Publications

Download the list of publications in PDF format

2025

Deterministic soliton microcombs in Cu-free photonic integrated circuits

X. Ji; X. Li; Z. Qiu; R. N. Wang; M. Divall et al. 

Nature. 2025. Vol. 646, num. 8086, p. 843 – 849. DOI : 10.1038/s41586-025-09598-4.

Electrons herald non-classical light

G. Arend; G. Huang; A. Feist; Y. Yang; J-W. Henke et al. 

Nature Physics. 2025. DOI : 10.1038/s41567-025-03033-1.

Correction: A chip-scale second-harmonic source via self-injection-locked all-optical poling

M. Clementi; E. Nitišs; J. Liu; E. Durán-Valdeiglesias; S. Belahsene et al. 

Light: Science & Applications. 2025. Vol. 14, num. 1. DOI : 10.1038/s41377-025-02002-w.

Optical arbitrary waveform generation (OAWG) using actively phase-stabilized spectral stitching

D. Drayß; D. Fang; A. Sherifaj; H. Peng; C. Füllner et al. 

Light: Science & Applications. 2025. Vol. 14, num. 1. DOI : 10.1038/s41377-025-01937-4.

Unifying frequency metrology across microwave, optical, and free-electron domains

Y. Yang; P. Cattaneo; A. S. Raja; B. Weaver; R. N. Wang et al. 

Nature Communications. 2025. Vol. 16, num. 1. DOI : 10.1038/s41467-025-62808-5.

Monolithic piezoelectrically tunable hybrid integrated laser with sub-fiber laser coherence

A. Voloshin; A. Attanasio; A. Siddharth; S. Bianconi; A. Bancora et al. 

Optica. 2025. Vol. 12, num. 9. DOI : 10.1364/optica.557578.

320 GHz photonic-electronic analogue-to-digital converter (ADC) exploiting Kerr soliton microcombs

D. Fang; D. Drayß; H. Peng; G. Lihachev; C. Füllner et al. 

Light: Science & Applications. 2025. Vol. 14, num. 1. DOI : 10.1038/s41377-025-01778-1.

Arrayed waveguide gratings in lithium tantalate integrated photonics

S. U. Hulyal; J. Hu; C. Wang; J. Cai; G. Lihachev et al. 

Optica. 2025. Vol. 12, num. 7. DOI : 10.1364/optica.565570.

Compact Superconducting Vacuum-gap Capacitors with Low Microwave Loss and High Mechanical Coherence for Scalable Quantum Circuits

A. Youssefi; M. Chegnizadeh; M. Scigliuzzo; T. J. Kippenberg 

Physical Review Applied. 2025. Vol. 23, num. 6, p. 064071. DOI : 10.1103/q5bc-y54w.

An ultra-broadband photonic-chip-based parametric amplifier

N. Kuznetsov; A. Nardi; J. Riemensberger; A. Davydova; M. Churaev et al. 

NATURE. 2025. DOI : 10.1038/s41586-025-08666-z.

Motional Sideband Asymmetry of a Solid-State Mechanical Resonator at Room Temperature

Y. Xia; G. Huang; A. Beccari; A. Zicoschi; A. Arabmoheghi et al. 

Physical Review Letters. 2025. Vol. 134, num. 7, p. 073602. DOI : 10.1103/PhysRevLett.134.073602.

Ultrafast tunable photonic-integrated extended-DBR Pockels laser

A. Siddharth; S. Bianconi; R. N. Wang; Z. Qiu; A. S. Voloshin et al. 

Nature Photonics. 2025. DOI : 10.1038/s41566-025-01687-0.

2024

Ultrabroadband thin-film lithium tantalate modulator for high-speed communications

C. Wang; D. Fang; J. Zhang; A. Kotz; G. Lihachev et al. 

Optica. 2024. Vol. 11, num. 12, p. 1614 – 1620. DOI : 10.1364/OPTICA.537730.

Quantum collective motion of macroscopic mechanical oscillators

M. Chegnizadeh; M. Scigliuzzo; A. Youssefi; S. Kono; E. Guzovskii et al. 

Science. 2024. Vol. 386, num. 6728, p. 1383 – 1388. DOI : 10.1126/science.adr8187.

Bidirectional microwave-optical transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits

T. Blésin; W. Kao; A. Siddharth; R. N. Wang; A. Attanasio et al. 

Nature communications. 2024. Vol. 15, num. 1. DOI : 10.1038/s41467-024-49467-8.

Integrated chirped photonic-crystal cavities in gallium phosphide for broadband soliton generation

A. Nardi; A. Davydova; N. Kuznetsov; M. H. Anderson; C. Möhl et al. 

Optica. 2024. Vol. 11, num. 10, p. 1454 – 1461. DOI : 10.1364/OPTICA.530247.

Efficient mass manufacturing of high-density, ultra-low-loss Si3N4 photonic integrated circuits

X. Ji; R. N. Wang; Y. Liu; J. Riemensberger; Z. Qiu et al. 

Optica. 2024. Vol. 11, num. 10, p. 1397 – 1407. DOI : 10.1364/OPTICA.529673.

New photonic integrated circuits offer high performance and scalable manufacturing

C. Wang; T. J. Kippenberg 

NATURE. 2024. DOI : 10.1038/d41586-024-02582-4.

Temporally and longitudinally tailored dynamic space-time wave packets

X. Su; K. Zou; H. Zhou; H. Song; Y. Wang et al. 

Optics express. 2024. Vol. 32, num. 15, p. 26653 – 26666. DOI : 10.1364/OE.527713.

A fully hybrid integrated erbium-based laser

Y. Liu; Z. Qiu; X. Ji; A. Bancora; G. Lihachev et al. 

Nature Photonics. 2024. DOI : 10.1038/s41566-024-01454-7.

Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms

S. Kono; J. Pan; M. Chegnizadeh; X. Wang; A. Youssefi et al. 

Nature Communications. 2024. Vol. 15, num. 1, p. 3950. DOI : 10.1038/s41467-024-48230-3.

Lithium tantalate photonic integrated circuits for volume manufacturing

C. Wang; Z. Li; J. Riemensberger; G. Lihachev; M. Churaev et al. 

Nature. 2024. Vol. 629, p. 784 – 790. DOI : 10.1038/s41586-024-07369-1.

Photonic-electronic integrated circuit-based coherent LiDAR engine

A. Lukashchuk; H. K. Yildirim; A. Bancora; G. Lihachev; Y. Liu et al. 

Nature Communications. 2024. Vol. 15, num. 1, p. 3134. DOI : 10.1038/s41467-024-47478-z.

Room-temperature quantum optomechanics using an ultralow noise cavity

G. Huang; A. Beccari; N. J. Engelsen; T. J. Kippenberg 

Nature. 2024. Vol. 626, num. 7999. DOI : 10.1038/s41586-023-06997-3.

Free-electron interaction with nonlinear optical states in microresonators

Y. Yang; J. W. Henke; A. S. Raja; F. Jasmin Kappert; G. Huang et al. 

Science. 2024. Vol. 383, num. 6679, p. 168 – 173. DOI : 10.1126/science.adk2489.

2023

Voltage-tunable optical parametric oscillator with an alternating dispersion dimer integrated on a chip

D. Pidgayko; A. Tusnin; J. Riemensberger; A. Stroganov; A. Tikan et al. 

Optica. 2023. Vol. 10, num. 11, p. 1582 – 1586. DOI : 10.1364/OPTICA.503022.

Towards efficient broadband parametric conversion in ultra-long Si3N4 waveguides

A. Ayan; J. Liu; T. J. Kippenberg; C-S. Bres 

Optics Express. 2023. Vol. 31, num. 24, p. 40916 – 40927. DOI : 10.1364/OE.502648.

Nonlinear dynamics and Kerr frequency comb formation in lattices of coupled microresonators

A. Tusnin; A. Tikan; K. Komagata; T. J. Kippenberg 

Communications Physics. 2023. Vol. 6, num. 1, p. 317. DOI : 10.1038/s42005-023-01438-z.

Space-time wave packets with reduced divergence and tunable group velocity generated in free space after multi-mode fiber propagation

K. Zou; K. Pang; H. Song; M. Karpov; X. Su et al. 

Optics Letters. 2023. Vol. 48, num. 21, p. 5695 – 5698. DOI : 10.1364/OL.504531.

High density lithium niobate photonic integrated circuits

Z. Li; R. N. Wang; G. Lihachev; J. Zhang; Z. Tan et al. 

Nature Communications. 2023. Vol. 14, num. 1. DOI : 10.1038/s41467-023-40502-8.

A squeezed mechanical oscillator with millisecond quantum decoherence

A. Youssefi; S. Kono; M. Chegnizadeh; T. J. Kippenberg 

Nature Physics. 2023. DOI : 10.1038/s41567-023-02135-y.

Chaotic microcomb-based parallel ranging

A. Lukashchuk; J. Riemensberger; A. Tusnin; J. Liu; T. J. Kippenberg 

Nature Photonics. 2023. DOI : 10.1038/s41566-023-01246-5.

