Publications

2025

Journal Articles

Geometry-induced spin chirality in a non-chiral ferromagnet at zero field

M. Xu; A. J. M. Deenen; H. Guo; P. Morales-Fernández; S. Wintz et al. 

Nature Nanotechnology. 2025. DOI : 10.1038/s41565-025-02055-3.

Nonreciprocal Spin Waves in Nanoscale Hybrid Néel–Bloch–Néel Domain Walls Detected by Scanning X‐Ray Microscopy in Perpendicular Magnetic Anisotropic Fe/Gd Multilayers

P. Che; A. J. M. Deenen; A. Mucchietto; J. Gräfe; M. Heigl et al. 

Advanced Materials. 2025. DOI : 10.1002/adma.202508181.

Electrical detection of interfacial exchange field at the (ferromagnetic insulator) | (normal metal) interface using spin-dependent scattering

P. K. Muduli; N. Leo; M. Xu; Z. Zhu; J. Puebla et al. 

Journal of Physics D: Applied Physics. 2025. Vol. 58, num. 28, p. 285003. DOI : 10.1088/1361-6463/ade691.

Short-wave magnons with multipole spin precession detected in the topological bands of a skyrmion lattice

P. Che; R. Ciola; M. Garst; V. Kravchuk; P. R. Baral et al. 

Communications Materials. 2025. Vol. 6, num. 1. DOI : 10.1038/s43246-025-00858-4.

Deterministic switching of antiferromagnetic spin textures by nonlinear magnons

J. Chen; M. Xu; J. Wang; K. Wagner; L. Sheng et al. 

Nature Communications. 2025. num. 16, p. 5794. DOI : 10.1038/s41467-025-60883-2.

Periodic Phase Slips and Frequency Comb Generation at Tunable Microwave Frequencies in Superconducting Diabolo Structures

A. J. M. Deenen; D. Grundler 

ACS Nanoscience Au. 2025. DOI : 10.1021/acsnanoscienceau.5c00056.

Control of spin currents by magnon interference in a canted antiferromagnet

L. Sheng; A. Duvakina; H. Wang; K. Yamamoto; R. Yuan et al. 

Nature Physics. 2025. Vol. 21, p. 740 – 745. DOI : 10.1038/s41567-025-02819-7.

Perspective on nonvolatile magnon-signal storage and in-memory computation for low-power consuming magnonics

A. E. S. Nizet; M. Xu; S. S. Joglekar; A. Mucchietto; D. Grundler 

Applied Physics Letters. 2025. Vol. 126, num. 16. DOI : 10.1063/5.0260884.

2025 roadmap on 3D nanomagnetism

G. Gubbiotti; A. Barman; S. Ladak; C. Bran; D. Grundler et al. 

JOURNAL OF PHYSICS-CONDENSED MATTER. 2025. Vol. 37, num. 14. DOI : 10.1088/1361-648X/ad9655.

Reviews

Exploiting Two‐Photon Lithography, Deposition, and Processing to Realize Complex 3D Magnetic Nanostructures

J. Askey; A. van den Berg; S. R. Gomez; C. Donnelly; D. Grundler et al. 

Advanced Functional Materials. 2025.  p. 1 – 30. DOI : 10.1002/adfm.202516383.

Theses

Magnon assisted magnetization reversal in NiFe-YIG hybrid nanostructures

S. S. Joglekar / D. Grundler (Dir.)  

Lausanne, EPFL, 2025. 

Additive Manufacturing and Exploration of Three-Dimensional Ferromagnetic Nanonetworks for 3D Magnonics and 3D Spintronics

H. Guo / D. Grundler (Dir.)  

Lausanne, EPFL, 2025. 

2024

Journal Articles

Emergent coherent modes in nonlinear magnonic waveguides detected at ultrahigh frequency resolution

K. An; M. Xu; A. Mucchietto; C. Kim; K-W. Moon et al. 

Nature Communications. 2024. num. 15(2024), p. 7302. DOI : 10.1038/s41467-024-51483-7.

Reversing the magnetization of 50-nm-wide ferromagnets by ultrashort magnons in thin-film Yttrium Iron Garnet

S. S. Joglekar; K. Baumgaertl; A. Mucchietto; F. R. Berger; D. Grundler 

Nanoscale Horizons. 2024. DOI : 10.1039/d4nh00095a.

