. DOI : 10.1103/PhysRevA.99.061801.Visible-near-middle infrared spanning supercontinuum generation in a silicon nitride (Si3N4) waveguide
Optical Materials Express. 2019. Vol. 9, num. 6, p. 2553 – 2559. DOI : 10.1364/OME.9.002553.Optical backaction-evading measurement of a mechanical oscillator
Nature Communications. 2019. Vol. 10, p. 2086. DOI : 10.1038/s41467-019-10024-3.Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum
Nature Communications. 2019. Vol. 10, p. 1553. DOI : 10.1038/s41467-019-09590-3.Electrically pumped photonic integrated soliton microcomb (vol 10, 680, 2018)
Nature Communications. 2019. Vol. 10, p. 1623. DOI : 10.1038/s41467-019-09529-8.Clamp-Tapering Increases the Quality Factor of Stressed Nanobeams
Nano Letters. 2019. Vol. 19, num. 4, p. 2329 – 2333. DOI : 10.1021/acs.nanolett.8b04942.Reconfigurable optical generation of nine Nyquist WDM channels with sinc-shaped temporal pulse trains using a single microresonator-based Kerr frequency comb
Optics Letters. 2019. Vol. 44, num. 7, p. 1852 – 1855. DOI : 10.1364/OL.44.001852.Orthogonally polarized frequency comb generation from a Kerr comb via cross-phase modulation
Optics Letters. 2019. Vol. 44, num. 6, p. 1472 – 1475. DOI : 10.1364/OL.44.001472.Generalized dissipation dilution in strained mechanical resonators
Physical Review B. 2019. Vol. 99, num. 5, p. 054107. DOI : 10.1103/PhysRevB.99.054107.Electrically pumped photonic integrated soliton microcomb
Nature Communications. 2019. Vol. 10, p. 680. DOI : 10.1038/s41467-019-08498-2.Demonstration of Multiple Kerr-Frequency-Comb Generation Using Different Lines From Another Kerr Comb Located Up To 50 km Away
Journal of Lightwave Technology. 2019. Vol. 37, num. 2, p. 579 – 584. DOI : 10.1109/JLT.2019.2895851.Spectral Purification of Microwave Signals with Disciplined Dissipative Kerr Solitons
Physical Review Letters. 2019. Vol. 122, num. 1, p. 013902. DOI : 10.1103/PhysRevLett.122.013902.A microphotonic astrocomb
Nature Photonics. 2019. Vol. 13, num. 1, p. 31 – 35. DOI : 10.1038/s41566-018-0309-y.Second- and third-order nonlinear wavelength conversion in an all-optically poled Si3N4 waveguide
Optics Letters. 2019. Vol. 44, num. 1, p. 106 – 109. DOI : 10.1364/OL.44.000106.2018
Scalable and reconfigurable optical tapped-delay-line for multichannel equalization and correlation using nonlinear wave mixing and a Kerr frequency comb
Optics Letters. 2018. Vol. 43, num. 22, p. 5563 – 5566. DOI : 10.1364/OL.43.005563.Spatial multiplexing of soliton microcombs
Nature Photonics. 2018. Vol. 12, num. 11, p. 699 – 705. DOI : 10.1038/s41566-018-0256-7.Nonreciprocity in Microwave Optomechanical Circuits
Ieee Antennas And Wireless Propagation Letters. 2018. Vol. 17, num. 11, p. 1983 – 1987. DOI : 10.1109/LAWP.2018.2856622.Ultralow-power chip-based soliton microcombs for photonic integration
Optica. 2018. Vol. 5, num. 10, p. 1347 – 1353. DOI : 10.1364/OPTICA.5.001347.Evidence for structural damping in a high-stress silicon nitride nanobeam and its implications for quantum optomechanics
Physics Letters A. 2018. Vol. 382, num. 33, p. 2251 – 2255. DOI : 10.1016/j.physleta.2017.05.046.Quantum-Limited Directional Amplifiers with Optomechanics
Physical Review Letters. 2018. Vol. 120, num. 2, p. 3601. DOI : 10.1103/PhysRevLett.120.023601.Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins
OPTICA. 2018. Vol. 5, num. 7, p. 884 – 892. DOI : 10.1364/OPTICA.5.000884.Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides
Nature Photonics. 2018. Vol. 12, num. 6, p. 330 – 335. DOI : 10.1038/s41566-018-0144-1.Ultrafast optical ranging using microresonator soliton frequency combs
Science. 2018. Vol. 359, num. 6378, p. 887 – 891. DOI : 10.1126/science.aao3924.Photonic Damascene Process for Low-Loss, High-Confinement Silicon Nitride Waveguides
IEEE Journal of Selected Topics in Quantum Electronics. 2018. Vol. 24, num. 4, p. 6101411. DOI : 10.1109/JSTQE.2018.2808258.Dissipative Kerr solitons in optical microresonators
Science. 2018. Vol. 361, num. 6402, p. 567. DOI : 10.1126/science.aan8083.Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators
Nano Letters. 2018. Vol. 18, num. 5, p. 3138 – 3146. DOI : 10.1021/acs.nanolett.8b00749.Highly efficient coupling of crystalline microresonators to integrated photonic waveguides
Optics Letters. 2018. Vol. 43, num. 9, p. 2106. DOI : 10.1364/OL.43.002106.Effects of erbium-doped fiber amplifier induced pump noise on soliton Kerr frequency combs for 64-quadrature amplitude modulation transmission
Optics Letters. 2018. Vol. 43, num. 11, p. 2495. DOI : 10.1364/OL.43.002495.A maser based on dynamical backaction on microwave light
Physics Letters A. 2018. Vol. 382, num. 33, p. 2233 – 2237. DOI : 10.1016/j.physleta.2017.05.045.Photonic chip-based soliton frequency combs covering the biological imaging window
Nature Communications. 2018. Vol. 9, num. 1, p. 1146. DOI : 10.1038/s41467-018-03471-x.Double inverse nanotapers for efficient light coupling to integrated photonic devices
Optics Letters. 2018. Vol. 43, num. 14, p. 3200 – 3203. DOI : 10.1364/OL.43.003200.Level attraction in a microwave optomechanical circuit
Physical Review A. 2018. Vol. 98, num. 2, p. 023841. DOI : 10.1103/PhysRevA.98.023841.An optical-frequency synthesizer using integrated photonics
Nature. 2018. Vol. 557, num. 7703, p. 81 – 85. DOI : 10.1038/s41586-018-0065-7.Elastic strain engineering for ultralow mechanical dissipation
Science. 2018. Vol. 360, num. 6390, p. 764 – 768. DOI : 10.1126/science.aar6939.2017
Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators
Optica. 2017. Vol. 4, num. 7, p. 684 – 691. DOI : 10.1364/OPTICA.4.000684.Quantum Correlations of Light from a Room-Temperature Mechanical Oscillator
Physical Review X (PRX). 2017. Vol. 7, num. 3, p. 031055 – 1. DOI : 10.1103/PhysRevX.7.031055.Self-referenced photonic chip soliton Kerr frequency comb
Light: Science & Applications. 2017. Vol. 6, num. 1, p. e16202. DOI : 10.1038/lsa.2016.202.Dual-pump generation of high-coherence primary Kerr combs with multiple sub-lines
Optics Letters. 2017. Vol. 42, num. 3, p. 595. DOI : 10.1364/OL.42.000595.Intermode Breather Solitons in Optical Microresonators
Physical Review X (PRX). 2017. Vol. 7, num. 4, p. 041055. DOI : 10.1103/PhysRevX.7.041055.Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon
Optics Letters. 2017. Vol. 42, num. 4, p. 803 – 806. DOI : 10.1364/Ol.42.000803.Breathing dissipative solitons in optical microresonators
Nature Communications. 2017. Vol. 8, num. 1, p. 736. DOI : 10.1038/s41467-017-00719-w.Microresonator-based solitons for massively parallel coherent optical communications
Nature. 2017. Vol. 546, num. 7657, p. 274 – 279. DOI : 10.1038/nature22387.Soliton dual frequency combs in crystalline microresonators
Optics Letters. 2017. Vol. 42, num. 3, p. 514. DOI : 10.1364/OL.42.000514.Nonreciprocal reconfigurable microwave optomechanical circuit
