Publications

Joint modelling of brain and behaviour dynamics with artificial intelligence

M. W. Mathis; A. Mathis 

Nature Reviews Neuroscience. 2025. DOI : 10.1038/s41583-025-00996-1.

Individual identification of brown bears using pose-aware metric learning

B. Rosenberg; M. Zhou; N. Wolf; M. Mathis; B. P. Harris et al. 

2025.

Beyond single neurons: population response geometry in digital twins of mouse visual cortex

D. Liscai; E. Luconi; A. Marin Vargas; A. Sanzeni 

Journal of Statistical Mechanics: Theory and Experiment. 2025. Vol. 2025, num. 9, p. 094003. DOI : 10.1088/1742-5468/adde43.

MUSt3R: Multi-view Network for Stereo 3D Reconstruction

Y. Cabon; L. Stoffl; L. Antsfeld; G. Csurka; B. Chidlovskii et al. 

2025. The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025, Nashville, Tennessee, US, 2025-06-11 – 2025-06-15. p. 1050 – 1060. DOI : 10.1109/cvpr52734.2025.00106.

Deep-learning models of the ascending proprioceptive pathway are subject to illusions

A. Perez Rotondo; M. Simos; S. Pigeon; F. David; O. Blanke et al. 

Experimental Physiology. 2025. DOI : 10.1113/ep092313.

EPFL-Smart-Kitchen-30: Densely annotated cooking dataset with 3D kinematics to challenge video and language models

A. Bonnetto; H. Qi; F. Leong; M. Tashkovska; M. Rad et al. 

2025

EPFL-Smart-Kitchen-30 Annotations and Poses

A. Bonnetto; H. Qi; F. Leong; M. Tashkovska; M. Hamidi Rad et al. 

2025.

EPFL-Smart-Kitchen-30 Collected data

A. Bonnetto; H. Qi; F. Leong; M. Tashkovska; M. Hamidi Rad et al. 

2025.

MammAlps: A multi-view video behavior monitoring dataset of wild mammals in the Swiss Alps

V. Gabeff; D. Tuia; A. Mathis 

2025.

Climbing out of the lab: studying motor planning and coarticulation in the climbing gym

A. Bonnetto; A. Mathis 

Journal of Neurophysiology. 2025. Vol. 133, num. 4, p. 1279 – 1281. DOI : 10.1152/jn.00140.2025.

Data for Deep-learning models of the ascending proprioceptive pathway are subject to illusions

A. Perez Rotondo; S. Pigeon; F. David; M. Simos; O. Blanke et al. 

2025.

MammAlps: A multi-view video behavior monitoring dataset of wild mammals in the Swiss Alps

V. Gabeff; H. Qi; B. Flaherty; G. Sümbül; A. Mathis et al. 

2025

Reverse engineering primate sensorimotor control with machine learning

A. Marin Vargas / A. Mathis (Dir.)  

Lausanne, EPFL, 2025. 

From wild to lab: learning pose, identity and behavior across animals with deep learning

M. Zhou / A. Mathis (Dir.)  

Lausanne, EPFL, 2025. 

Musculoskeletal motor control with reinforcement learning

A. S. Chiappa / A. Mathis (Dir.)  

Lausanne, EPFL, 2025. 

From Pose to Behavior: Advancing Multi-Individual Pose Estimation and Hierarchical Action Segmentation with Transformers

L. Stoffl / A. Mathis (Dir.)  

Lausanne, EPFL, 2025. 

PICLe: Pseudo-Annotations for In-Context Learning in Low-Resource Named Entity Detection

S. Mamooler; S. Montariol; A. Mathis; A. Bosselut 

2024

Decoding the brain: From neural representations to mechanistic models

M. W. Mathis; A. P. Rotondo; E. F. Chang; A. S. Tolias; A. Mathis 

CELL. 2024. Vol. 187, num. 21, p. 5814 – 5832. DOI : 10.1016/j.cell.2024.08.051.

