Infoscience List

Journal Articles

2023

A Depth-Averaged Material Point Method for Shallow Landslides: Applications to Snow Slab Avalanche Release

L. Guillet; L. Blatny; B. Trottet; D. Steffen; J. Gaume 

Journal Of Geophysical Research-Earth Surface. 2023-08-01. Vol. 128, num. 8, p. e2023JF007092. DOI : 10.1029/2023JF007092.

Using video detection of snow surface movements to estimate weak layer crack propagation speeds

R. Simenhois; K. W. Birkeland; J. Gaume; A. van Herwijnen; B. Bergfeld et al. 

Annals Of Glaciology. 2023-05-22.  p. PII S0260305523000368. DOI : 10.1017/aog.2023.36.

Microstructural controls on the plastic consolidation of porous brittle solids

L. Blatny; H. Löwe; J. Gaume 

Acta Materialia. 2023. Vol. 250, p. 118861. DOI : 10.1016/j.actamat.2023.118861.

2022

Towards a predictive multi-phase model for alpine mass movements and process cascades

A. Cicoira; L. Blatny; X. Li; B. Trottet; J. Gaume 

Engineering Geology. 2022-12-05. Vol. 310, p. 106866. DOI : 10.1016/j.enggeo.2022.106866.

Transition from sub-Rayleigh anticrack to supershear crack propagation in snow avalanches

B. Trottet; R. Simenhois; G. Bobillier; B. Bergfeld; A. van Herwijnen et al. 

Nature Physics. 2022-07-25. Vol. 18, p. 1094–1098. DOI : 10.1038/s41567-022-01662-4.

Different erosion and entrainment mechanisms in snow avalanches

X. Li; B. Sovilla; C. Ligneau; C. Jiang; J. Gaume 

Mechanics Research Communications. 2022-09-01. Vol. 124, p. 103914. DOI : 10.1016/j.mechrescom.2022.103914.

Microstructural Origin of Propagating Compaction Patterns in Porous Media

L. Blatny; P. Berclaz; F. Guillard; I. Einav; J. Gaume 

Physical Review Letters. 2022-06-01. Vol. 128, num. 22, p. 228002. DOI : 10.1103/PhysRevLett.128.228002.

Numerical investigation of the effect of cohesion and ground friction on snow avalanches flow regimes

C. Ligneau; B. Sovilla; J. Gaume 

Plos One. 2022-02-15. Vol. 17, num. 2, p. e0264033. DOI : 10.1371/journal.pone.0264033.

Detrainment and braking of snow avalanches interacting with forests

L. Vedrine; X. Li; J. Gaume 

Natural Hazards And Earth System Sciences. 2022-03-29. Vol. 22, num. 3, p. 1015-1028. DOI : 10.5194/nhess-22-1015-2022.

Post-publication careers: follow-up expeditions reveal avalanches at Dyatlov Pass

A. M. Puzrin; J. Gaume 

Communications Earth & Environment. 2022-03-24. Vol. 3, num. 1, p. 63. DOI : 10.1038/s43247-022-00393-x.

The concept of the mobilized domain: how it can explain and predict the forces exerted by a cohesive granular avalanche on an obstacle.

M. L. Kyburz; B. Sovilla; J. Gaume; C. Ancey 

Granular matter. 2022-02-11. Vol. 24, num. 45, p. 17. DOI : 10.1007/s10035-021-01196-1.

2021

Crack propagation speeds in weak snowpack layers

B. Bergfeld; A. van Herwijnen; G. Bobillier; E. Larose; L. Moreau et al. 

Journal Of Glaciology. 2021-12-13.  p. PII S0022143021001180. DOI : 10.1017/jog.2021.118.

Computational micromechanics of porous brittle solids

L. Blatny; H. Löwe; S. Wang; J. Gaume 

Computers and Geotechnics. 2021-09-09. Vol. 140, p. 104284. DOI : 10.1016/j.compgeo.2021.104284.

Three-dimensional and real-scale modeling of flow regimes in dense snow avalanches

X. Li; B. Sovilla; C. Jiang; J. Gaume 

Landslides. 2021-07-29. Vol. 18, p. 3393–3406. DOI : 10.1007/s10346-021-01692-8.

A glacier-ocean interaction model for tsunami genesis due to iceberg calving

J. Wolper; M. Gao; M. P. Luthi; V. Heller; A. Vieli et al. 

Communications Earth & Environment. 2021-06-21. Vol. 2, num. 1, p. 130. DOI : 10.1038/s43247-021-00179-7.

Mechanisms of slab avalanche release and impact in the Dyatlov Pass incident in 1959

J. Gaume; A. M. Puzrin 

Communications Earth & Environment. 2021-01-28. Vol. 2, num. 1, p. 10. DOI : 10.1038/s43247-020-00081-8.

Micro-mechanical insights into the dynamics of crack propagation in snow fracture experiments

G. Bobillier; B. Bergfeld; J. Dual; J. Gaume; A. van Herwijnen et al. 

Scientific Reports. 2021-06-03. Vol. 11, num. 1, p. 11711. DOI : 10.1038/s41598-021-90910-3.