Non-sliced optical arbitrary waveform measurement (OAWM) using soliton microcombs

D. Drayss; D. Fang; C. Fullner; G. Lihachev; T. Henauer et al. 

Optica. 2023. Vol. 10, num. 7, p. 888 – 896. DOI : 10.1364/OPTICA.484200.

Electron-Photon Quantum State Heralding Using Photonic Integrated Circuits

G. Huang; N. J. Engelsen; O. Kfir; C. Ropers; T. J. Kippenberg 

Prx Quantum. 2023. Vol. 4, num. 2, p. 020351. DOI : 10.1103/PRXQuantum.4.020351.

A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform

M. Churaev; R. N. Wang; A. Riedhauser; V. Snigirev; T. Blesin et al. 

Nature Communications. 2023. Vol. 14, num. 1, p. 3499. DOI : 10.1038/s41467-023-39047-7.

Single-frequency violet and blue laser emission from AlGaInN photonic integrated circuit chips

T. Wunderer; A. Siddharth; N. M. Johnson; C. L. Chua; M. Teepe et al. 

Optics Letters. 2023. Vol. 48, num. 11, p. 2781 – 2784. DOI : 10.1364/OL.486758.

Sub-kHz-Linewidth External-Cavity Laser (ECL) With Si3N4 Resonator Used as a Tunable Pump for a Kerr Frequency Comb

P. Maier; Y. Chen; Y. Xu; Y. Bao; M. Blaicher et al. 

Journal of Lightwave Technology. 2023. Vol. 41, num. 11, p. 3479 – 3490. DOI : 10.1109/JLT.2023.3243471.

Integrated photon-pair source with monolithic piezoelectric frequency tunability

T. Brydges; A. S. Raja; A. Gelmini; G. Lihachev; A. Petitjean et al. 

Physical Review A. 2023. Vol. 107, num. 5, p. 052602. DOI : 10.1103/PhysRevA.107.052602.

Chaotic microcomb inertia-free parallel ranging

A. Lukashchuk; J. Riemensberger; A. Stroganov; G. Navickaite; T. J. Kippenberg 

Apl Photonics. 2023. Vol. 8, num. 5, p. 056102. DOI : 10.1063/5.0141384.

Dissipative Solitons and Switching Waves in Dispersion-Modulated Kerr Cavities

M. H. Anderson; A. Tikan; A. Tusnin; J. Riemensberger; A. Davydova et al. 

Physical Review X (PRX). 2023. Vol. 13, num. 1, p. 011040. DOI : 10.1103/PhysRevX.13.011040.

Ultrafast tunable lasers using lithium niobate integrated photonics

V. Snigirev; A. Riedhauser; G. Lihachev; M. Churaev; J. Riemensberger et al. 

Nature. 2023. Vol. 615, num. 7952, p. 411 – +. DOI : 10.1038/s41586-023-05724-2.

Time-Resolved Hanbury Brown-Twiss Interferometry of On-Chip Biphoton Frequency Combs Using Vernier Phase Modulation

K. V. Myilswamy; S. Seshadri; H-H. Lu; M. S. Alshaykh; J. Liu et al. 

Physical Review Applied. 2023. Vol. 19, num. 3, p. 034019. DOI : 10.1103/PhysRevApplied.19.034019.

Architecture for integrated RF photonic downconversion of electronic signals

N. p. O’malley; K. a. Mckinzie; M. s. Alshaykh; J. U. N. Q. I. U. Liu; D. e. Leaird et al. 

Optics Letters. 2023. Vol. 48, num. 1, p. 159 – 162. DOI : 10.1364/OL.474710.

A chip-scale second-harmonic source via self-injection-locked all-optical poling

M. Clementi; E. Nitiss; J. Liu; E. Durán-Valdeiglesias; S. Belahsene et al. 

Light: Science & Applications. 2023. Vol. 12, num. 96. DOI : 10.1038/s41377-023-01329-6.

2022

Topological lattices realized in superconducting circuit optomechanics

A. Youssefi; S. Kono; A. Bancora; M. Chegnizadeh; J. Pan et al. 

Nature. 2022. Vol. 612, num. 7941, p. 666 – +. DOI : 10.1038/s41586-022-05367-9.

Photo-induced cascaded harmonic and comb generation in silicon nitride microresonators

J. Hu; E. Nitiss; J. He; J. Liu; O. Yakar et al. 

Science Advances. 2022. Vol. 8, num. 50, p. eadd8252. DOI : 10.1126/sciadv.add8252.

Generation of OAM-carrying space-time wave packets with time-dependent beam radii using a coherent combination of multiple LG modes on multiple frequencies

A. Minoofar; K. Zou; K. Pang; H. Song; M. Karpov et al. 

Optics Express. 2022. Vol. 30, num. 25, p. 45267 – 45278. DOI : 10.1364/OE.472745.

A photonic integrated continuous-travelling-wave parametric amplifier

J. Riemensberger; N. Kuznetsov; J. Liu; J. He; R. N. Wang et al. 

Nature. 2022. Vol. 612, num. 7938, p. 56 – +. DOI : 10.1038/s41586-022-05329-1.

Tunability of space-time wave packet carrying tunable and dynamically changing OAM value

K. Zou; X. Su; M. Yessenov; K. Pang; N. Karapetyan et al. 

Optics Letters. 2022. Vol. 47, num. 21, p. 5751 – 5754. DOI : 10.1364/OL.472363.

Experimental demonstration of dynamic spatiotemporal structured beams that simultaneously exhibit two orbital angular momenta by combining multiple frequency lines, each carrying multiple Laguerre-Gaussian modes

K. Pang; K. Zou; Z. Zhao; H. Song; Y. Zhou et al. 

Optics Letters. 2022. Vol. 47, num. 16, p. 4044 – 4047. DOI : 10.1364/OL.466058.

Zero dispersion Kerr solitons in optical microresonators

M. H. Anderson; W. Weng; G. Lihachev; A. Tikan; J. Liu et al. 

Nature Communications. 2022. Vol. 13, num. 1, p. 4764. DOI : 10.1038/s41467-022-31916-x.

Cavity-mediated electron-photon pairs

A. Feist; G. Huang; G. Arend; Y. Yang; J-W. Henke et al. 

Science. 2022. Vol. 377, num. 6607, p. 777 – 780. DOI : 10.1126/science.abo5037.

Reduced material loss in thin-film lithium niobate waveguides

A. Shams-Ansari; G. Huang; L. He; Z. Li; J. Holzgrafe et al. 

Apl Photonics. 2022. Vol. 7, num. 8, p. 081301. DOI : 10.1063/5.0095146.

Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements

H-H. Lu; K. Myilswamy; R. S. Bennink; S. Seshadri; M. S. Alshaykh et al. 

Nature Communications. 2022. Vol. 13, num. 1, p. 4338. DOI : 10.1038/s41467-022-31639-z.

Low-noise frequency-agile photonic integrated lasers for coherent ranging

G. Lihachev; J. Riemensberger; W. Weng; J. Liu; H. Tian et al. 

Nature Communications. 2022. Vol. 13, num. 1, p. 3522. DOI : 10.1038/s41467-022-30911-6.

A photonic integrated circuit-based erbium-doped amplifier

Y. Liu; Z. Qiu; X. Ji; A. Lukashchuk; J. He et al. 

Science. 2022. Vol. 376, num. 6599, p. eabo2631. DOI : 10.1126/science.abo2631.

Probing material absorption and optical nonlinearity of integrated photonic materials

M. Gao; Q-F. Yang; Q-X. Ji; H. Wang; L. Wu et al. 

Nature Communications. 2022. Vol. 13, num. 1, p. 3323. DOI : 10.1038/s41467-022-30966-5.

Dual chirped microcomb based parallel ranging at megapixel-line rates

A. Lukashchuk; J. Riemensberger; M. Karpov; J. Liu; T. J. Kippenberg 

Nature Communications. 2022. Vol. 13, num. 1, p. 3280. DOI : 10.1038/s41467-022-30542-x.

Hierarchical tensile structures with ultralow mechanical dissipation

M. J. Bereyhi; A. Beccari; R. Groth; S. A. Fedorov; A. Arabmoheghi et al. 

Nature Communications. 2022. Vol. 13, num. 1, p. 3097. DOI : 10.1038/s41467-022-30586-z.

Perimeter Modes of Nanomechanical Resonators Exhibit Quality Factors Exceeding 10(9) at Room Temperature

M. J. Bereyhi; A. Arabmoheghi; A. Beccari; S. A. Fedorov; G. Huang et al. 

Physical Review X (PRX). 2022. Vol. 12, num. 2, p. 021036. DOI : 10.1103/PhysRevX.12.021036.

Synthesis of near-diffraction-free orbital-angular-momentum space-time wave packets having a controllable group velocity using a frequency comb

K. Pang; K. Zou; H. Song; M. Karpov; M. Yessenov et al. 

Optics Express. 2022. Vol. 30, num. 10, p. 16712 – 16724. DOI : 10.1364/OE.456781.