Nature Communications. 2017. Vol. 8, p. 604. DOI : 10.1038/s41467-017-00447-1.Dependence of a microresonator Kerr frequency comb on the pump linewidth
Optics Letters. 2017. Vol. 42, num. 4, p. 779 – 782. DOI : 10.1364/Ol.42.000779.Pump-linewidth-tolerant wavelength multicasting using soliton Kerr frequency combs
Optics Letters. 2017. Vol. 42, num. 16, p. 3177 – 3180. DOI : 10.1364/Ol.42.003177.Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasiphase- matching
Nature Communications. 2017. Vol. 8, p. 1016. DOI : 10.1038/s41467-017-01110-5.Appearance and Disappearance of Quantum Correlations in Measurement-Based Feedback Control of a Mechanical Oscillator
Physical Review X (PRX). 2017. Vol. 7, num. 1, p. 011001. DOI : 10.1103/PhysRevX.7.011001.Coupling Ideality of Integrated Planar High-Q Microresonators
Physical Review Applied. 2017. Vol. 7, num. 2, p. 024026. DOI : 10.1103/PhysRevApplied.7.024026.A dissipative quantum reservoir for microwave light using a mechanical oscillator
Nature Physics. 2017. Vol. 13, p. 787 – 793. DOI : 10.1038/Nphys4121.Tunable insertion of multiple lines into a Kerr frequency comb using electro-optical modulators
Optics Letters. 2017. Vol. 42, num. 19, p. 3765 – 3768. DOI : 10.1364/Ol.42.003765.Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators
Physical Review A. 2017. Vol. 95, num. 4, p. 043822. DOI : 10.1103/PhysRevA.95.043822.2016
Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials
Nature Communications. 2016. Vol. 7, p. 13383. DOI : 10.1038/ncomms13383.Frequency comb generation in the green using silicon nitride microresonators
Laser & Photonics Reviews. 2016. Vol. 10, num. 4, p. 631 – 638. DOI : 10.1002/lpor.201600006.Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation
Optics Letters. 2016. Vol. 41, num. 3, p. 452. DOI : 10.1364/OL.41.000452.Harmonization of chaos into a soliton in Kerr frequency combs
Optics Express. 2016. Vol. 24, num. 24, p. 27382 – 27394. DOI : 10.1364/Oe.24.027382.Near-Field Integration of a SiN Nanobeam and a SiO2 Microcavity for Heisenberg-Limited Displacement Sensing
Physical Review Applied. 2016. Vol. 5, num. 5, p. 054019. DOI : 10.1103/PhysRevApplied.5.054019.On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator
Physical Review A. 2016. Vol. 94, num. 5, p. 053815. DOI : 10.1103/PhysRevA.94.053815.Demonstration of optical multicasting using Kerr frequency comb lines
Optics Letters. 2016. Vol. 41, num. 16, p. 3876 – 3879. DOI : 10.1364/Ol.41.003876.Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state
Optics Express. 2016. Vol. 24, num. 25, p. 29313 – 29321. DOI : 10.1364/Oe.24.029312.Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators
Nature Physics. 2016. Vol. 13, num. 1, p. 94 – 102. DOI : 10.1038/nphys3893.A strongly coupled K-type micromechanical system
Applied Physics Letters. 2016. Vol. 108, num. 15, p. 153105. DOI : 10.1063/1.4945741.Raman Self-Frequency Shift of Dissipative Kerr Solitons in an Optical Microresonator
Physical Review Letters. 2016. Vol. 116, num. 10, p. 103902. DOI : 10.1103/PhysRevLett.116.103902.Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics
Optica. 2016. Vol. 3, num. 1, p. 20. DOI : 10.1364/OPTICA.3.000020.Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers
Optics Letters. 2016. Vol. 41, num. 13, p. 3134. DOI : 10.1364/OL.41.003134.2015
Frequency combs and platicons in optical microresonators with normal GVD