2020

Editorial: About the Relevance of Snow Microstructure Study in Cryospheric Sciences

M. Montagnat; G. Chambon; J. Gaume; P. Hagenmuller; M. Sandells 

Frontiers In Earth Science. 2020-11-20. Vol. 8, p. 619509. DOI : 10.3389/feart.2020.619509.

Microscopic Origin of Nonlocal Rheology in Dense Granular Materials

J. Gaume; G. Chambon; M. Naaim 

Physical Review Letters. 2020-10-27. Vol. 125, num. 18, p. 188001. DOI : 10.1103/PhysRevLett.125.188001.

The mechanical origin of snow avalanche dynamics and flow regime transitions

X. Li; B. Sovilla; C. Jiang; J. Gaume 

Cryosphere. 2020-10-12. Vol. 14, num. 10, p. 3381-3398. DOI : 10.5194/tc-14-3381-2020.

Microstructural controls of anticrack nucleation in highly porous brittle solids

J. Ritter; H. Lowe; J. Gaume 

Scientific Reports. 2020-07-24. Vol. 10, num. 1, p. 12383. DOI : 10.1038/s41598-020-67926-2.

Decoupling the role of inertia, friction and cohesion in dense granular avalanche pressure build‐up on obstacles.

M. Kyburz; B. Sovilla; J. Gaume; C. Ancey 

Journal of Geophysical Research: Earth Surface. 2020-02-11. Vol. 125, num. 2, p. 18. DOI : 10.1029/2019JF005192.

Micromechanical modeling of snow failure

G. Bobillier; B. Bergfeld; A. Capelli; J. Dual; J. Gaume et al. 

The Cryosphere. 2020-01-10. Vol. 14, num. 1, p. 39-49. DOI : 10.5194/tc-14-39-2020.

2019

Investigating the release and flow of snow avalanches at the slope-scale using a unified model based on the material point method

J. Gaume; A. van Herwijnen; T. Gast; J. Teran; C. Jiang 

Cold Regions Science And Technology. 2019-12-01. Vol. 168, p. 102847. DOI : 10.1016/j.coldregions.2019.102847.

Cohesion-Induced Enhancement of Aeolian Saltation

F. Comola; J. Gaume; J. F. Kok; M. Lehning 

Geophysical Research Letters. 2019-05-28. Vol. 46, num. 10, p. 5566-5574. DOI : 10.1029/2019GL082195.

Numerical investigation of the mixed-mode failure of snow

D. Mulak; J. Gaume 

Computational Particle Mechanics. 2019-01-24. Vol. 6, p. 439–447. DOI : 10.1007/s40571-019-00224-5.

2018

Dynamic anticrack propagation in snow

J. Gaume; T. Gast; J. Teran; A. van Herwijnen; C. Jiang 

Nature Communications. 2018-09-30. Vol. 9, num. 1, p. 3047. DOI : 10.1038/s41467-018-05181-w.

Stress Concentrations in Weak Snowpack Layers and Conditions for Slab Avalanche Release

J. Gaume; G. Chambon; A. van Herwijnen; J. Schweizer 

Geophysical Research Letters. 2018-08-28. Vol. 45, num. 16, p. 8363-8369. DOI : 10.1029/2018GL078900.

A mechanically-based model of snow slab and weak layer fracture in the Propagation Saw Test

L. Benedetti; J. Gaume; J-T. Fischer 

International Journal of Solids and Structures. 2018-02-09. Vol. 158, p. 1-20. DOI : 10.1016/j.ijsolstr.2017.12.033.

2017

A review of finite-element modelling in snow mechanics

E. Podolskiy; G. Chambon; M. Naaim; J. Gaume 

Journal of Glaciology. 2017-07-10. Vol. 59, num. 218, p. 1189-1201. DOI : 10.3189/2013JoG13J121.

Les tests de stabilité à la loupe

J. Gaume; A. van Herwijnen 

Neige et avalanches. 2017-04-04. num. 157, p. 15-16.

Assessing snow instability in skier-triggered snow slab avalanches by combining failure initiation and crack propagation

J. Gaume; B. Reuter 

Cold Regions Science And Technology. 2017. Vol. 144, p. 6-15. DOI : 10.1016/j.coldregions.2017.05.011.

Scaling laws for the mechanics of loose and cohesive granular materials based on Baxter’s sticky hard spheres

J. Gaume; H. Lowe; S. Tan; L. Tsang 

Physical Review E. 2017. Vol. 96, num. 3, p. 032914. DOI : 10.1103/PhysRevE.96.032914.

Fragmentation of wind-blown snow crystals

F. Comola; J. F. Kok; J. Gaume; E. Paterna; M. Lehning 

Geophysical Research Letters. 2017. Vol. 44, num. 9, p. 4195-4203. DOI : 10.1002/2017GL073039.

Snow fracture in relation to slab avalanche release: critical state for the onset of crack propagation

J. Gaume; A. van Herwijnen; G. Chambon; N. Wever; J. Schweizer 

Cryosphere. 2017. Vol. 11, num. 1, p. 217-228. DOI : 10.5194/tc-11-217-2017.

