M.Sc. projects

Student Projects in the LMTS – Spring 2026

If you are interested in a project, please contact the Ph.D. student or postdoc in charge of that project. The working languages in our group are English (primarily) and French.

For EPFL students:  Please note the LMTS is located in Neuchatel. Semester project students are expected to come to Neuchatel at least one day a week, while Master projects students are in Neuchùtel every day. Travel is reimbursed according to fixed HR rules.

For non-EPFL students, it might be possible to do your Master’s project at the EPFL, project duration is 6 months. 

Instructions for projects in our lab:

 Instructions for semester projects

–  Evaluation criteria

Student projects on the following topical areas (for complete descriptions please scroll on down)

  1. Soft Robotics and Haptics
  2. MEMS and Printed Microsystems

1. SOFT ROBOTICS AND HAPTICS

We are developing a unique type of electrostatic film actuators for soft robotics, designed for flexibility, high force output, and energy efficiency. This project focuses on key tasks to develop the actuator and optimize its performance:
 
Task 1: Control and Characterization
This task aims to develop control systems for multi-layer sliding electrostatic actuators and characterize how parameters affect performance, including speed, force, and energy efficiency.
 
Task 2: Encapsulation and Dielectric Liquid Integration
This task involves designing and fabricating a flexible, stretchable pouch that encapsulates the actuator, ensuring even dielectric liquid distribution without air bubbles.
 
Task 3: Wearable Robot Application
The final application of this project is to develop a wearable robot using the electrostatic film actuator to assist human motion.

Type: 
only as Master project
Period:
Spring 2026
Section(s)
GM, MT, ME, MX, or from another university
Type of work:
Design, fabricate and test a novel flexible artificial muscle
Requirements:
Strong interest in soft robotics
Subject(s):
Soft robotics, artificial muscle, wearable robot, exosuit
Contact:
Dr. Junsoo Kim
We have developed thin tubes that pump liquid with no moving parts: we call them FiberPumps. They can be used for a broad range of applications in soft robotics. The project we propose is to 
 
Task 1: COMSOL model of FiberPumps.
This is a challenging and rich multiphysics problem to understand how fluids move in the helical structure at higher electric fields. This will enable much higher efficiency pumps and allow validating new designs prior to fabrication.
 
Task 2: Aging and Electrochemistry
The metal electrodes can react with the fluid being pumped due to the high voltages. You will perform experiments to verify or invalidate hypothesis on how aging occurs, making FiberPumps with different materials, testing them, and using analytical tools to study the degradation process.

Type: 
only as Master project
Period:
Spring 2026
Section(s)
GM, MT, ME, MX, or from another university
Type of work:
Design, fabricate and characterize new generations of FiberPumps
Requirements:
Strong interest in soft robotics, strong Physics background
Subject(s):
Soft robotics, wearable robotics
Contact:
Dr. Jacob Rogatinski
We are looking for a group of motivated students to design and prototype a handheld, wireless vibrotactile stimulator that can deliver precise vibrations (10–2000 Hz, 10 nm–10 ”m) for self-testing of touch sensitivity anywhere on the human body.

Collaboration with EPFL-LASA, UniGE, and HUG.

Working closely with EPFL faculty, neuroscientists from the University of Geneva Faculty of Medicine, and clinicians at theGeneva University Hospitals, you will explore small high-speed actuators, closed-loop sensory integration, and advanced damping strategies to overcome these challenges. The main development will take place at EPFL, with regular visits and co-supervision by research laboratories in Geneva

The overall project and societal context is also well explained in the short movie provided by the Leenaards foundation: https://vimeo.com/1071152083?fl=pl&fe=sh

Detailed info in this pdf

Type: 
only as Master project
Period:
Spring 2026
Section(s)
MT, ME, or from another university
Type of work:
Design, fabricate and characterize new generations of FiberPumps
Requirements:
Strong skills in electronics, mechanics and physics
Subject(s):
medical devices, vibrotactile, perception
Contact:
Dr. Thomas Daunizeau

The start-up Elecyor is developing a flexible fiber-format linear motor, based on a PhD thesis done at EPFL-LMTS. Working near Lyon, France, the student will develop advanced manufacturing methods and automated test benches to characterize this new type of linear actuator.