A polymer-semiconductor-ceramic cantilever for high-sensitivity fluidcompatible microelectromechanical systems

N. Hosseini; M. Neuenschwander; J. Adams; M. Winhold; O. Peric et al. 

Nature Electronics. 2024. Vol. 7, num. 7, p. 567 – 575. DOI : https://doi.org/10.1038/s41928-024-01195-z.

Generation of out-of-plane polarized spin current in (permalloy, Cu)/EuS interfaces

P. Gupta; N. Chowdhury; M. Xu; P. K. Muduli; A. Kumar et al. 

Physical Review B. 2024. Vol. 109, num. 6, p. L060405. DOI : 10.1103/PhysRevB.109.L060405.

Orientation-dependent two-dimensional magnonic crystal modes in an ultralow-damping ferrimagnetic waveguide containing repositioned hexagonal lattices of Cu disks

K. Mori; T. Koguchi; T. Watanabe; Y. Yoshihara; H. Miyashita et al. 

Physical Review Applied. 2024. Vol. 21, num. 1, p. 014061. DOI : 10.1103/PhysRevApplied.21.014061.

Magnon-Assisted Magnetization Reversal of Ni81Fe19 Nanostripes on Y3Fe5O12 with Different Interfaces

A. Mucchietto; K. Baumgärtl; D. Grundler 

ACS Nano. 2024. Vol. 18, num. 12, p. 8641 – 8648. DOI : 10.1021/acsnano.3c06353.

Antiferromagnetic droplet soliton driven by spin current

R. V. Ovcharov; M. Hamdi; B. A. Ivanov; J. Åkerman; R. S. Khymyn 

Applied Physics Letters. 2024. Vol. 124, num. 17, p. 172406. DOI : 10.1063/5.0189712.

Reviews

The 2024 Magnonics Roadmap

B. Flebus; D. Grundler; B. Rana; Y. Otani; I. Barsukov et al. 

Journal of Physics: Condensed Matter. 2024. Vol. 36, p. 363501. DOI : 10.1088/1361-648X/ad399c.

Datasets

Emergent coherent modes in nonlinear magnonic waveguides detected at ultrahigh frequency resolution

K. An; X. Mingran; A. Mucchietto; K. Changsoo; K-W. Moon et al. 

2024.

2023

Journal Articles

Realization and Control of Bulk and Surface Modes in 3D Nanomagnonic Networks by Additive Manufacturing of Ferromagnets

H. Guo; A. J. M. Deenen; M. Xu; M. Hamdi; D. Grundler 

Advanced Materials. 2023. Vol. 35, p. 2303292. DOI : 10.1002/adma.202303292.

Reversal of nanomagnets by propagating magnons in ferrimagnetic yttrium iron garnet enabling nonvolatile magnon memory

K. Baumgärtl; D. Grundler 

Nature Communications. 2023. Vol. 14, p. 1490. DOI : 10.1038/s41467-023-37078-8.

Confined spin waves in magnetochiral nanotubes with axial and circumferential magnetization

M. C. Giordano; M. Hamdi; A. Mucchietto; D. Grundler 

Physical Review Materials. 2023. Vol. 7, num. 2, p. 024405. DOI : 10.1103/PhysRevMaterials.7.024405.

Periodic and Aperiodic NiFe Nanomagnet/Ferrimagnet Hybrid Structures for 2D Magnon Steering and Interferometry with High Extinction Ratio

S. Watanabe; V. S. Bhat; A. Mucchietto; E. N. Dayi; S. Shan et al. 

Advanced Materials. 2023. Vol. 35, p. 2301087. DOI : 10.1002/adma.202301087.

Spin dynamics, loop formation and cooperative reversal in artificial quasicrystals with tailored exchange coupling

V. S. Bhat; S. Watanabe; F. Kronast; K. Baumgaertl; D. Grundler 

Communications Physics. 2023. Vol. 6, num. 1, p. 193. DOI : 10.1038/s42005-023-01310-0.

Spin wave dispersion of ultra-low damping hematite ( α−Fe2O3 ) at GHz frequencies

M. Hamdi; F. Posva; D. Grundler 

Physical Review Materials. 2023. Vol. 7, num. 5, p. 054407. DOI : 10.1103/PhysRevMaterials.7.054407.

Reviews

Recent advances in magnonics

B. Flebus; S. M. Rezende; D. Grundler; A. Barman 

Journal of Applied Physics. 2023. Vol. 133, num. 16, p. 160401. DOI : 10.1063/5.0153424.