Dissipative Quantum Feedback in Measurements Using a Parametrically Coupled Microcavity

L. Qiu; G. Huang; I. Shomroni; J. Pan; P. Seidler et al. 

Prx Quantum. 2022. Vol. 3, num. 2, p. 020309. DOI : 10.1103/PRXQuantum.3.020309.

Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits

X. Ji; J. Liu; J. He; R. N. Wang; Z. Qiu et al. 

Communications Physics. 2022. Vol. 5, num. 1, p. 84. DOI : 10.1038/s42005-022-00851-0.

Platicon microcomb generation using laser self-injection locking

G. Lihachev; W. Weng; J. Liu; L. Chang; J. Guo et al. 

Nature Communications. 2022. Vol. 13, num. 1, p. 1771. DOI : 10.1038/s41467-022-29431-0.

Protected generation of dissipative Kerr solitons in supermodes of coupled optical microresonators

A. Tikan; A. Tusnin; J. Riemensberger; M. Churaev; X. Ji et al. 

Science Advances. 2022. Vol. 8, num. 13, p. eabm6982. DOI : 10.1126/sciadv.abm6982.

Near ultraviolet photonic integrated lasers based on silicon nitride

A. Siddharth; T. Wunderer; G. Lihachev; A. S. Voloshin; C. Haller et al. 

Apl Photonics. 2022. Vol. 7, num. 4, p. 046108. DOI : 10.1063/5.0081660.

Strained crystalline nanomechanical resonators with quality factors above 10 billion

A. Beccari; D. A. Visani; S. A. Fedorov; M. J. Bereyhi; V. Boureau et al. 

Nature Physics. 2022. Vol. 18, p. 436 – 441. DOI : 10.1038/s41567-021-01498-4.

Microresonator Dissipative Kerr Solitons Synchronized to an Optoelectronic Oscillator

W. Weng; J. He; A. Kaszubowska-Anandarajah; P. M. Anandarajah; T. J. Kippenberg 

Physical Review Applied. 2022. Vol. 17, num. 2, p. 024030. DOI : 10.1103/PhysRevApplied.17.024030.

Polarization selective ultra-broadband wavelength conversion in silicon nitride waveguides

A. Ayan; F. Mazeas; J. Liu; T. J. Kippenberg; C-S. Bres 

Optics Express. 2022. Vol. 30, num. 3, p. 4342 – 4350. DOI : 10.1364/OE.446357.

Roadmap on multimode light shaping

M. Piccardo; V. Ginis; A. Forbes; S. Mahler; A. A. Friesem et al. 

Journal Of Optics. 2022. Vol. 24, num. 1, p. 013001. DOI : 10.1088/2040-8986/ac3a9d.

2021

Integrated photonics enables continuous-beam electron phase modulation

J-W. Henke; A. S. Raja; A. Feist; G. Huang; G. Arend et al. 

Nature. 2021. Vol. 600, num. 7890, p. 653 – 658. DOI : 10.1038/s41586-021-04197-5.

Continuous-wave frequency upconversion with a molecular optomechanical nanocavity

W. Chen; P. Roelli; H. Hu; S. Verlekar; S. P. Amirtharaj et al. 

Science. 2021. Vol. 374, num. 6572, p. 1264 – 1267. DOI : 10.1126/science.abk3106.

Quantum coherent microwave-optical transduction using high-overtone bulk acoustic resonances

T. Blesin; H. Tian; S. A. Bhave; T. J. Kippenberg 

Physical Review A. 2021. Vol. 104, num. 5, p. 052601. DOI : 10.1103/PhysRevA.104.052601.

Magnetic-free silicon nitride integrated optical isolator

H. Tian; J. Liu; A. Siddharth; R. N. Wang; T. Blesin et al. 

Nature Photonics. 2021. Vol. 15, p. 828 – 836. DOI : 10.1038/s41566-021-00882-z.

Ultrafast optical circuit switching for data centers using integrated soliton microcombs

A. S. Raja; S. Lange; M. Karpov; K. Shi; X. Fu et al. 

Nature Communications. 2021. Vol. 12, num. 1, p. 5867. DOI : 10.1038/s41467-021-25841-8.

Entanglement swapping between independent and asynchronous integrated photon-pair sources

F. Samara; N. Maring; A. Martin; A. S. Raja; T. J. Kippenberg et al. 

Quantum Science And Technology. 2021. Vol. 6, num. 4, p. 045024. DOI : 10.1088/2058-9565/abf599.

Coherent terahertz-to-microwave link using electro-optic-modulated Turing rolls

W. Weng; M. H. Anderson; A. Siddharth; J. He; A. S. Raja et al. 

Physical Review A. 2021. Vol. 104, num. 2, p. 023511. DOI : 10.1103/PhysRevA.104.023511.

Nanofabrication meets open science

M. J. Bereyhi; T. J. Kippenberg 

Nature Nanotechnology. 2021. Vol. 16, p. 850 – 852. DOI : 10.1038/s41565-021-00944-x.

Dissipative Kerr solitons in a photonic dimer on both sides of exceptional point

K. Komagata; A. Tusnin; J. Riemensberger; M. Churaev; H. Guo et al. 

Communications Physics. 2021. Vol. 4, num. 1, p. 159. DOI : 10.1038/s42005-021-00661-w.

Laser soliton microcombs heterogeneously integrated on silicon

C. Xiang; J. Liu; J. Guo; L. Chang; R. N. Wang et al. 

Science. 2021. Vol. 373, num. 6550, p. 99 – 103. DOI : 10.1126/science.abh2076.

Photonic chip-based resonant supercontinuum via pulse-driven Kerr microresonator solitons

M. H. Anderson; R. Bouchand; J. Liu; W. Weng; E. Obrzud et al. 

Optica. 2021. Vol. 8, num. 6, p. 771 – 779. DOI : 10.1364/OPTICA.403302.

Intrinsic luminescence blinking from plasmonic nanojunctions

W. Chen; P. A. Rölli; A. Ahmed; S. S. Verlekar; H. Hu et al. 

Nature Communications. 2021. Vol. 12, num. 1, p. 2731. DOI : 10.1038/s41467-021-22679-y.

A cryogenic electro-optic interconnect for superconducting devices

A. Youssefi; I. Shomroni; Y. J. Joshi; N. R. Bernier; A. Lukashchuk et al. 

Nature Electronics. 2021. Vol. 4, num. 5, p. 326 – 332. DOI : 10.1038/s41928-021-00570-4.

Difference-frequency generation in optically poled silicon nitride waveguides

E. Sahin; B. Zabelich; O. Yakar; E. Nitiss; J. Liu et al. 

Nanophotonics. 2021. Vol. 10, num. 7, p. 1923 – 1930. DOI : 10.1515/nanoph-2021-0080.

High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits

J. Liu; G. Huang; R. N. Wang; J. He; A. S. Raja et al. 

Nature Communications. 2021. Vol. 12, num. 1, p. 2236. DOI : 10.1038/s41467-021-21973-z.

Low-Loss Integrated Nanophotonic Circuits with Layered Semiconductor Materials

J. He; I. Paradisanos; T. Liu; A. R. Cadore; J. Liu et al. 

Nano Letters. 2021. Vol. 21, num. 7, p. 2709 – 2718. DOI : 10.1021/acs.nanolett.0c04149.

Gain-switched semiconductor laser driven soliton microcombs

W. Weng; A. Kaszubowska-Anandarajah; J. He; P. D. Lakshmijayasimha; E. Lucas et al. 

Nature Communications. 2021. Vol. 12, num. 1, p. 1425. DOI : 10.1038/s41467-021-21569-7.

Automated wide-ranged finely tunable microwave cavity for narrowband phase noise filtering

Y. J. Joshi; N. Sauerwein; A. Youssefi; P. Uhrich; T. J. Kippenberg 

Review Of Scientific Instruments. 2021. Vol. 92, num. 3, p. 034710. DOI : 10.1063/5.0034696.

Emergent nonlinear phenomena in a driven dissipative photonic dimer

A. Tikan; J. Riemensberger; K. Komagata; S. Honl; M. Churaev et al. 

Nature Physics. 2021. Vol. 17, p. 604 – 610. DOI : 10.1038/s41567-020-01159-y.

Soliton microcomb based spectral domain optical coherence tomography

P. J. Marchand; J. Riemensberger; J. C. Skehan; J-J. Ho; M. H. P. Pfeiffer et al. 

Nature Communications. 2021. Vol. 12, num. 1, p. 427. DOI : 10.1038/s41467-020-20404-9.

Dynamics of soliton self-injection locking in optical microresonators

A. S. Voloshin; N. M. Kondratiev; G. Lihachev; J. Liu; V. E. Lobanov et al. 

Nature Communications. 2021. Vol. 12, num. 1, p. 235. DOI : 10.1038/s41467-020-20196-y.

Parallel convolutional processing using an integrated photonic tensor core

J. Feldmann; N. Youngblood; M. Karpov; H. Gehring; X. Li et al. 

Nature. 2021. Vol. 589, num. 7840, p. 52 – 58. DOI : 10.1038/s41586-020-03070-1.