Optics Express. 2015. Vol. 23, num. 6, p. 7713 – 7721. DOI : 10.1364/Oe.23.007713.Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering
Nature Nanotechnology. 2015. Vol. 11, num. 2, p. 164 – 169. DOI : 10.1038/nnano.2015.264.Photonic chip-based optical frequency comb using soliton Cherenkov radiation
Science. 2015. Vol. 351, num. 6271, p. 357 – 360. DOI : 10.1126/science.aad4811.Measurement-based control of a mechanical oscillator at its thermal decoherence rate
Nature. 2015. Vol. 524, num. 7565, p. 325 – 329. DOI : 10.1038/nature14672.Counting the cycles of light using a self-referenced optical microresonator
Optica. 2015. Vol. 2, num. 8, p. 706 – 711. DOI : 10.1364/Optica.2.000706.Plasmomechanical Resonators Based on Dimer Nanoantennas
Nano Letters. 2015. Vol. 15, num. 6, p. 3971 – 3976. DOI : 10.1021/acs.nanolett.5b00858.All-optical stabilization of a soliton frequency comb in a crystalline microresonator
Optics Letters. 2015. Vol. 40, num. 20, p. 4723 – 4726. DOI : 10.1364/Ol.40.004723.2014
Radiation hardness of high-Q silicon nitride microresonators for space compatible integrated optics
Optics Express. 2014. Vol. 22, num. 25, p. 30786 – 30794. DOI : 10.1364/Oe.22.030786.Mode Spectrum and Temporal Soliton Formation in Optical Microresonators
Physical Review Letters. 2014. Vol. 113, num. 12, p. 123901. DOI : 10.1103/PhysRevLett.113.123901.Cavity optomechanics
Reviews Of Modern Physics. 2014. Vol. 86, num. 4, p. 1391 – 1452. DOI : 10.1103/RevModPhys.86.1391.Coherent terabit communications with microresonator Kerr frequency combs
Nature Photonics. 2014. Vol. 8, num. 5, p. 375 – 380. DOI : 10.1038/nphoton.2014.57.Quantum-Limited Amplification and Parametric Instability in the Reversed Dissipation Regime of Cavity Optomechanics
Physical Review Letters. 2014. Vol. 113, num. 2, p. 023604. DOI : 10.1103/PhysRevLett.113.023604.Determination of effective mechanical properties of a double-layer beam by means of a nano-electromechanical transducer
Applied Physics Letters. 2014. Vol. 105, num. 13, p. 133102. DOI : 10.1063/1.4896785.Heralded Single-Phonon Preparation, Storage, and Readout in Cavity Optomechanics
Physical Review Letters. 2014. Vol. 112, num. 14, p. 143602. DOI : 10.1103/PhysRevLett.112.143602.Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators
Acs Photonics. 2014. Vol. 1, num. 11, p. 1181 – 1188. DOI : 10.1021/ph500262b.Temporal solitons in optical microresonators
Nature Photonics. 2014. Vol. 8, num. 2, p. 145 – 152. DOI : 10.1038/Nphoton.2013.343.2013
Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics
Nature Physics. 2013. Vol. 9, num. 3, p. 179 – 184. DOI : 10.1038/nphys2527.Mid-infrared optical frequency combs at 2.5 mu m based on crystalline microresonators
Nature Communications. 2013. Vol. 4, p. 1345. DOI : 10.1038/ncomms2335.Reply to ‘Dissipative feedback does not improve the optimal resolution of incoherent force detection’
Nature Nanotechnology. 2013. Vol. 8, num. 10, p. 692 – 692. DOI : 10.1038/nnano.2013.200.Nonlinear Quantum Optomechanics via Individual Intrinsic Two-Level Defects
Physical Review Letters. 2013. Vol. 110, num. 19, p. 193602. DOI : 10.1103/PhysRevLett.110.193602.Stabilization of a linear nanomechanical oscillator to its thermodynamic limit
Nature Communications. 2013. Vol. 4, p. 2860. DOI : 10.1038/ncomms3860.Plasmon Nanomechanical Coupling for Nanoscale Transduction
Nano Letters. 2013. Vol. 13, num. 7, p. 3293 – 3297. DOI : 10.1021/nl4015028.Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat
Review Of Scientific Instruments. 2013. Vol. 84, num. 4, p. 043108. DOI : 10.1063/1.4801456.Phase noise measurement of external cavity diode lasers and implications for optomechanical sideband cooling of GHz mechanical modes
New Journal Of Physics. 2013. Vol. 15, p. 015019. DOI : 10.1088/1367-2630/15/1/015019.2012
Electromechanically induced absorption in a circuit nano-electromechanical system
New Journal Of Physics. 2012. Vol. 14, p. 123037. DOI : 10.1088/1367-2630/14/12/123037.Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition
Optics Express. 2012. Vol. 20, num. 25, p. 27661 – 27669. DOI : 10.1364/OE.20.027661.Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode
Nature. 2012. Vol. 482, p. 63 – 67. DOI : 10.1038/nature10787.Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator
Optics Express. 2012. Vol. 20, num. 17, p. 19185 – 19193. DOI : 10.1364/OE.20.019185.Universal formation dynamics and noise of Kerr-frequency combs in microresonators
Nature Photonics. 2012. Vol. 6, p. 480 – 487. DOI : 10.1038/NPHOTON.2012.127.A hybrid on-chip optomechanical transducer for ultrasensitive force measurements
Nature Nanotechnology. 2012. Vol. 7, num. 8, p. 509 – 514. DOI : 10.1038/Nnano.2012.97.2011
Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization
Physical Review A. 2011. Vol. 84, num. 1, p. 011804(R). DOI : 10.1103/PhysRevA.84.011804.Optomechanical Coupling in a Two-Dimensional Photonic Crystal Defect Cavity
Physical Review Letters. 2011. Vol. 106, p. 203902. DOI : 10.1103/PhysRevLett.106.203902.Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling
Comptes Rendus Physique. 2011. Vol. 12, p. 800 – 816. DOI : 10.1016/j.crhy.2011.10.012.Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state
Physical Review A. 2011. Vol. 83, num. 6, p. 063835. DOI : 10.1103/PhysRevA.83.063835.Octave Spanning Tunable Frequency Comb from a Microresonator
Physical Review Letters. 2011. Vol. 107, p. 063901. DOI : 10.1103/PhysRevLett.107.063901.2010
Microresonators: Particle sizing by mode splitting
Nature Photonics. 2010. Vol. 4, num. 1, p. 9 – 10. DOI : 10.1038/nphoton.2009.246.Determination of the vacuum optomechanical coupling rate using frequency noise calibration
Optics Express. 2010. Vol. 18, p. 23236 – 23246. DOI : 10.1364/OE.18.023236.Theoretical Analysis of Mechanical Displacement Measurement Using a Multiple Cavity Mode Transducer
Physical Review Letters. 2010. Vol. 104, num. 3, p. 033901. DOI : 10.1103/PhysRevLett.104.033901.Optomechanically Induced Transparency
Science. 2010. Vol. 330, p. 1520 – 1523. DOI : 10.1126/science.1195596.Measuring nanomechanical motion with an imprecision below the standard quantum limit
Physical Review A. 2010. Vol. 82, num. 6, p. 061804(R). DOI : 10.1103/PhysRevA.82.061804.Cavity optomechanics with ultrahigh-Q crystalline microresonators
Physical Review A. 2010. Vol. 82, num. 3, p. 031804(R). DOI : 10.1103/PhysRevA.82.031804.Second-harmonic generation in microresonators through natural phase matching
Physics. 2010. Vol. 3, p. 32. DOI : 10.1103/Physics.3.32.2009
Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion
Nature Photonics. 2009. Vol. 3, p. 529 – 533. DOI : 10.1038/NPHOTON.2009.138.Purcell-Factor-Enhanced Scattering from Si Nanocrystals in an Optical Microcavity
Physical Review Letters. 2009. Vol. 103, num. 2, p. 027406. DOI : 10.1103/PhysRevLett.103.027406.Near-field cavity optomechanics with nanomechanical oscillators