Theses

Linear and nonlinear magnetization dynamics in permalloy thin films grown on DNA origami and nanopatterned permalloy/YIG hybrid structures

A. Mucchietto / D. Grundler (Dir.)  

Lausanne, EPFL, 2023. 

Broadband spectroscopy and inelastic light scattering on the canted antiferromagnet hematite for antiferromagnetic magnonics

M. Hamdi / D. Grundler (Dir.)  

Lausanne, EPFL, 2023. 

Datasets

Dataset for the publication “Reversal of nanomagnets by propagating magnons in ferrimagnetic yttrium iron garnet enabling nonvolatile magnon memory”

K. Baumgärtl; D. Grundler 

2023.

Spin wave dispersion of ultra-low damping hematite (α-Fe2O3) at GHz frequencies

M. Hamdi; F. Posva; D. Grundler 

2023.

2022

Journal Articles

Imaging the Ultrafast Coherent Control of a Skyrmion Crystal

P. Tengdin; B. Truc; A. Sapozhnik; L. Kong; N. del Ser et al. 

Physical Review X (PRX). 2022. Vol. 12, num. 4, p. 041030. DOI : 10.1103/PhysRevX.12.041030.

Active Ferromagnetic Metasurface with Topologically Protected Spin Texture for Spectral Filters

H. Yu; J. Chen; V. Cros; P. Bortolotti; H. Wang et al. 

Advanced Functional Materials. 2022.  p. 2203466. DOI : 10.1002/adfm.202203466.

Advances in Magnetics Roadmap on Spin-Wave Computing

A. V. Chumak; P. Kabos; M. Wu; C. Abert; C. Adelmann et al. 

IEEE Transactions on Magnetics. 2022. Vol. 58, num. 6, p. 0800172. DOI : 10.1109/TMAG.2022.3149664.

Theses

Real space and reciprocal space investigations of the spin dynamics in skyrmion-hosting materials

L. Yu / D. Grundler; J. White (Dir.)  

Lausanne, EPFL, 2022. 

2021

Journal Articles

Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures

J. Zhang; M. Chen; J. Chen; K. Yamamoto; H. Wang et al. 

Nature Communications. 2021. Vol. 12, num. 1, p. 7258. DOI : 10.1038/s41467-021-27405-2.

Nuclear and Electron Spin Resonance Studies on Skyrmion‐Hosting Lacunar Spinels

M. Prinz-Zwick; B. G. Szigeti; T. Gimpel; D. Ehlers; V. Tsurkan et al. 

Physica Status Solidi B-Basic Solid State Physics. 2021.  p. 2100170. DOI : 10.1002/pssb.202100170.

Magnetoelastic coupling enabled tunability of magnon spin current generation in two-dimensional antiferromagnets

N. Bazazzadeh; M. Hamdi; S. Park; A. Khavasi; S. M. Mohseni et al. 

Physical Review B. 2021. Vol. 104, num. 18, p. L180402. DOI : 10.1103/PhysRevB.104.L180402.

Tuning interactions in reconfigurable kagome artificial spin ices for magnonics

V. S. Bhat; D. Grundler 

Applied Physics Letters. 2021. Vol. 119, num. 9, p. 092403. DOI : 10.1063/5.0064793.

Direct observation of multiband transport in magnonic Penrose quasicrystals via broadband and phase-resolved spectroscopy

S. Watanabe; V. S. Bhat; K. Baumgaertl; M. Hamdi; D. Grundler 

Science Advances. 2021. Vol. 7, num. 35, p. eabg3771. DOI : 10.1126/sciadv.abg3771.

Cubic, hexagonal and tetragonal FeGex phases (x = 1, 1.5, 2): Raman spectroscopy and magnetic properties

A. Kúkol’ová; M. Dimitrievska; A. P. Litvinchuk; S. P. Ramanandan; N. Tappy et al. 

CrystEngComm. 2021.  p. 1 – 12. DOI : 10.1039/D1CE00970B.

Confined dipole and exchange spin waves in a bulk chiral magnet with Dzyaloshinskii-Moriya interaction

P. Che; I. Stasinopoulos; A. Mucchietto; J. Li; H. Berger et al. 

Physical Review Research. 2021. Vol. 3, num. 3, p. 033104. DOI : 10.1103/PhysRevResearch.3.033104.

Ni80Fe20 nanotubes with optimized spintronic functionalities prepared by atomic layer deposition

M. C. Giordano; S. Escobar Steinvall; S. Watanabe; A. Fontcuberta i Morral; D. Grundler 

Nanoscale. 2021. Vol. 13, num. 31, p. 13451 – 13462. DOI : 10.1039/d1nr02291a.