2020

Thermal intermodulation noise in cavity-based measurements

S. A. Fedorov; A. Beccari; A. Arabmoheghi; D. J. Wilson; N. J. Engelsen et al. 

Optica. 2020. Vol. 7, num. 11, p. 1609 – 1616. DOI : 10.1364/OPTICA.402449.

Molecular Platform for Frequency Upconversion at the Single-Photon Level

P. Roelli; D. Martin-Cano; T. J. Kippenberg; C. Galland 

Physical Review X (PRX). 2020. Vol. 10, num. 3, p. 031057. DOI : 10.1103/PhysRevX.10.031057.

Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy

H. Guo; W. Weng; J. Liu; F. Yang; W. Hänsel et al. 

Optica. 2020. Vol. 7, num. 9, p. 1181 – 1188. DOI : 10.1364/OPTICA.396542.

Reconfigurable radiofrequency filters based on versatile soliton microcombs

J. Hu; J. He; J. Liu; A. S. Raja; M. Karpov et al. 

Nature Communications. 2020. Vol. 11, num. 1, p. 4377. DOI : 10.1038/s41467-020-18215-z.

Broadband quasi-phase-matching in dispersion-engineered all-optically poled silicon nitride waveguides

E. Nitiss; B. Zabelich; O. Yakar; J. Liu; R. N. Wang et al. 

Photonics Research. 2020. Vol. 8, num. 9, p. 1475 – 1483. DOI : 10.1364/PRJ.396489.

Frequency division using a soliton-injected semiconductor gain-switched frequency comb

W. Weng; A. Kaszubowska-Anandarajah; J. Liu; P. M. Anandarajah; T. J. Kippenberg 

Science Advances. 2020. Vol. 6, num. 39, p. eaba2807. DOI : 10.1126/sciadv.aba2807.

Nonlinear states and dynamics in a synthetic frequency dimension

A. K. Tusnin; A. M. Tikan; T. J. Kippenberg 

Physical Review A. 2020. Vol. 102, num. 2, p. 023518. DOI : 10.1103/PhysRevA.102.023518.

Monolithic piezoelectric control of soliton microcombs

J. Liu; H. Tian; E. Lucas; A. S. Raja; G. Lihachev et al. 

Nature. 2020. Vol. 583, num. 7816, p. 385 – 390. DOI : 10.1038/s41586-020-2465-8.

Integrated turnkey soliton microcombs

B. Shen; L. Chang; J. Liu; H. Wang; Q-F. Yang et al. 

Nature. 2020. Vol. 582, num. 7812, p. 365 – 369. DOI : 10.1038/s41586-020-2358-x.

Hybrid integrated photonics using bulk acoustic resonators

H. Tian; J. Liu; B. Dong; J. C. Skehan; M. Zervas et al. 

Nature Communications. 2020. Vol. 11, num. 1, p. 3073. DOI : 10.1038/s41467-020-16812-6.

Controlling free electrons with optical whispering-gallery modes

O. Kfir; H. Lourenco-Martins; G. Storeck; M. Sivis; T. R. Harvey et al. 

Nature. 2020. Vol. 582, num. 7810, p. 46 – 49. DOI : 10.1038/s41586-020-2320-y.

Heteronuclear soliton molecules in optical microresonators

W. Weng; R. Bouchand; E. Lucas; E. Obrzud; T. Herr et al. 

Nature Communications. 2020. Vol. 11, num. 1, p. 2402. DOI : 10.1038/s41467-020-15720-z.

Massively parallel coherent laser ranging using a soliton microcomb

J. Riemensberger; A. Lukashchuk; M. Karpov; W. Weng; E. Lucas et al. 

Nature. 2020. Vol. 581, num. 7807, p. 164 – 170. DOI : 10.1038/s41586-020-2239-3.

Laser Cooling of a Nanomechanical Oscillator to Its Zero-Point Energy

L. Qiu; I. Shomroni; P. Seidler; T. J. Kippenberg 

Physical Review Letters. 2020. Vol. 124, num. 17, p. 173601. DOI : 10.1103/PhysRevLett.124.173601.

Performance of chip-scale optical frequency comb generators in coherent WDM communications

P. Marin-Palomo; J. N. Kemal; T. J. Kippenberg; W. Freude; S. Randel et al. 

Optics Express. 2020. Vol. 28, num. 9, p. 12897 – 12910. DOI : 10.1364/OE.380413.

Formation and Collision of Multistability-Enabled Composite Dissipative Kerr Solitons

W. Weng; R. Bouchand; T. J. Kippenberg 

Physical Review X (PRX). 2020. Vol. 10, num. 2, p. 021017. DOI : 10.1103/PhysRevX.10.021017.

Photonic microwave generation in the X- and K-band using integrated soliton microcombs

J. Liu; E. Lucas; A. S. Raja; J. He; J. Riemensberger et al. 

Nature Photonics. 2020. Vol. 14, p. 486 – 491. DOI : 10.1038/s41566-020-0617-x.

Parallel gas spectroscopy using mid-infrared supercontinuum from a single Si3N4 waveguide

E. Tagkoudi; D. Grassani; F. Yang; C. Herkommer; T. Kippenberg et al. 

Optics Letters. 2020. Vol. 45, num. 8, p. 2195 – 2198. DOI : 10.1364/OL.390086.

Kramers Kronig detection of four 20 Gbaud 16-QAM channels using Kerr combs for a shared phase estimation

K. Zou; P. Liao; Y. Cao; A. Kordts; A. Almaiman et al. 

Optics Letters. 2020. Vol. 45, num. 7, p. 1794 – 1797. DOI : 10.1364/OL.387360.

Optomechanical generation of a mechanical catlike state by phonon subtraction

I. Shomroni; L. Qiu; T. J. Kippenberg 

Physical Review A. 2020. Vol. 101, num. 3, p. 033812. DOI : 10.1103/PhysRevA.101.033812.

Chip-based soliton microcomb module using a hybrid semiconductor laser

A. S. Raja; J. Liu; N. Volet; R. N. Wang; J. He et al. 

Optics Express. 2020. Vol. 28, num. 3, p. 2714 – 2721. DOI : 10.1364/OE.28.002714.

Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator

E. Lucas; P. Brochard; R. Bouchand; S. Schilt; T. Suedmeyer et al. 

Nature Communications. 2020. Vol. 11, num. 1, p. 374. DOI : 10.1038/s41467-019-14059-4.

Fractal-like Mechanical Resonators with a Soft-Clamped Fundamental Mode

S. A. Fedorov; A. Beccari; N. J. Engelsen; T. J. Kippenberg 

Physical Review Letters. 2020. Vol. 124, num. 2, p. 025502. DOI : 10.1103/PhysRevLett.124.025502.

Demonstration of Tunable Optical Aggregation of QPSK to 16-QAM Over Optically Generated Nyquist Pulse Trains Using Nonlinear Wave Mixing and a Kerr Frequency Comb

A. Fallahpour; H. Zhou; P. Liao; C. Liu; M. Tur et al. 

Journal of Lightwave Technology. 2020. Vol. 38, num. 2, p. 359 – 365. DOI : 10.1109/JLT.2019.2959803.

Observation of Stimulated Brillouin Scattering in Silicon Nitride Integrated Waveguides

F. Gyger; J. Liu; F. Yang; J. He; A. S. Raja et al. 

Physical Review Letters. 2020. Vol. 124, num. 1, p. 1 – 7, 013902. DOI : 10.1103/PhysRevLett.124.013902.

Formation Rules and Dynamics of Photoinduced χ(2) Gratings in Silicon Nitride Waveguides

E. Nitiss; T. Liu; D. Grassani; M. H. P. Pfeiffer; T. Kippenberg et al. 

ACS Photonics. 2020. Vol. 7, num. 1, p. 147 – 153. DOI : 10.1021/acsphotonics.9b01301.

Integrated gallium phosphide nonlinear photonics

D. J. Wilson; K. Schneider; S. Hoenl; M. Anderson; Y. Baumgartner et al. 

Nature Photonics. 2020. Vol. 14, num. 1, p. 57 – +. DOI : 10.1038/s41566-019-0537-9.

2019

Polychromatic Cherenkov Radiation Induced Group Velocity Symmetry Breaking in Counterpropagating Dissipative Kerr Solitons

W. Weng; R. Bouchand; E. Lucas; T. J. Kippenberg 

Physical Review Letters. 2019. Vol. 123, num. 25, p. 253902. DOI : 10.1103/PhysRevLett.123.253902.

Floquet dynamics in the quantum measurement of mechanical motion

L. Qiu; I. Shomroni; M. A. Ioannou; N. Piro; D. Malz et al. 

Physical Review A. 2019. Vol. 100, num. 5, p. 053852. DOI : 10.1103/PhysRevA.100.053852.