Detailed info in this pdf

Type: 
Master project in a company
Period:
Spring 2026
Section(s)
MT, ME, or from another university
Type of work:
Develop fabrication and test bench for electrostatic fiber motor
Requirements:
Strong skills in electronics, mechanics and physics
Subject(s):
linear motor, technology transfer, wearable robotics
Contact:
Dr. Sylvain Schaller

A laboratory at the Institute of Sport Sciences at the University of Lausanne (ISSUL) has developed a system to culture bioengineered skeletal muscle in vitro. They need a systems to measure the mN-level forces generated by the muscle bundles, while operating in an incubator.

Detailed info in this pdf

Type: 
Master project
Period:
Spring 2026
Section(s)
MT, ME, or from another university
Type of work:
Design, fabricate and force sensors to measure muscle culture in-vitro
Requirements:
Strong skills in electronics, mechanics and physics
Subject(s):
force sensors, cell culture, precision measurement 
Contact:
Clément Lanfranchi

2. MEMS & PRINTED MICROSYSTEMS

We aim to create transient metallic conductors and device elements by electroplating zinc onto laser-induced graphene (LIG) patterned on eco-responsible bipolymeric substrates. LIG serves as a conductive seed enabling localized Zn growth at low temperature, yielding maskless, low-waste metallization with higher conductivity versus bare LIG. We will optimize electrolyte composition, current density, plating time. We will validate performance on passive and sensing demonstrators, including printed resistors (with tunable resistance via geometry/plating thickness), paper-based humidity sensors (tracking resistance/impedance changes with RH), and simple RF antennas (loops/meanders). In the frame of a master project, reliability will be evaluated under bending and humidity; end-of-life will be assessed through controlled Zn dissolution to benign ZnÂČâș and substrate recyclability/compostability. The outcome is a practical recipe for greener metallization that enables low-power sensing and wireless/passive components on transient platforms.

In this project, you will develop zinc-electroplated, laser-induced graphene (LIG) conductors on eco-responsible biopolymeric substrates and turn them into simple passive and sensing elements, with dedicated work on the LIG itself. You will optimize LIG formation by adjusting process parameters and perform microstructural, electrical and mechanical characterisation of the layers. . Building on this, you will tune zinc electroplating parameters to achieve low-resistance, well-adhered metallization. Patterned test structures will include printed resistors with geometry- and thickness-tunable values, sensors tracked by resistance or impedance, and compact loop or meander RF antennas characterized by basic S-parameters. In the frame of a Master project, work will address the mechanical and chemical reliability and the end-of-life looking at dissolution or composting of the structures.

Type: ONLY for Master project
Period: Spring 2026
Section(s) MT, EL, MX
Type of work: Design, fabrication and characterization
Requirements: Interest in development of processes and devices, and characterisation of morphological, electrical, and mechanical properties
Subject(s): Additive manufacturing and transient electronics/sensors
Contact: Lorenzo Travaglini & Danick Briand

We propose a fully biodegradable, chipless wireless biochemical sensor for point-of-care detection of biomarkers in biofluids, designed to reduce e-waste from single-use diagnostics. The device consists of a printed radio-frequency resonator on an eco-friendly, biocompatible substrate together with a green biofunctional layer that binds the target analyte. Binding events change the electrical properties of the resonator, which can be read wirelessly by monitoring shifts in amplitude and/or resonant frequency of the returned signal. We will use impedimetric studies to optimize both the resonator architecture and the interface between the resonator and the biofunctional layer. The goal is to demonstrate a transient biosensing label that operates reliably during its intended use window and can safely enter recycling, composting, or benign dissolution at end of life.