Bistable nanomagnet as programmable phase inverter for spin waves (vol 118, 162402, 2021)

K. Baumgaertl; D. Grundler 

Applied Physics Letters. 2021. Vol. 118, num. 21, p. 219904. DOI : 10.1063/5.0056643.

Dipolar-stabilized first and second-order antiskyrmions in ferrimagnetic multilayers

M. Heigl; S. Koraltan; M. Vaňatka; R. Kraft; C. Abert et al. 

Nature Communications. 2021. Vol. 12, num. 1, p. 2611. DOI : 10.1038/s41467-021-22600-7.

van der Waals Epitaxy of Co10–xZn10–yMnx+y Thin Films: Chemical Composition Engineering and Magnetic Properties

A. Kúkoĺová; S. Escobar Steinvall; R. Paul; J-B. Leran; P. Che et al. 

Journal of Physical Chemistry C. 2021. Vol. 125, num. 17, p. 9391 – 9399. DOI : 10.1021/acs.jpcc.1c00452.

Bistable nanomagnet as programmable phase inverter for spin waves

K. Baumgaertl; D. Grundler 

Applied Physics Letters. 2021. Vol. 118, num. 16, p. 162402. DOI : 10.1063/5.0048825.

Reviews

Mesoscopic magnetic systems: From fundamental properties to devices

L. J. Heyderman; J. Grollier; C. H. Marrows; P. Vavassori; D. Grundler et al. 

Applied Physics Letters. 2021. Vol. 119, num. 8, p. 080401. DOI : 10.1063/5.0064083.

The 2021 Magnonics Roadmap

A. Barman; G. Gubbiotti; S. Ladak; A. O. Adeyeye; M. Krawczyk et al. 

Journal of Physics: Condensed Matter. 2021. Vol. 33, num. 41, p. 413001. DOI : 10.1088/1361-648X/abec1a.

Theses

Magnons, worms and nanogratings in artificial magnetic quasicrystals

S. Watanabe / D. Grundler (Dir.)  

Lausanne, EPFL, 2021. 

Atomic layer deposition of Ni and Ni80Fe20 for tubular spin-wave nanocavities

M. C. Giordano / D. Grundler; A. Fontcuberta i Morral (Dir.)  

Lausanne, EPFL, 2021. 

Magnonic crystals with reconfigurable magnetic defects for spin-based microwave electronics

K. Baumgärtl / D. Grundler (Dir.)  

Lausanne, EPFL, 2021. 

Synthesis, structural and magnetic characterization of thin films of the chiral magnets CoZnMn and FeGe

A. Kúkol’ová / D. Grundler; A. Fontcuberta i Morral (Dir.)  

Lausanne, EPFL, 2021. 

Helimagnons and Skyrmion Dynamics in Cu2OSeO3 and Fe/Gd Multilayers Explored by Brillouin Light Scattering and X-ray Microscopy

P. Che / D. Grundler (Dir.)  

Lausanne, EPFL, 2021. 

Datasets

Dataset for “Cubic, hexagonal and tetragonal FeGex phases (x = 1, 1.5, 2): Raman spectroscopy and magnetic properties”

A. Kúkol’ová; M. Dimitrievska; A. P. Litvinchuk; S. P. Ramanandan; N. Tappy et al. 

2021.

Data files of “Ni80Fe20 nanotubes with optimized spintronic functionalities prepared by atomic layer deposition”

M. C. Giordano; S. Escobar Steinvall; S. Watanabe; A. Fontcuberta i Morral; D. Grundler 

2021.

Dataset for “Van der Waals Epitaxy of Co10–xZn10–yMnx+y Thin Films: Chemical Composition Engineering and Magnetic Properties”

A. Kúkol’ová; S. Escobar Steinwall; R. Paul; J-B. Leran; P. Che et al. 

2021.

2020

Journal Articles

Single shot acquisition of spatially resolved spin wave dispersion relations using X-ray microscopy

N. Träger; F. Groß; J. Förster; K. Baumgaertl; H. Stoll et al. 

Scientific Reports. 2020. Vol. 10, num. 1, p. 18146. DOI : 10.1038/s41598-020-74785-4.

Magnon Modes of Microstates and Microwave-Induced Avalanche in Kagome Artificial Spin Ice with Topological Defects

V. Bhat; S. Watanabe; K. Baumgaertl; A. Kleibert; M. Schoen et al. 

Physical Review Letters. 2020. Vol. 125, num. 11, p. 117208. DOI : 10.1103/PhysRevLett.125.117208.