Two-Tone Optomechanical Instability and Its Fundamental Implications for Backaction-Evading Measurements

I. Shomroni; A. Youssefi; N. Sauerwein; L. Qiu; P. Seidler et al. 

Physical Review X (PRX). 2019. Vol. 9, num. 4, p. 041022. DOI : 10.1103/PhysRevX.9.041022.

Dynamics of soliton crystals in optical microresonators

M. Karpov; M. H. P. Pfeiffer; H. Guo; W. Weng; J. Liu et al. 

Nature Physics. 2019. Vol. 15, num. 10, p. 1071 – 1077. DOI : 10.1038/s41567-019-0635-0.

Thermally stable access to microresonator solitons via slow pump modulation

T. Wildi; V. Brasch; J. Liu; T. J. Kippenberg; T. Herr 

Optics Letters. 2019. Vol. 44, num. 18, p. 4447 – 4450. DOI : 10.1364/OL.44.004447.

In memory of Mikhail Gorodetsky

I. Bilenko; V. Ilchenko; F. Khalili; T. J. Kippenberg 

Nature Photonics. 2019. Vol. 13, num. 8, p. 506 – 508. DOI : 10.1038/s41566-019-0490-7.

High-rate photon pairs and sequential Time-Bin entanglement with Si3N4 microring resonators

F. Samara; A. Martin; C. Autebert; M. Karpov; T. J. Kippenberg et al. 

Optics Express. 2019. Vol. 27, num. 14, p. 19309 – 19318. DOI : 10.1364/OE.27.019309.

Thermorefractive noise in silicon-nitride microresonators

G. Huang; E. Lucas; J. Liu; A. S. Raja; G. Lihachev et al. 

Physical Review A. 2019. Vol. 99, num. 6, p. 061801. DOI : 10.1103/PhysRevA.99.061801.

Visible-near-middle infrared spanning supercontinuum generation in a silicon nitride (Si3N4) waveguide

D. Martyshkin; V. Fedorov; T. Kesterson; S. Vasilyev; H. Gu et al. 

Optical Materials Express. 2019. Vol. 9, num. 6, p. 2553 – 2559. DOI : 10.1364/OME.9.002553.

Optical backaction-evading measurement of a mechanical oscillator

I. Shomroni; L. Qiu; D. Malz; A. Nunnenkamp; T. J. Kippenberg 

Nature Communications. 2019. Vol. 10, p. 2086. DOI : 10.1038/s41467-019-10024-3.

Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum

D. Grassani; E. Tagkoudi; H. Guo; C. Herkommer; F. Yang et al. 

Nature Communications. 2019. Vol. 10, p. 1553. DOI : 10.1038/s41467-019-09590-3.

Electrically pumped photonic integrated soliton microcomb (vol 10, 680, 2018)

A. S. Raja; A. S. Voloshin; H. Guo; S. E. Agafonova; J. Liu et al. 

Nature Communications. 2019. Vol. 10, p. 1623. DOI : 10.1038/s41467-019-09529-8.

Clamp-Tapering Increases the Quality Factor of Stressed Nanobeams

M. J. Bereyhi; A. Beccari; S. A. Fedorov; A. H. Ghadimi; R. Schilling et al. 

Nano Letters. 2019. Vol. 19, num. 4, p. 2329 – 2333. DOI : 10.1021/acs.nanolett.8b04942.

Reconfigurable optical generation of nine Nyquist WDM channels with sinc-shaped temporal pulse trains using a single microresonator-based Kerr frequency comb

F. Alishahi; A. Fallahpour; A. Mohajerin-Ariaei; Y. Cao; A. Kordts et al. 

Optics Letters. 2019. Vol. 44, num. 7, p. 1852 – 1855. DOI : 10.1364/OL.44.001852.

Orthogonally polarized frequency comb generation from a Kerr comb via cross-phase modulation

C. Bao; P. Liao; A. Kordts; L. Zhang; A. Matsko et al. 

Optics Letters. 2019. Vol. 44, num. 6, p. 1472 – 1475. DOI : 10.1364/OL.44.001472.

Generalized dissipation dilution in strained mechanical resonators

S. A. Fedorov; N. J. Engelsen; A. H. Ghadimi; M. J. Bereyhi; R. Schilling et al. 

Physical Review B. 2019. Vol. 99, num. 5, p. 054107. DOI : 10.1103/PhysRevB.99.054107.

Electrically pumped photonic integrated soliton microcomb

A. S. Raja; A. S. Voloshin; H. Guo; S. E. Agafonova; J. Liu et al. 

Nature Communications. 2019. Vol. 10, p. 680. DOI : 10.1038/s41467-019-08498-2.

Demonstration of Multiple Kerr-Frequency-Comb Generation Using Different Lines From Another Kerr Comb Located Up To 50 km Away

P. Liao; C. Bao; A. Almaiman; A. Kordts; M. Karpov et al. 

Journal of Lightwave Technology. 2019. Vol. 37, num. 2, p. 579 – 584. DOI : 10.1109/JLT.2019.2895851.

Spectral Purification of Microwave Signals with Disciplined Dissipative Kerr Solitons

W. Weng; E. Lucas; G. Lihachev; V. E. Lobanov; H. Guo et al. 

Physical Review Letters. 2019. Vol. 122, num. 1, p. 013902. DOI : 10.1103/PhysRevLett.122.013902.

A microphotonic astrocomb

E. Obrzud; M. Rainer; A. Harutyunyan; M. H. Anderson; J. Liu et al. 

Nature Photonics. 2019. Vol. 13, num. 1, p. 31 – 35. DOI : 10.1038/s41566-018-0309-y.

Second- and third-order nonlinear wavelength conversion in an all-optically poled Si3N4 waveguide

D. Grassani; M. H. R. Pfeiffer; T. J. Kippenberg; C-S. Bres 

Optics Letters. 2019. Vol. 44, num. 1, p. 106 – 109. DOI : 10.1364/OL.44.000106.

2018

Scalable and reconfigurable optical tapped-delay-line for multichannel equalization and correlation using nonlinear wave mixing and a Kerr frequency comb

A. N. Willner; P. Liao; K. Zou; Y. Cao; A. Kordts et al. 

Optics Letters. 2018. Vol. 43, num. 22, p. 5563 – 5566. DOI : 10.1364/OL.43.005563.

Spatial multiplexing of soliton microcombs

E. Lucas; G. Lihachev; R. Bouchand; N. G. Pavlov; A. S. Raja et al. 

Nature Photonics. 2018. Vol. 12, num. 11, p. 699 – 705. DOI : 10.1038/s41566-018-0256-7.

Nonreciprocity in Microwave Optomechanical Circuits

N. R. Bernier; L. D. Toth; A. K. Feofanov; T. J. Kippenberg 

Ieee Antennas And Wireless Propagation Letters. 2018. Vol. 17, num. 11, p. 1983 – 1987. DOI : 10.1109/LAWP.2018.2856622.

Ultralow-power chip-based soliton microcombs for photonic integration

J. Liu; A. S. Raja; M. Karpov; B. Ghadiani; M. H. P. Pfeiffer et al. 

Optica. 2018. Vol. 5, num. 10, p. 1347 – 1353. DOI : 10.1364/OPTICA.5.001347.

Evidence for structural damping in a high-stress silicon nitride nanobeam and its implications for quantum optomechanics

S. Fedorov; V. Sudhir; R. D. Schilling; H. Schütz; D. J. Wilson et al. 

Physics Letters A. 2018. Vol. 382, num. 33, p. 2251 – 2255. DOI : 10.1016/j.physleta.2017.05.046.

Photonic Damascene Process for Low-Loss, High-Confinement Silicon Nitride Waveguides

M. Pfeiffer; C. Herkommer; J. Liu; T. Morais; M. Zervas et al. 

IEEE Journal of Selected Topics in Quantum Electronics. 2018. Vol. 24, num. 4, p. 6101411. DOI : 10.1109/JSTQE.2018.2808258.

A maser based on dynamical backaction on microwave light

L. Toth; N. Bernier; A. Feofanov; T. Kippenberg 

Physics Letters A. 2018. Vol. 382, num. 33, p. 2233 – 2237. DOI : 10.1016/j.physleta.2017.05.045.

Effects of erbium-doped fiber amplifier induced pump noise on soliton Kerr frequency combs for 64-quadrature amplitude modulation transmission

P. Liao; C. Bao; A. Kordts; M. Karpov; M. H. P. Pfeiffer et al. 

Optics Letters. 2018. Vol. 43, num. 11, p. 2495. DOI : 10.1364/OL.43.002495.

Elastic strain engineering for ultralow mechanical dissipation

A. H. Ghadimi; S. A. Fedorov; N. J. Engelsen; M. J. Bereyhi; R. Schilling et al. 

Science. 2018. Vol. 360, num. 6390, p. 764 – 768. DOI : 10.1126/science.aar6939.

Quantum-Limited Directional Amplifiers with Optomechanics

D. Malz; L. D. Tóth; N. R. Bernier; A. K. Feofanov; T. J. Kippenberg et al. 

Physical Review Letters. 2018. Vol. 120, num. 2, p. 3601. DOI : 10.1103/PhysRevLett.120.023601.

