MOF/MOF Heterojunctions

S. Kampouri, F. M. Ebrahim, M. Fumanal, M. Nord, P. A. Schouwink, R. Elzein, R. Addou, G. S. Herman, B. Smit, C. P. Ireland, and K. C. Stylianou, Enhanced Visible-Light-Driven Hydrogen Production through MOF/MOF Heterojunctions ACS Appl. Mater. Interfaces  (2021) DOI: 10.1021/acsami.0c23163

Abstract: A strategy for enhancing the photocatalytic performance of MOF-based systems (MOF: metal–organic framework) is developed through the construction of MOF/MOF heterojunctions. The combination of MIL-167 with MIL-125-NH2 leads to the formation of MIL-167/MIL-125-NH2 heterojunctions with improved optoelectronic properties and efficient charge separation. MIL-167/MIL-125-NH2 outperforms its single components MIL-167 and MIL-125-NH2, in terms of photocatalytic H2 production (455 versus 0.8 and 51.2 μmol h–1 g–1, respectively), under visible-light irradiation, without the use of any cocatalysts. This is attributed to the appropriate band alignment of these MOFs, the enhanced visible-light absorption, and long charge separation within MIL-167/MIL-125-NH2. Our findings contribute to the discovery of novel MOF-based photocatalytic systems that can harvest solar energy and exhibit high catalytic activities in the absence of cocatalysts.