Nanoimaging of Ultrashort Magnon Emission by Ferromagnetic Grating Couplers at GHz Frequencies

K. Baumgaertl; J. Gräfe; P. Che; A. Mucchietto; J. Förster et al. 

Nano Letters. 2020. Vol. 20, num. 10, p. 7281 – 7286. DOI : 10.1021/acs.nanolett.0c02645.

Plasma-enhanced atomic layer deposition of nickel nanotubes with low resistivity and coherent magnetization dynamics for 3D spintronics

M. C. Giordano; K. Baumgaertl; S. Escobar Steinvall; J. Gay; M. Vuichard et al. 

ACS Applied Materials & Interfaces. 2020. Vol. 12, num. 36, p. 40443. DOI : 10.1021/acsami.0c06879.

Nonreciprocal surface acoustic wave propagation via magneto-rotation coupling

M. Xu; K. Yamamoto; J. Puebla; K. Baumgaertl; B. Rana et al. 

Science Advances. 2020. Vol. 6, num. 32, p. eabb1724. DOI : 10.1126/sciadv.abb1724.

Direct Observation of Worm‐Like Nanochannels and Emergent Magnon Motifs in Artificial Ferromagnetic Quasicrystals

S. Watanabe; V. S. Bhat; K. Baumgaertl; D. Grundler 

Advanced Functional Materials. 2020.  p. 2001388. DOI : 10.1002/adfm.202001388.

Pure Spin Current and Magnon Chemical Potential in a Nonequilibrium Magnetic Insulator

K. S. Olsson; K. An; G. A. Fiete; J. Zhou; L. Shi et al. 

Physical Review X (PRX). 2020. Vol. 10, num. 2, p. 021029. DOI : 10.1103/PhysRevX.10.021029.

Efficient wavelength conversion of exchange magnons below 100 nm by magnetic coplanar waveguides

P. Che; K. Baumgaertl; A. Kúkol’ová; C. Dubs; D. Grundler 

Nature Communications. 2020. Vol. 11, num. 1, p. 1445. DOI : 10.1038/s41467-020-15265-1.

Chiral Spin-Wave Velocities Induced by All-Garnet Interfacial Dzyaloshinskii-Moriya Interaction in Ultrathin Yttrium Iron Garnet Films

H. Wang; J. Chen; T. Liu; J. Zhang; K. Baumgaertl et al. 

Physical Review Letters. 2020. Vol. 124, num. 2, p. 027203. DOI : 10.1103/PhysRevLett.124.027203.

Reviews

Magnetic Skyrmions: From Fundamental Physics to Topological Electronics

J. S. White; D. Grundler; J. Raabe; H. M. Rønnow 

SPS Mitteilungen. 2020. Vol. 60, p. 19 – 26.

2019

Journal Articles

Weak Crystallization of Fluctuating Skyrmion Textures in MnSi

J. Kindervater; I. Stasinopoulos; A. Bauer; F. X. Haslbeck; F. Rucker et al. 

Physical Review X (PRX). 2019. Vol. 9, num. 4, p. 041059. DOI : 10.1103/PhysRevX.9.041059.

Nonuniform Spin-Wave Softening in Two-Dimensional Magnonic Crystals as a Tool for Opening Omnidirectional Magnonic Band Gaps

S. Mamica; M. Krawczyk; D. Grundler 

Physical Review Applied. 2019. Vol. 11, num. 5, p. 054011. DOI : 10.1103/PhysRevApplied.11.054011.

Optimization of Spin-Wave Propagation with Enhanced Group Velocities by Exchange-Coupled Ferrimagnet-Ferromagnet Bilayers

K. An; V. Bhat; M. Mruczkiewicz; C. Dubs; D. Grundler 

Physical Review Applied. 2019. Vol. 11, num. 3, p. 034065. DOI : 10.1103/PhysRevApplied.11.034065.

2018

Journal Articles

Angle-dependent magnetization dynamics with mirror-symmetric excitations in artificial quasicrystalline nanomagnet lattices

V. S. Bhat; D. Grundler 

Physical Review B. 2018. Vol. 98, num. 17, p. 174408. DOI : 10.1103/PhysRevB.98.174408.

Multi-directional emission and detection of spin waves propagating in yttrium iron garnet with wavelengths down to about 100 nm

S. Maendl; D. Grundler 

Applied Physics Letters. 2018. Vol. 112, num. 19, p. 192410. DOI : 10.1063/1.5026060.