An optical-frequency synthesizer using integrated photonics

D. T. Spencer; T. Drake; T. C. Briles; J. Stone; L. C. Sinclair et al. 

Nature. 2018. Vol. 557, num. 7703, p. 81 – 85. DOI : 10.1038/s41586-018-0065-7.

Level attraction in a microwave optomechanical circuit

N. Bernier; L. Toth; A. Feofanov; T. Kippenberg 

Physical Review A. 2018. Vol. 98, num. 2, p. 023841. DOI : 10.1103/PhysRevA.98.023841.

Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins

M. Pfeiffer; J. Liu; A. Raja; T. Morais; B. Ghadiani et al. 

OPTICA. 2018. Vol. 5, num. 7, p. 884 – 892. DOI : 10.1364/OPTICA.5.000884.

Dissipative Kerr solitons in optical microresonators

T. Kippenberg; A. Gaeta; M. Lipson; M. Gorodetsky 

Science. 2018. Vol. 361, num. 6402, p. 567. DOI : 10.1126/science.aan8083.

Highly efficient coupling of crystalline microresonators to integrated photonic waveguides

M. Anderson; N. G. Pavlov; J. D. Jost; G. Lihachev; J. Liu et al. 

Optics Letters. 2018. Vol. 43, num. 9, p. 2106. DOI : 10.1364/OL.43.002106.

Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides

H. Guo; C. Herkommer; A. Billat; D. Grassani; C. Zhang et al. 

Nature Photonics. 2018. Vol. 12, num. 6, p. 330 – 335. DOI : 10.1038/s41566-018-0144-1.

Ultrafast optical ranging using microresonator soliton frequency combs

P. Trocha; M. Karpov; D. Ganin; M. H. P. Pfeiffer; A. Kordts et al. 

Science. 2018. Vol. 359, num. 6378, p. 887 – 891. DOI : 10.1126/science.aao3924.

Photonic chip-based soliton frequency combs covering the biological imaging window

M. Karpov; M. H. P. Pfeiffer; J. Liu; A. Lukashchuk; T. Kippenberg 

Nature Communications. 2018. Vol. 9, num. 1, p. 1146. DOI : 10.1038/s41467-018-03471-x.

Double inverse nanotapers for efficient light coupling to integrated photonic devices

J. Liu; A. Raja; M. Pfeiffer; C. Herkommer; H. Guo et al. 

Optics Letters. 2018. Vol. 43, num. 14, p. 3200 – 3203. DOI : 10.1364/OL.43.003200.

Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators

C. Javerzac-Galy; A. Kumar; R. D. Schilling; N. Piro; S. Khorasani et al. 

Nano Letters. 2018. Vol. 18, num. 5, p. 3138 – 3146. DOI : 10.1021/acs.nanolett.8b00749.

2017

Soliton dual frequency combs in crystalline microresonators

N. G. Pavlov; G. Lihachev; S. Koptyaev; E. Lucas; M. Karpov et al. 

Optics Letters. 2017. Vol. 42, num. 3, p. 514. DOI : 10.1364/OL.42.000514.

Quantum Correlations of Light from a Room-Temperature Mechanical Oscillator

V. Sudhir; R. Schilling; S. A. Fedorov; H. Schutz; D. J. Wilson et al. 

Physical Review X (PRX). 2017. Vol. 7, num. 3, p. 031055 – 1. DOI : 10.1103/PhysRevX.7.031055.

Dependence of a microresonator Kerr frequency comb on the pump linewidth

P. Liao; C. Bao; A. Kordts; M. Karpov; M. H. P. Pfeiffer et al. 

Optics Letters. 2017. Vol. 42, num. 4, p. 779 – 782. DOI : 10.1364/Ol.42.000779.

Self-referenced photonic chip soliton Kerr frequency comb

V. Brasch; E. Lucas; J. D. Jost; M. Geiselmann; T. J. Kippenberg 

Light: Science & Applications. 2017. Vol. 6, num. 1, p. e16202. DOI : 10.1038/lsa.2016.202.

Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasiphase- matching

A. Billat; D. Grassani; M. H. P. Pfeiffer; S. Kharitonov; T. Kippenberg et al. 

Nature Communications. 2017. Vol. 8, p. 1016. DOI : 10.1038/s41467-017-01110-5.

Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators

M. H. P. Pfeiffer; C. Herkommer; J. Liu; H. Guo; M. Karpov et al. 

Optica. 2017. Vol. 4, num. 7, p. 684 – 691. DOI : 10.1364/OPTICA.4.000684.

Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators

E. Lucas; H. Guo; J. D. Jost; M. Karpov; T. J. Kippenberg 

Physical Review A. 2017. Vol. 95, num. 4, p. 043822. DOI : 10.1103/PhysRevA.95.043822.

Microresonator-based solitons for massively parallel coherent optical communications

P. Marin-Palomo; J. N. Kemal; M. Karpov; A. Kordts; J. Pfeifle et al. 

Nature. 2017. Vol. 546, num. 7657, p. 274 – 279. DOI : 10.1038/nature22387.

A dissipative quantum reservoir for microwave light using a mechanical oscillator

L. D. Toth; N. R. Bernier; A. Nunnenkamp; A. Feofanov; T. Kippenberg 

Nature Physics. 2017. Vol. 13, p. 787 – 793. DOI : 10.1038/Nphys4121.

Nonreciprocal reconfigurable microwave optomechanical circuit

N. R. Bernier; L. D. Toth; A. Koottandavida; M. A. Ioannou; D. Malz et al. 

Nature Communications. 2017. Vol. 8, p. 604. DOI : 10.1038/s41467-017-00447-1.

Dual-pump generation of high-coherence primary Kerr combs with multiple sub-lines

C. Bao; P. Liao; A. Kordts; L. Zhang; M. Karpov et al. 

Optics Letters. 2017. Vol. 42, num. 3, p. 595. DOI : 10.1364/OL.42.000595.

Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon

L. Chang; M. H. P. Pfeiffer; N. Volet; M. Zervas; J. D. Peters et al. 

Optics Letters. 2017. Vol. 42, num. 4, p. 803 – 806. DOI : 10.1364/Ol.42.000803.

Intermode Breather Solitons in Optical Microresonators

H. Guo; E. Lucas; M. H. P. Pfeiffer; M. Karpov; M. Anderson et al. 

Physical Review X (PRX). 2017. Vol. 7, num. 4, p. 041055. DOI : 10.1103/PhysRevX.7.041055.

Pump-linewidth-tolerant wavelength multicasting using soliton Kerr frequency combs

P. Liao; C. Bao; A. Kordts; M. Karpov; M. H. P. Pfeiffer et al. 

Optics Letters. 2017. Vol. 42, num. 16, p. 3177 – 3180. DOI : 10.1364/Ol.42.003177.

Appearance and Disappearance of Quantum Correlations in Measurement-Based Feedback Control of a Mechanical Oscillator

V. Sudhir; D. J. Wilson; R. Schilling; H. Schuetz; S. A. Fedorov et al. 

Physical Review X (PRX). 2017. Vol. 7, num. 1, p. 011001. DOI : 10.1103/PhysRevX.7.011001.

Breathing dissipative solitons in optical microresonators

E. Lucas; M. Karpov; H. Guo; M. Gorodetsky; T. Kippenberg 

Nature Communications. 2017. Vol. 8, num. 1, p. 736. DOI : 10.1038/s41467-017-00719-w.

Tunable insertion of multiple lines into a Kerr frequency comb using electro-optical modulators

C. Bao; P. Liao; A. Kordts; M. Karpov; M. H. P. Pfeiffer et al. 

Optics Letters. 2017. Vol. 42, num. 19, p. 3765 – 3768. DOI : 10.1364/Ol.42.003765.

Coupling Ideality of Integrated Planar High-Q Microresonators

M. H.  . Pfeiffer; J. Liu; M. Geiselmann; T. J. Kippenberg 

Physical Review Applied. 2017. Vol. 7, num. 2, p. 024026. DOI : 10.1103/PhysRevApplied.7.024026.

2016

Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials

C. Lecaplain; C. Javerzac-Galy; M. L. Gorodetsky; T. J. Kippenberg 

Nature Communications. 2016. Vol. 7, p. 13383. DOI : 10.1038/ncomms13383.

Frequency comb generation in the green using silicon nitride microresonators

L. Wang; L. Chang; N. Volet; M. H. P. Pfeiffer; M. Zervas et al. 

Laser & Photonics Reviews. 2016. Vol. 10, num. 4, p. 631 – 638. DOI : 10.1002/lpor.201600006.

Demonstration of optical multicasting using Kerr frequency comb lines

C. Bao; P. Liao; A. Kordts; M. Karpov; M. H. P. Pfeiffer et al. 

Optics Letters. 2016. Vol. 41, num. 16, p. 3876 – 3879. DOI : 10.1364/Ol.41.003876.

