2018

Small-Molecule Patterning via Prefunctionalized Alkanethiols

H. Cao; N. Nakatsuka; S. Deshayes; J. Abendroth; H. Yang et al. 

Interactions between small molecules and biomolecules are important physiologically and for biosensing, diagnostic, and therapeutic applications. To investigate these interactions, small molecules can be tethered to substrates through standard coupling chemistries. While convenient, these approaches co-opt one or more of the few small-molecule functional groups needed for biorecognition. Moreover, for multiplexing, individual probes require different surface functionalization chemistries, conditions, and/or protection/deprotection strategies. Thus, when placing multiple small molecules on surfaces, orthogonal chemistries are needed that preserve all functional groups and are sequentially compatible. Alternately, we approach high-fidelity small-molecule patterning by coupling small-molecule neurotransmitter precursors, as examples, to monodisperse asymmetric oligo(ethylene glycol)alkanethiols during synthesis and prior to self-assembly on Au substrates. We use chemical lift-off lithography to singly and doubly pattern substrates. Selective antibody recognition of prefunctionalized thiols was comparable to or better than recognition of small molecules functionalized to alkanethiols after surface assembly. These findings demonstrate that synthesis and patterning approaches that circumvent sequential surface conjugation chemistries enable biomolecule recognition and afford gateways to multiplexed small-molecule functionalized substrates.

Chemistry of Materials. 2018-05-22. Vol. 30, num. 12, p. 4017-4030. DOI : 10.1021/acs.chemmater.8b00377.
publication thumbnail

Polyserotonin Nanoparticles as Multifunctional Materials for Biomedical Applications

N. Nakatsuka; M. Hasani-Sadrabadi; K. Cheung; T. Young; G. Bahlakeh et al. 

Serotonin-based nanoparticles represent a class of previously unexplored multifunctional nanoplatforms with potential biomedical applications. Serotonin, under basic conditions, self-assembles into monodisperse nanoparticles via autoxidation of serotonin monomers. To demonstrate potential applications of polyserotonin nanoparticles for cancer therapeutics, we show that these particles are biocompatible, exhibit photothermal effects when exposed to near-infrared radiation, and load the chemotherapeutic drug doxorubicin, releasing it contextually and responsively in specific microenvironments. Quantum mechanical and molecular dynamics simulations were performed to interrogate the interactions between surface-adsorbed drug molecules and polyserotonin nanoparticles. To investigate the potential of polyserotonin nanoparticles for in vivo targeting, we explored their nano–bio interfaces by conducting protein corona experiments. Polyserotonin nanoparticles had reduced surface–protein interactions under biological conditions compared to polydopamine nanoparticles, a similar polymer material widely investigated for related applications. These findings suggest that serotonin-based nanoparticles have advantages as drug-delivery platforms for synergistic chemo- and photothermal therapy associated with limited nonspecific interactions.

ACS Nano. 2018-04-17. Vol. 12, num. 5, p. 4761-4774. DOI : 10.1021/acsnano.8b01470.
publication thumbnail

Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates

N. Nakatsuka; H. Cao; S. Deshayes; A. Melkonian; A. Kasko et al. 

Aptamers are chemically synthesized oligonucleotides or peptides with molecular recognition capabilities. We investigated recognition of substrate-tethered small-molecule targets, using neurotransmitters as examples, and fluorescently labeled DNA aptamers. Substrate regions patterned via microfluidic channels with dopamine or   l-tryptophan were selectively recognized by previously identified dopamine or l-tryptophan aptamers, respectively. The on-substrate dissociation constant determined for the dopamine aptamer was comparable to, though, slightly greater than the previously determined solution dissociation constant. Using prefunctionalized neurotransmitter-conjugated oligo(ethylene glycol) alkanethiols and microfluidics patterning, we produced multiplexed substrates to capture and to sort aptamers. Substrates patterned with l-3,4-dihydroxyphenylalanine, l-threo-dihydroxyphenylserine, and l-5-hydroxytryptophan enabled comparison of the selectivity of the dopamine aptamer for different targets via simultaneous determination of in situ binding constants. Thus, beyond our previous demonstrations of recognition by protein binding partners (i.e., antibodies and G-protein-coupled receptors), strategically optimized small-molecule-functionalized substrates show selective recognition of nucleic acid binding partners. These substrates are useful for side-by-side target comparisons and future identification and characterization of novel aptamers targeting neurotransmitters or other important small molecules.

ACS Applied Materials & Interfaces. 2018-05-31. Vol. 10, num. 28, p. 23490-23500. DOI : 10.1021/acsami.8b02837.
publication thumbnail

Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing

N. Nakatsuka; K-A. Yang; J. Abendroth; K. Cheung; X. Xu et al. 

Detection of analytes by means of field-effect transistors bearing ligand-specific receptors is fundamentally limited by the shielding created by the electrical double layer (the “Debye length” limitation). We detected small molecules under physiological high–ionic strength conditions by modifying printed ultrathin metal-oxide field-effect transistor arrays with deoxyribonucleotide aptamers selected to bind their targets adaptively. Target-induced conformational changes of negatively charged aptamer phosphodiester backbones in close proximity to semiconductor channels gated conductance in physiological buffers, resulting in highly sensitive detection. Sensing of charged and electroneutral targets (serotonin, dopamine, glucose, and sphingosine-1-phosphate) was enabled by specifically isolated aptameric stem-loop receptors.

Science. 2018-09-06. Vol. 362, num. 6412, p. 319-324. DOI : 10.1126/science.aao6750.