Acquiring musculoskeletal skills with curriculum-based reinforcement learning

A. Chiappa; P. Tano; N. Patel; A. R. L. Ingster; A. Pouget et al. 

2024

Elucidating the Hierarchical Nature of Behavior with Masked Autoencoders (BehaveMAE & Shot7M2)

L. Stoffl; A. Bonnetto; S. D’Ascoli; A. Mathis 

2024.

Elucidating the Hierarchical Nature of Behavior with Masked Autoencoders

L. Stoffl; S. d’Ascoli; A. Bonnetto; A. Mathis 

2024

Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics

C. Weinreb; J. E. Pearl; S. Lin; M. A. M. Osman; L. Zhang et al. 

Nature methods. 2024. Vol. 21, num. 7, p. 1329 – 1339. DOI : 10.1038/s41592-024-02318-2.

SuperAnimal pretrained pose estimation models for behavioral analysis

S. Ye; A. Filippova; S. Schneider; M. Vidal; J. Lauer et al. 

Nature communications. 2024. Vol. 15, num. 1. DOI : 10.1038/s41467-024-48792-2.

HOISDF: Constraining 3D Hand-Object Pose Estimation with Global Signed Distance Fields: Processed data and trained models

H. Qi; C. Zhao; M. Salzmann; A. Mathis 

2024.

WildCLIP: Scene and Animal Attribute Retrieval from Camera Trap Data with Domain-Adapted Vision-Language Models

V. A. G. Gabeff; M. Russwurm; D. Tuia; A. Mathis 

International Journal Of Computer Vision. 2024. DOI : 10.1007/s11263-024-02026-6.

Task-driven neural network models predict neural dynamics of proprioception

A. M. Vargas; A. Bisi; A. S. Chiappa; C. Versteeg; L. E. Miller et al. 

Cell. 2024. Vol. 187, num. 7. DOI : 10.1016/j.cell.2024.02.036.

Data for Contrasting action and posture coding with hierarchical deep neural network models of proprioception

K. Sandbrink; P. Mamidanna; C. Michaelis; M. Bethge; M. Mathis et al. 

2024.

Task-driven neural network models predict neural dynamics of proprioception: Experimental data, activations and predictions of neural network models

A. Marin Vargas; A. Bisi; A. S. Chiappa; C. Versteeg; L. E. Miller et al. 

2024.

Synthetic data (Part 1) for “HOISDF: Constraining 3D Hand-Object Pose Estimation with Global Signed Distance Fields”

H. Qi; C. Zhao; M. Salzmann; A. Mathis 

2024.

Task-driven neural network models predict neural dynamics of proprioception: Neural network model weights

A. Marin Vargas; A. Bisi; A. Chiappa; C. Versteeg; L. E. Miller et al. 

2024.

Acquiring musculoskeletal skills with curriculum-based reinforcement learning – model weights

A. Chiappa; P. Tano; N. Patel; A. R. L. Ingster; A. Pouget et al. 

2024.

Synthetic data (Part 2) for “HOISDF: Constraining 3D Hand-Object Pose Estimation with Global Signed Distance Fields”

H. Qi; C. Zhao; M. Salzmann; A. Mathis 

2024.

Task-driven neural network models predict neural dynamics of proprioception: Synthetic muscle spindle datasets

A. Marin Vargas; A. Bisi; A. S. Chiappa; C. Versteeg; L. E. Miller et al. 

2024.

HOISDF: Constraining 3D Hand-Object Pose Estimation with Global Signed Distance Fields

H. Qi; C. Zhao; M. Salzmann; A. Mathis 

2024. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, 2024-06-16 – 2024-06-22. DOI : 10.1109/CVPR52733.2024.00989.

WildCLIP: Scene and animal attribute retrieval from camera trap data with domain-adapted vision-language models

V. A. G. Gabeff; M. C. Russwurm; D. Tuia; A. Mathis 

2024.

AmadeusGPT: a natural language interface for interactive animal behavioral analysis

S. Ye; J. Lauer; M. Zhou; A. Mathis; M. Mathis 

2023. 37th Conference on Neural Information Processing Systems (NeurIPS 2023), New Orleans, 2023-12-10 – 2023-12-16.