Raman Self-Frequency Shift of Dissipative Kerr Solitons in an Optical Microresonator

M. Karpov; H. Guo; A. Kordts; V. Brasch; M. H. Pfeiffer et al. 

Physical Review Letters. 2016. Vol. 116, num. 10, p. 103902. DOI : 10.1103/PhysRevLett.116.103902.

Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics

M. H. P. Pfeiffer; A. Kordts; V. Brasch; M. Zervas; M. Geiselmann et al. 

Optica. 2016. Vol. 3, num. 1, p. 20. DOI : 10.1364/OPTICA.3.000020.

Harmonization of chaos into a soliton in Kerr frequency combs

V. E. Lobanov; G. V. Lihachev; N. G. Pavlov; A. V. Cherenkov; T. J. Kippenberg et al. 

Optics Express. 2016. Vol. 24, num. 24, p. 27382 – 27394. DOI : 10.1364/Oe.24.027382.

On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator

C. Javerzac-Galy; K. Plekhanov; N. R. Bernier; L. D. Toth; A. K. Feofanov et al. 

Physical Review A. 2016. Vol. 94, num. 5, p. 053815. DOI : 10.1103/PhysRevA.94.053815.

Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators

H. Guo; M. Karpov; E. Lucas; A. Kordts; M. Pfeiffer et al. 

Nature Physics. 2016. Vol. 13, num. 1, p. 94 – 102. DOI : 10.1038/nphys3893.

Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers

J. Liu; V. Brasch; M. H. P. Pfeiffer; A. Kordts; A. N. Kamel et al. 

Optics Letters. 2016. Vol. 41, num. 13, p. 3134. DOI : 10.1364/OL.41.003134.

Near-Field Integration of a SiN Nanobeam and a SiO2 Microcavity for Heisenberg-Limited Displacement Sensing

R. Schilling; H. Schutz; A. H. Ghadimi; V. Sudhir; D. J. Wilson et al. 

Physical Review Applied. 2016. Vol. 5, num. 5, p. 054019. DOI : 10.1103/PhysRevApplied.5.054019.

Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state

V. Brasch; M. Geiselmann; M. H. P. Pfeiffer; T. J. Kippenberg 

Optics Express. 2016. Vol. 24, num. 25, p. 29313 – 29321. DOI : 10.1364/Oe.24.029312.

Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation

A. Kordts; M. H. P. Pfeiffer; H. Guo; V. Brasch; T. J. Kippenberg 

Optics Letters. 2016. Vol. 41, num. 3, p. 452. DOI : 10.1364/OL.41.000452.

A strongly coupled K-type micromechanical system

H. Okamoto; R. Schilling; H. Schuetz; V. Sudhir; D. J. Wilson et al. 

Applied Physics Letters. 2016. Vol. 108, num. 15, p. 153105. DOI : 10.1063/1.4945741.

2015

Counting the cycles of light using a self-referenced optical microresonator

J. D. Jost; T. Herr; C. Lecaplain; V. Brasch; M. H. P. Pfeiffer et al. 

Optica. 2015. Vol. 2, num. 8, p. 706 – 711. DOI : 10.1364/Optica.2.000706.

Frequency combs and platicons in optical microresonators with normal GVD

V. E. Lobanov; G. Lihachev; T. J. Kippenberg; M. L. Gorodetsky 

Optics Express. 2015. Vol. 23, num. 6, p. 7713 – 7721. DOI : 10.1364/Oe.23.007713.

Measurement-based control of a mechanical oscillator at its thermal decoherence rate

D. J. Wilson; V. Sudhir; N. Piro; R. Schilling; A. Ghadimi et al. 

Nature. 2015. Vol. 524, num. 7565, p. 325 – 329. DOI : 10.1038/nature14672.

Photonic chip-based optical frequency comb using soliton Cherenkov radiation

V. Brasch; M. Geiselmann; T. Herr; G. Lihachev; M. H. P. Pfeiffer et al. 

Science. 2015. Vol. 351, num. 6271, p. 357 – 360. DOI : 10.1126/science.aad4811.

Plasmomechanical Resonators Based on Dimer Nanoantennas

R. Thijssen; T. J. Kippenberg; A. Polman; E. Verhagen 

Nano Letters. 2015. Vol. 15, num. 6, p. 3971 – 3976. DOI : 10.1021/acs.nanolett.5b00858.

Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering

P. Roelli; C. Galland; N. Piro; T. J. Kippenberg 

Nature Nanotechnology. 2015. Vol. 11, num. 2, p. 164 – 169. DOI : 10.1038/nnano.2015.264.

All-optical stabilization of a soliton frequency comb in a crystalline microresonator

J. D. Jost; E. Lucas; T. Herr; C. Lecaplain; V. Brasch et al. 

Optics Letters. 2015. Vol. 40, num. 20, p. 4723 – 4726. DOI : 10.1364/Ol.40.004723.

2014

Heralded Single-Phonon Preparation, Storage, and Readout in Cavity Optomechanics

C. Galland; N. Sangouard; N. Piro; N. Gisin; T. J. Kippenberg 

Physical Review Letters. 2014. Vol. 112, num. 14, p. 143602. DOI : 10.1103/PhysRevLett.112.143602.

Quantum-Limited Amplification and Parametric Instability in the Reversed Dissipation Regime of Cavity Optomechanics

A. Nunnenkamp; V. Sudhir; A. K. Feofanov; A. Roulet; T. J. Kippenberg 

Physical Review Letters. 2014. Vol. 113, num. 2, p. 023604. DOI : 10.1103/PhysRevLett.113.023604.

Radiation hardness of high-Q silicon nitride microresonators for space compatible integrated optics

V. Brasch; Q-F. Chen; S. Schiller; T. J. Kippenberg 

Optics Express. 2014. Vol. 22, num. 25, p. 30786 – 30794. DOI : 10.1364/Oe.22.030786.

Mode Spectrum and Temporal Soliton Formation in Optical Microresonators

T. Herr; V. Brasch; J. D. Jost; I. Mirgorodskiy; G. Lihachev et al. 

Physical Review Letters. 2014. Vol. 113, num. 12, p. 123901. DOI : 10.1103/PhysRevLett.113.123901.

Temporal solitons in optical microresonators

T. Herr; V. Brasch; J. D. Jost; C. Y. Wang; N. M. Kondratiev et al. 

Nature Photonics. 2014. Vol. 8, num. 2, p. 145 – 152. DOI : 10.1038/Nphoton.2013.343.

Determination of effective mechanical properties of a double-layer beam by means of a nano-electromechanical transducer

F. Hocke; M. Pernpeintner; X. Zhou; A. Schliesser; T. J. Kippenberg et al. 

Applied Physics Letters. 2014. Vol. 105, num. 13, p. 133102. DOI : 10.1063/1.4896785.

Coherent terabit communications with microresonator Kerr frequency combs

J. Pfeifle; V. Brasch; M. Lauermann; Y. Yu; D. Wegner et al. 

Nature Photonics. 2014. Vol. 8, num. 5, p. 375 – 380. DOI : 10.1038/nphoton.2014.57.

Cavity optomechanics

M. Aspelmeyer; T. J. Kippenberg; F. Marquard 

Reviews Of Modern Physics. 2014. Vol. 86, num. 4, p. 1391 – 1452. DOI : 10.1103/RevModPhys.86.1391.

Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators

R. Thijssen; T. J. Kippenberg; A. Polman; E. Verhagen 

Acs Photonics. 2014. Vol. 1, num. 11, p. 1181 – 1188. DOI : 10.1021/ph500262b.

2013

Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat

R. Riviere; O. Arcizet; A. Schliesser; T. J. Kippenberg 

Review Of Scientific Instruments. 2013. Vol. 84, num. 4, p. 043108. DOI : 10.1063/1.4801456.

Nonlinear Quantum Optomechanics via Individual Intrinsic Two-Level Defects

T. Ramos; V. Sudhir; K. Stannigel; P. Zoller; T. J. Kippenberg 

Physical Review Letters. 2013. Vol. 110, num. 19, p. 193602. DOI : 10.1103/PhysRevLett.110.193602.

Mid-infrared optical frequency combs at 2.5 mu m based on crystalline microresonators

C. Y. Wang; T. Herr; P. Del’Haye; A. Schliesser; J. Hofer et al. 

Nature Communications. 2013. Vol. 4, p. 1345. DOI : 10.1038/ncomms2335.

Stabilization of a linear nanomechanical oscillator to its thermodynamic limit

E. Gavartin; P. Verlot; T. J. Kippenberg 

Nature Communications. 2013. Vol. 4, p. 2860. DOI : 10.1038/ncomms3860.

Reply to ‘Dissipative feedback does not improve the optimal resolution of incoherent force detection’

E. Gavartin; P. Verlot; T. J. Kippenberg 

Nature Nanotechnology. 2013. Vol. 8, num. 10, p. 692 – 692. DOI : 10.1038/nnano.2013.200.

Phase noise measurement of external cavity diode lasers and implications for optomechanical sideband cooling of GHz mechanical modes

T. J. Kippenberg; A. Schliesser; M. L. Gorodetsky 

New Journal Of Physics. 2013. Vol. 15, p. 015019. DOI : 10.1088/1367-2630/15/1/015019.

Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics

X. Zhou; F. Hocke; A. Schliesser; A. Marx; H. Huebl et al. 

Nature Physics. 2013. Vol. 9, num. 3, p. 179 – 184. DOI : 10.1038/nphys2527.

Plasmon Nanomechanical Coupling for Nanoscale Transduction

R. Thijssen; E. Verhagen; T. J. Kippenberg; A. Polman 

Nano Letters. 2013. Vol. 13, num. 7, p. 3293 – 3297. DOI : 10.1021/nl4015028.

2012

Electromechanically induced absorption in a circuit nano-electromechanical system

F. Hocke; X. Zhou; A. Schliesser; T. J. Kippenberg; H. Huebl et al. 

New Journal Of Physics. 2012. Vol. 14, p. 123037. DOI : 10.1088/1367-2630/14/12/123037.

A hybrid on-chip optomechanical transducer for ultrasensitive force measurements

E. Gavartin; P. Verlot; T. J. Kippenberg 

Nature Nanotechnology. 2012. Vol. 7, num. 8, p. 509 – 514. DOI : 10.1038/Nnano.2012.97.

Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode

E. Verhagen; S. Deleglise; S. Weis; A. Schliesser; T. J. Kippenberg 

Nature. 2012. Vol. 482, p. 63 – 67. DOI : 10.1038/nature10787.

Universal formation dynamics and noise of Kerr-frequency combs in microresonators

T. Herr; K. Hartinger; J. Riemensberger; C. Y. Wang; E. Gavartin et al. 

Nature Photonics. 2012. Vol. 6, p. 480 – 487. DOI : 10.1038/NPHOTON.2012.127.

Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition

J. Riemensberger; K. Hartinger; T. Herr; V. Brasch; R. Holzwarth et al. 

Optics Express. 2012. Vol. 20, num. 25, p. 27661 – 27669. DOI : 10.1364/OE.20.027661.

Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator

I. Fescenko; J. Alnis; A. Schliesser; C. Y. Wang; T. J. Kippenberg et al. 

Optics Express. 2012. Vol. 20, num. 17, p. 19185 – 19193. DOI : 10.1364/OE.20.019185.

2011

Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling

G. Anetsberger; E. M. Weig; J. P. Kotthaus; T. J. Kippenberg 

Comptes Rendus Physique. 2011. Vol. 12, p. 800 – 816. DOI : 10.1016/j.crhy.2011.10.012.

Octave Spanning Tunable Frequency Comb from a Microresonator

P. Del’Haye; T. Herr; E. Gavartin; M. L. Gorodetsky; R. Holzwarth et al. 

Physical Review Letters. 2011. Vol. 107, p. 063901. DOI : 10.1103/PhysRevLett.107.063901.

Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization

J. Alnis; A. Schliesser; C. Y. Wang; J. Hofer; T. J. Kippenberg et al. 

Physical Review A. 2011. Vol. 84, num. 1, p. 011804(R). DOI : 10.1103/PhysRevA.84.011804.

Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state

R. Riviere; S. Deleglise; S. Weis; E. Gavartin; O. Arcizet et al. 

Physical Review A. 2011. Vol. 83, num. 6, p. 063835. DOI : 10.1103/PhysRevA.83.063835.

Optomechanical Coupling in a Two-Dimensional Photonic Crystal Defect Cavity

E. Gavartin; R. Braive; I. Sagnes; O. Arcizet; A. Beveratos et al. 

Physical Review Letters. 2011. Vol. 106, p. 203902. DOI : 10.1103/PhysRevLett.106.203902.

2010

Cavity optomechanics with ultrahigh-Q crystalline microresonators

J. Hofer; A. Schliesser; T. J. Kippenberg 

Physical Review A. 2010. Vol. 82, num. 3, p. 031804(R). DOI : 10.1103/PhysRevA.82.031804.

Optomechanically Induced Transparency

S. Weis; R. Riviere; S. Deleglise; E. Gavartin; O. Arcizet et al. 

Science. 2010. Vol. 330, p. 1520 – 1523. DOI : 10.1126/science.1195596.

Theoretical Analysis of Mechanical Displacement Measurement Using a Multiple Cavity Mode Transducer

J. M. Dobrindt; T. J. Kippenberg 

Physical Review Letters. 2010. Vol. 104, num. 3, p. 033901. DOI : 10.1103/PhysRevLett.104.033901.

Second-harmonic generation in microresonators through natural phase matching

T. Kippenberg 

Physics. 2010. Vol. 3, p. 32. DOI : 10.1103/Physics.3.32.

Measuring nanomechanical motion with an imprecision below the standard quantum limit

G. Anetsberger; E. Gavartin; O. Arcizet; Q. P. Unterreithmeier; E. M. Weig et al. 

Physical Review A. 2010. Vol. 82, num. 6, p. 061804(R). DOI : 10.1103/PhysRevA.82.061804.

Microresonators: Particle sizing by mode splitting

T. J. Kippenberg 

Nature Photonics. 2010. Vol. 4, num. 1, p. 9 – 10. DOI : 10.1038/nphoton.2009.246.

Determination of the vacuum optomechanical coupling rate using frequency noise calibration

M. L. Gorodetksy; A. Schliesser; G. Anetsberger; S. Deleglise; T. J. Kippenberg 

Optics Express. 2010. Vol. 18, p. 23236 – 23246. DOI : 10.1364/OE.18.023236.

2009

Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion

P. Del’Haye; O. Arcizet; M. L. Gorodetsky; R. Holzwarth; T. Kippenberg 

Nature Photonics. 2009. Vol. 3, p. 529 – 533. DOI : 10.1038/NPHOTON.2009.138.

Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit

A. Schliesser; O. Arcizet; R. Riviere; G. Anetsberger; T. J. Kippenberg 

Nature Physics. 2009. Vol. 5, p. 509 – 514. DOI : 10.1038/NPHYS1304.

Purcell-Factor-Enhanced Scattering from Si Nanocrystals in an Optical Microcavity

T. J. Kippenberg; A. L. Tchebotareva; J. Kalkman; A. Polman; K. J. Vahala 

Physical Review Letters. 2009. Vol. 103, num. 2, p. 027406. DOI : 10.1103/PhysRevLett.103.027406.

Cryogenic properties of optomechanical silica microcavities

O. Arcizet; R. Riviere; A. Schliesser; G. Anetsberger; T. Kippenberg 

Physical Review A. 2009. Vol. 80, num. 2, p. 021803(R). DOI : 10.1103/PhysRevA.80.021803.

Near-field cavity optomechanics with nanomechanical oscillators

G. Anetsberger; O. Arcizet; Q. P. Unterreithmeier; R. Riviere; A. Schliesser et al. 

Nature Physics. 2009. Vol. 5, p. 909 – 914. DOI : 10.1038/NPHYS1425.

2008

Full Stabilization of a Microresonator-Based Optical Frequency Comb

P. Del’Haye; O. Arcizet; A. Schliesser; R. Holzwarth; T. J. Kippenberg 

Physical Review Letters. 2008. Vol. 101, num. 5, p. 053903. DOI : 10.1103/PhysRevLett.101.053903.

Resolved-sideband cooling of a micromechanical oscillator

A. Schliesser; R. Rivière; G. Anetsberger; O. Arcizet; T. J. Kippenberg 

Nature Physics. 2008. Vol. 4, num. 5, p. 415 – 419. DOI : 10.1038/nphys939.

Cavity-assisted backaction cooling of mechanical resonators

I. Wilson-Rae; N. Nooshi; J. Dobrindt; T. J. Kippenberg; W. Zwerger 

New Journal of Physics. 2008. Vol. 10, num. 9, p. 095007. DOI : 10.1088/1367-2630/10/9/095007.

Ultralow-dissipation optomechanical resonators on a chip

G. Anetsberger; R. Riviere; A. Schliesser; O. Arcizet; T. J. Kippenberg 

Nature Photonics. 2008. Vol. 2, p. 627 – 633. DOI : 10.1038/nphoton.2008.199.

Parametric Normal-Mode Splitting in Cavity Optomechanics

J. M. Dobrindt; I. Wilson-Rae; T. J. Kippenberg 

Physical Review Letters. 2008. Vol. 101, num. 26, p. 263602. DOI : 10.1103/PhysRevLett.101.263602.

High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators

A. Schliesser; G. Anetsberger; R. Riviere; O. Arcizet; T. Kippenberg 

New Journal of Physics. 2008. Vol. 10, p. 095015. DOI : 10.1088/1367-2630/10/9/095015.

PHOTONICS Nanomechanics gets the shakes

T. J. Kippenberg 

Nature. 2008. Vol. 456, p. 458 – 458. DOI : 10.1038/456458a.

2007

Cavity Opto-Mechanics

T. Kippenberg; K. J. Vahala 

Optics Express. 2007. Vol. 15, num. 25, p. 17172. DOI : 10.1364/OE.15.017172.