Nature Physics. 2009. Vol. 5, p. 909 – 914. DOI : 10.1038/NPHYS1425.Cryogenic properties of optomechanical silica microcavities
Physical Review A. 2009. Vol. 80, num. 2, p. 021803(R). DOI : 10.1103/PhysRevA.80.021803.Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit
Nature Physics. 2009. Vol. 5, p. 509 – 514. DOI : 10.1038/NPHYS1304.2008
High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators
New Journal of Physics. 2008. Vol. 10, p. 095015. DOI : 10.1088/1367-2630/10/9/095015.PHOTONICS Nanomechanics gets the shakes
Nature. 2008. Vol. 456, p. 458 – 458. DOI : 10.1038/456458a.Ultralow-dissipation optomechanical resonators on a chip
Nature Photonics. 2008. Vol. 2, p. 627 – 633. DOI : 10.1038/nphoton.2008.199.Full Stabilization of a Microresonator-Based Optical Frequency Comb
Physical Review Letters. 2008. Vol. 101, num. 5, p. 053903. DOI : 10.1103/PhysRevLett.101.053903.Parametric Normal-Mode Splitting in Cavity Optomechanics
Physical Review Letters. 2008. Vol. 101, num. 26, p. 263602. DOI : 10.1103/PhysRevLett.101.263602.Cavity-assisted backaction cooling of mechanical resonators
New Journal of Physics. 2008. Vol. 10, num. 9, p. 095007. DOI : 10.1088/1367-2630/10/9/095007.Resolved-sideband cooling of a micromechanical oscillator
Nature Physics. 2008. Vol. 4, num. 5, p. 415 – 419. DOI : 10.1038/nphys939.2007
Cavity Opto-Mechanics
Optics Express. 2007. Vol. 15, num. 25, p. 17172. DOI : 10.1364/OE.15.017172.
2007 |
|---|
| – Optical frequency comb generation from a monolithic microresonator P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T.J. Kippenberg Nature 450, 1214 (2007) |
|
| – Theory of ground state cooling of a mechanical oscillator using dynamical back-action I. Wilson-Rae, N. Nooshi, W. Zwerger and T.J. Kippenberg Physical Review Letters 99, 093901 (2007) |
|
| – Radiation pressure driven vibrational modes in ultra-high-Q silica microspheres R. Ma, A. Schliesser, P. Del’Haye, A. Dabirian, G. Anetsberger and T.J. Kippenberg Optics Letters 32, 2200 (2007) |
| 2006 |
|---|
![]() |
A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala and T. J. Kippenberg “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction” Physical Review Letters 97, 243905 (2006) |
![]() |
In the group of Professor Kerry J. VahalavCalifornia Institute of Technology USA:
| 2006 |
|---|
![]() |
T.J. Kippenberg, J. Kalkman, A. Polman, K.J. Vahala “Demonstration of an erbium doped microdisk laser on a silicon chip” Physical Review A, Rapid Communication, Vol. 74, Art. No. 051802 (November 2006) |
![]() |
T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala and H. J. Kimble “Observation of strong coupling between one atom and a monolithic microresonator” Nature 443, 671-674(12 October 2006) |
![]() |
J. Kalkman,A. Tchebotareva, A. Polman, T. J. Kippenberg, B. Min, K. J. Vahala “Fabrication and characterization of erbium-doped toroidal microcavity lasers” Journal of Applied Physics, No. 99, 083103 (2006) |
![]() |
H. Rokhsari,T. J. Kippenberg, T. Carmon and K. J. Vahala “Theoretical analysis of radiation pressure induced mechanical oscillations (parametric oscillation instability) in optical microcavities” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 12, No.1 (2006) |
| 2005 |
|---|
![]() |
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer and K. J. Vahala “Analysis of radiation pressure induced mechanical oscillations of an optical microcavity ” Physical Review Letters 95, Art. No. 033901 (2005) |