In this project, the student can focus on three complementary tracks. For transducer development, they can design and print LC resonators on biodegradable substrates, tune geometry and materials to control resonance and Q-factor, and establish simple, repeatable readout conditions. Students can develop eco-friendly surface treatments to realise sensing elements from the LC resonator, add recognition layers , and verify basic stability and sensing behaviors in relevant fluids. Finally, in the frame of a Master project the processes can be fully studied and integrated from printing to biofunctionalisation, and wireless measurement, including the evaluation performance through controlled laboratory assays that track resonance or amplitude shifts versus analyte concentration, alongside basic reliability checks.

Type: ONLY for Master project
Period: Spring 2026
Section(s) MT, EL
Type of work: Electrode manufacturing, printing, chemical functionalization and testing
Requirements: Interest in sensors, bio-functionalisation, printed electronics, RF sensors
Subject(s): Chipless sensing resonators, additive manufacturing, chemical functionalization
Contact: Lorenzo Travaglini & Danick Briand

We will develop biodegradable biointerfaces on zinc and carbon (printed carbon and/or graphene) electrodes that can be functionalized for a broad range of analytes. Water-compatible chemistries will immobilize diverse receptors while preserving full device transience and avoiding persistent materials. Functionalization efficiency will be evaluated with surface analysis (e.g., XPS, FTIR, Raman, and contact-angle) to confirm composition, coverage, and uniformity. Electrochemical impedance spectroscopy (EIS) will be performed in relevant electrolytes, fit with appropriate equivalent-circuit models.  It will be applied to quantify interfacial parameters (charge-transfer resistance, film/double-layer capacitances, and diffusion elements) across baseline, post-functionalization, and target-binding states. The outcome is a general, environmentally conscious set of methods and validation guidelines for transient electrode functionalization.

In this project, students can focus on developing and testing biodegradable biointerfaces on zinc and carbon electrodes. They may formulate water-compatible surface chemistries, prepare and activate electrode surfaces, and attach generic recognition layers while preserving device transience. They can build a light surface-analysis workflow, such as XPS, ATR-FTIR or Raman, and contact-angle, to verify composition, coverage, and uniformity, and then implement electrochemical impedance spectroscopy in relevant electrolytes, fitting data with simple equivalent-circuit models to extract interfacial parameters and compare functionalization routes. Depending on interest, they can prototype basic sensing tests that track electrical changes before and after functionalization and upon exposure to representative analytes, examine nonspecific interactions and simple blocking strategies, and run short stability checks in relevant fluids.

Type: Semester or Master project
Period: Spring 2026
Section(s) MT, LS, EL
Type of work: Electrodes manufacturing and their biochemical functionalization and testing
Requirements: Interest for biosensors and electrochemistry
Subject(s): Printed electrochemical transient electrodes and their bio-functionalisation
Contact: Lorenzo Travaglini & Danick Briand

Currently, wireless IoT RFID devices used for identification and sensing rely on some harmful components making their environmentally friendly disposal impossible after service life. In the frame of an European project with partners in France, we are developing eco-friendly RFID and NFC sensing tags made by the additive manufacturing of biodegradable materials on paper substrates. These tags can aim at identification of items or at the monitoring of perishable goods during their transport. At their end of life, these tags being developed could be recycled or safely disposed not being harmful to the environment.

In this student project, work will be performed on the development of biodegradable sensors and their integration on eco-responsible RFID tags. The biodegradable RFID tags are based on the printing of a biodegradable metal and dielectric layers, with the silicon chip being the only non biodegradable component remaining. The project will focus on the development of temperature threshold sensors, address the design and fabrication of RFID tag and the characterisation of the different components (sensors, antenna, tag) and of the whole system, including their biodegradation.

Type: ONLY for Master project
Period: Spring 2026
Section(s) MT, MX, EL
Type of work: Sensors design, fabrication, modelling, and characterisation
Requirements: Interest in experimental work on sensing and green electronics
Subject(s): Printed biodegradable electronics, environmental sensing, RF tags
Contact: Danick Briand