Data Champions Lunch Talks – AI and research data, a new synergy

A. Mathis; S. L. Dürr; G. Barazzetti; R. Castello 

Data Champions Lunch Talks, EPFL, CM 1 120, Sept. 7, 2023.

Scene and animal attributes retrieval from camera trap data with domain-adapted language-vision models

V. A. G. Gabeff; M. C. Russwurm; D. Tuia; A. Mathis 

2023. Computer Vision and Pattern Recognition (CVPR) Workshops, Vancouver, CA, June 18-22, 2023.

Contrasting action and posture coding with hierarchical deep neural network models of proprioception

K. J. Sandbrink; P. Mamidanna; C. Michaelis; M. Bethge; M. W. Mathis et al. 

Elife. 2023. Vol. 12, p. e81499. DOI : 10.7554/eLife.81499.

NeuroAI: If grid cells are the answer, is path integration the question?

M. Frey; M. W. Mathis; A. Mathis 

Current Biology. 2023. Vol. 33, num. 5, p. R190 – R192. DOI : 10.1016/j.cub.2023.01.031.

Neural and algorithmic bases of odor guided trail following in mice

S. Jayakumar; W. Tong; G. Reddy; A. Mathis; V. N. Murthy 

2023. 45th Annual Meeting of the Association-for-Chemoreception-Sciences, Bonita Springs, FL, APR 19-22, 2023.

Rethinking pose estimation in crowds: overcoming the detection information bottleneck and ambiguity

M. Zhou; L. Stoffl; M. Mathis; A. Mathis 

2023.

Rethinking Pose Estimation in Crowds: Overcoming the Detection Information Bottleneck and Ambiguity

M. Zhou; L. Stoffl; M. Mathis; A. Mathis 

2023. IEEE/CVF International Conference on Computer Vision (ICCV), Paris, October 2-6, 2023. p. 14689 – 14699. DOI : 10.1109/ICCV51070.2023.01350.

Task-driven neural network models predict neural dynamics of proprioception

A. Marin Vargas; A. Bisi; A. Chiappa; C. Versteeg; L. Miller et al. 

2023

Striatal dopamine explains novelty-induced behavioral dynamics and individual variability in threat prediction

K. Akiti; I. Tsutsui-Kimura; Y. Xie; A. Mathis; J. E. Markowitz et al. 

Neuron. 2022. Vol. 110, num. 22, p. 3789 – +. DOI : 10.1016/j.neuron.2022.08.022.

Multi-animal pose estimation, identification and tracking with DeepLabCut

J. Lauer; M. Zhou; S. Ye; W. Menegas; S. Schneider et al. 

Nature Methods. 2022. Vol. 19, num. 4, p. 496 – 504. DOI : 10.1038/s41592-022-01443-0.

Perspectives in machine learning for wildlife conservation

D. Tuia; B. Kellenberger; S. Beery; B. R. Costelloe; S. Zuffi et al. 

Nature Communications. 2022. Vol. 13, num. 1, p. 792. DOI : 10.1038/s41467-022-27980-y.

Perspectives on Individual Animal Identification from Biology and Computer Vision

M. Vidal; N. Wolf; B. Rosenberg; B. P. Harris; A. Mathis 

Integrative And Comparative Biology. 2021. Vol. 61, num. 3, p. 900 – 916. DOI : 10.1093/icb/icab107.

Measuring and modeling the motor system with machine learning

S. B. Hausmann; A. Marin Vargas; A. Mathis; M. Mathis 

Current Opinion in Neurobiology. 2021. Vol. 70, p. 11 – 23. DOI : 10.1016/j.conb.2021.04.004.

Deep learning tools for the analysis of movement, identity and behavior

A. Mathis 

2021. Annual Meeting of the Society-for-Integrative-and-Comparative-Biology (SICB), ELECTR NETWORK, Jan 31-Feb 28, 2021. p. E581 – E582.