![]() |
H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala “Radiation Pressure driven micromechanical oscillator” Optics Express, No. 13, p. 5293 (2005) |
![]() |
T. Carmon, T. J. Kippenberg, L. Yang, H. Rokhsari, S. M. Spillane, and K. J. Vahala “Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and microparametric oscillators” Optics Express, Volume 13, No. 9 (2005) |
![]() |
S. M. Spillane, T. J. Kippenberg, K.J. Vahala, K.W. Goh, E. Wilcut, H.J. Kimble “Ultra-high-Q toroidal microresonators for cavity quantum electrodynamics” Phys. Rev. A 71, 013817 (2005) |
| 2004 |
|---|
![]() |
T. J. Kippenberg, S. M. Spillane, B. Min and K. J. Vahala “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip” Applied Physics Letters, Vol. 85, No. 25 (December 2004) |
![]() |
T. J. Kippenberg, S. M. Spillane, B. Min and K. J. Vahala “Theoretical and Experimental Study of Stimulated Raman Scattering in Ultra-high-Q Optical Microcavities” Journal of Selected Topics in Quantum Electronics, Vol. 5, No. 10, “Special Issue: Nonlinear Optics”, (October 2004) |
![]() |
B.Min, T. J. Kippenberg, L. Yang, K.J. Vahala, J. Kalkman and A. Polman “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip” Phys. Rev. A 70, 033803 (2004) |
![]() |
T. J. Kippenberg, S. M. Spillane, D. K. Armani and K. J. Vahala “Kerr-nonlinearity optical parametric oscillation in a toroid microcavity” Physical Review Letters, Vol. 8, No. 93, Art. No. 083904, August 2004. |
![]() |
T. J. Kippenberg, S. M. Spillane, D. K. Armani and K. J. Vahala “Ultralow-threshold microcavity Raman laser on a microelectronic chip” Optics Letters, Volume 29, No. 11, 1224-1227, June 2004. |
![]() |
A. Polman, B. Min, J. Kalkman, T. J. Kippenberg and K. J. Vahala “Compact, fiber-compatile cascaded Raman laser” Applied Physics Letters, vol 84, No. 7, pp. 1037, February 2004. |
| 2003 |
|---|
![]() |
B. Min, T. J. Kippenberg and K. J. Vahala “Compact, fiber-compatile cascaded Raman laser” Optics Letters, vol. 28, No. 17, 1507, September 2003. |
![]() |
T. J. Kippenberg, S. M. Spillane, D. K. Armani and K. J. Vahala “Fabrication and coupling to planar high-Q silica disk microcavities” Applied Physics Letters, vol. 83, No. 4, 797-799, July 2003. |
![]() |
S. M. Spillane, T. J. Kippenberg, O. J. Painter and K. J. Vahala “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics” Physical Review Letters, vol. 91, No. 4, 043902, July 2003. |
![]() |
|
![]() |
D.K. Armani, T.J. Kippenberg, S.M. Spillane and K.J. Vahala “Ultra-high-Q toroid microcavity on a chip” Nature, vol. 421, pp. 925-929, 27 February 2003. |
| 2002 |
|---|
| T.J. Kippenberg, S.M. Spillane and K.J. Vahala, “Modal coupling in traveling-wave resonators” Optics Letters, vol. 27, No. 19, pp. 1669, October 2002 |
|
![]() |
|
| S.M. Spillane, T.J. Kippenberg, and K.J. Vahala “Ultralow-threshold Raman laser using a spherical dielectric microcavity” Nature, vol. 415, pp. 621-623, 7 February 2002 |
| Thesis |
|---|
![]() |
T. J. Kippenberg, “Nonlinear Optics in ultra-high-Q whispering gallery mode microcavities”, California Institute of Technology, defended May 2004. |
| Bookchapter |
|---|
![]() |
T. J. Kippenberg et. al. “Fabrication, coupling and nonlinear optics in ultra-high-Q microsphere and chip-based toroid microcavities”, appeared in “Optical Microcavities”, editor K. Vahala |
. ![]() |