2016

Snow instability evaluation: calculating the skier-induced stress in a multi-layered snowpack

F. Monti; J. Gaume; A. van Herwijnen; J. Schweizer 

Natural Hazards and Earth System Sciences. 2016-03-18. Vol. 16, num. 3, p. 775-788. DOI : 10.5194/nhess-16-775-2016.

Estimating the effective elastic modulus and specific fracture energy of snowpack layers from field experiments

A. VAN HERWIJNEN; J. GAUME; E. H. BAIR; B. REUTER; K. W. BIRKELAND et al. 

Journal of Glaciology. 2016-07-25. Vol. 62, num. 236, p. 997-1007. DOI : 10.1017/jog.2016.90.

Temporal evolution of crack propagation propensity in snow in relation to slab and weak layer properties

J. Schweizer; B. Reuter; A. van Herwijnen; B. Richter; J. Gaume 

The Cryosphere. 2016-11-11. Vol. 10, num. 6, p. 2637-2653. DOI : 10.5194/tc-10-2637-2016.

2015

Evaluating snow weak-layer failure parameters through inverse finite element modelling of shaking-platform experiments

E. A. Podolskiy; G. Chambon; M. Naaim; J. Gaume 

Natural Hazards and Earth System Sciences. 2015-01-15. Vol. 15, num. 1, p. 119-134. DOI : 10.5194/nhess-15-119-2015.

Influence of weak layer heterogeneity and slab properties on slab tensile failure propensity and avalanche release area

J. Gaume; G. Chambon; N. Eckert; M. Naaim; J. Schweizer 

The Cryosphere. 2015-04-27. Vol. 9, num. 2, p. 795-804. DOI : 10.5194/tc-9-795-2015.

A new mixed-mode failure criterion for weak snowpack layers

I. Reiweger; J. Gaume; J. Schweizer 

Geophysical Research Letters. 2015-03-27. Vol. 42, num. 5, p. 1427-1432. DOI : 10.1002/2014GL062780.

Modeling of crack propagation in weak snowpack layers using the discrete element method

J. Gaume; A. van Herwijnen; G. Chambon; K. W. Birkeland; J. Schweizer 

The Cryosphere. 2015-10-08. Vol. 9, num. 5, p. 1915-1932. DOI : 10.5194/tc-9-1915-2015.

Granulation of snow: From tumbler experiments to discrete element simulations

W. Steinkogler; J. Gaume; H. Loewe; B. Sovilla; M. Lehning 

Journal Of Geophysical Research-Earth Surface. 2015. Vol. 120, num. 6, p. 1107-1126. DOI : 10.1002/2014Jf003294.

2014

Evaluation of slope stability with respect to snowpack spatial variability

J. Gaume; J. Schweizer; A. van Herwijnen; G. Chambon; B. Reuter et al. 

Journal of Geophysical Research: Earth Surface. 2014-08-21. Vol. 119, num. 9, p. 1783-1799. DOI : 10.1002/2014JF003193.

2013

Prédétermination des hauteurs de départ d’avalanches : une approche par extrêmes spatiaux

J. Gaume; N. Eckert; G. Chambon; M. Naaim 

La Houille Blanche. 2013-10-05. num. 5, p. 30-36. DOI : 10.1051/lhb/2013040.

Mapping extreme snowfalls in the French Alps using max-stable processes

J. Gaume; N. Eckert; G. Chambon; M. Naaim; L. Bel 

Water Resources Research. 2013-02-28. Vol. 49, num. 2, p. 1079-1098. DOI : 10.1002/wrcr.20083.

Influence of weak-layer heterogeneity on snow slab avalanche release: application to the evaluation of avalanche release depths

J. Gaume; G. Chambon; N. Eckert; M. Naaim 

Journal of Glaciology. 2013. Vol. 59, num. 215, p. 423-437. DOI : 10.3189/2013JoG12J161.

2012

Relative influence of mechanical and meteorological factors on avalanche release depth distributions: An application to French Alps

J. Gaume; G. Chambon; N. Eckert; M. Naaim 

Geophysical Research Letters. 2012-06-20. Vol. 39, num. 12, p. L12401. DOI : 10.1029/2012GL051917.

2011

Quasistatic to inertial transition in granular materials and the role of fluctuations

J. Gaume; G. Chambon; M. Naaim 

Physical Review E. 2011-11-11. Vol. 84, num. 5, p. 051304. DOI : 10.1103/PhysRevE.84.051304.

Using spatial and spatial-extreme statistics to characterize snow avalanche cycles

N. Eckert; J. Gaume; H. Castebrunet 

Procedia Environmental Sciences. 2011. Vol. 7, p. 224-229. DOI : 10.1016/j.proenv.2011.07.039.

2010

Cross-comparison of meteorological and avalanche data for characterising avalanche cycles: The example of December 2008 in the eastern part of the French Alps

N. Eckert; C. Coleou; H. Castebrunet; M. Deschatres; G. Giraud et al. 

Cold Regions Science and Technology. 2010. Vol. 64, num. 2, p. 119-136. DOI : 10.1016/j.coldregions.2010.08.009.