Welcome !

We are interested in how seemingly simple physical systems create unexpectedly complex patterns and dynamical behaviour. Examples range from complex laminar turbulent patterns in shear flows to the deformation of droplets in microfluidic applications. We study these systems using several aspects of continuum mechanics and transport theory entwinded with dynamical systems methods and large computer simulations.

Find out more about the people who work here, the research we do, and our publications. Also, we propose master projects.

Publications

2025

Ghost States Underlying Spatial and Temporal Patterns: How Nonexistent Invariant Solutions Control Nonlinear Dynamics

Z. Zheng; P. Beck; T. Yang; O. Ashtari; J. P. Parker et al. 

PHYSICAL REVIEW E. 2025. Vol. 112, num. 2. DOI : 10.1103/8b86-3plx.

Accurate Implementation of Rotating Magneto-Hydrodynamics in a Channel Geometry Using an Influence Matrix Method

J-C. Ringenbach; S. M. Tobias; T. M. Schneider 

Mathematics. 2025. Vol. 13, num. 16. DOI : 10.3390/math13162549.

Data-driven Guessing and Gluing of Unstable Periodic Orbits

P. Beck; J. P. Parker; T. M. Schneider 

PHYSICAL REVIEW E. 2025. Vol. 112, num. 2. DOI : 10.1103/9vjc-g86s.

Search for Unstable Relative Periodic Orbits in Channel Flow Using Symmetry-reduced Dynamic Mode Decomposition

M. Engel; O. Ashtari; T. M. Schneider; M. Linkmann 

JOURNAL OF FLUID MECHANICS. 2025. Vol. 1013. DOI : 10.1017/jfm.2025.10255.

Oscillating Turing Rolls as Periodic Orbits of the Lugiato-Lefever Equation

A. Gelash; S. Deshmukh; A. Shusharin; T. Schneider; T. J. Kippenberg 

2025. 2025 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, Munich, Germany, 2025-06-23 – 2025-06-27. DOI : 10.1109/cleo/europe-eqec65582.2025.11111134.

Following marginal stability manifolds in quasilinear dynamical reductions of multiscale flows in two space dimensions

A. Ferraro; G. P. Chini; T. M. Schneider 

Physical Review E. 2025. Vol. 111, num. 2, p. 025105. DOI : 10.1103/PhysRevE.111.025105.

The topology of a chaotic attractor in the Kuramoto-Sivashinsky equation

M. Abadie; P. Beck; J. P. Parker; T. M. Schneider 

Chaos (Woodbury, N.Y.). 2025. Vol. 35, num. 1. DOI : 10.1063/5.0237476.

Pattern formation in transitional turbulent thermal convection: invariant solutions and their bifurcation structures

Z. Zheng / T. Schneider (Dir.)  

Lausanne, EPFL, 2025.