Phase control of spin waves based on a magnetic defect in a one-dimensional magnonic crystal

K. Baumgaertl; S. Watanabe; D. Grundler 

Applied Physics Letters. 2018. Vol. 112, num. 14, p. 142405. DOI : 10.1063/1.5024541.

Observation of end-vortex nucleation in individual ferromagnetic nanotubes

A. Mehlin; B. Gross; M. Wyss; T. Schefer; G. Tütüncüoglu et al. 

Physical Review B. 2018. Vol. 97, num. 13, p. 134422. DOI : 10.1103/PhysRevB.97.134422.

Magnon and phonon thermometry with inelastic light scattering

K. Olsson; K. An; X. Li 

Journal of Physics D : Applied Physics. 2018. Vol. 51, num. 13, p. 133001. DOI : 10.1088/1361-6463/aaadde.

2017

Journal Articles

Spin waves with large decay length and few 100 nm wavelengths in thin yttrium iron garnet grown at the wafer scale

S. Maendl; I. Stasinopoulos; D. Grundler 

Applied Physics Letters. 2017. Vol. 101, p. 012403. DOI : 10.1063/1.4991520.

Linearly polarized GHz magnetization dynamics of spin helix modes in the ferrimagnetic insulator Cu_2OSeO_3

I. Stasinopoulos; S. Weichselbaumer; A. Bauer; J. Waizner; H. Berger et al. 

Scientific Reports. 2017. Vol. 7, p. 7037. DOI : 10.1038/s41598-017-07020-2.

Exchange anisotropy in the skyrmion host GaV4S8

D. Ehlers; I. Stasinopoulos; I. Kezsmarki; T. Feher; V. Tsurkan et al. 

Journal of Physics: Condensed Matter. 2017. Vol. 29, num. 6, p. 065803. DOI : 10.1088/1361-648X/aa4e7e.

Angular-dependent magnetization dynamics of kagome artificial spin ice incorporating topological defects

V. S. Bhat; F. Heimbach; I. Stasinopoulos; D. Grundler 

Physical Review B. 2017. Vol. 96, p. 014426. DOI : 10.1103/PhysRevB.96.014426.

Tunable Short-Wavelength Spin-Wave Emission and Confinement in Anisotropy-Modulated Multiferroic Heterostructures

S. J. Hämäläinen; F. Brandl; K. J. A. Franke; D. Grundler; S. van Dijken 

Physical Review Applied. 2017. Vol. 8, p. 014020. DOI : 10.1103/PhysRevApplied.8.014020.

Experimental determination of Rashba and Dresselhaus parameters and g*- factor anisotropy via Shubnikov-de Haas oscillations

F. Herzog; H. Hardtdegen; T. Schaepers; D. Grundler; M. A. Wilde 

New Journal Of Physics. 2017. Vol. 19, p. 103012. DOI : 10.1088/1367-2630/aa833d.

Low spin wave damping in the insulating chiral magnet Cu2OSeO3

I. Stasinopoulos; S. Weichselbaumer; A. Bauer; J. Waizner; H. Berger et al. 

Applied Physics Letters. 2017. Vol. 111, p. 032408. DOI : 10.1063/1.4995240.

Imaging magnetic vortex configurations in ferromagnetic nanotubes

M. Wyss; A. Mehlin; B. Gross; A. Buchter; A. Farhan et al. 

Physical Review B. 2017. Vol. 96, p. 024423. DOI : 10.1103/PhysRevB.96.024423.

Room-temperature helimagnetism in FeGe thin films

S. L. Zhang; I. Stasinopoulos; T. Lancaster; F. Xiao; A. Bauer et al. 

Scientific Reports. 2017. Vol. 7, p. 123. DOI : 10.1038/s41598-017-00201-z.

Top-down design of magnonic crystals from bottom-up magnetic nanoparticles through protein arrays

M. Okuda; T. Schwarze; Eloi; S. E. W. Jones; P. J. Heard et al. 

Nanotechnology. 2017. Vol. 28, num. 15, p. 155301. DOI : 10.1088/1361-6528/aa62f3.

Reviews

Collective spin excitations of helices and magnetic skyrmions: review and perspectives of magnonics in non-centrosymmetric magnets

M. Garst; J. Waizner; D. Grundler 

Journal of Physics D : Applied Physics. 2017. Vol. 50, p. 293002. DOI : 10.1088/1361-6463/aa7573.

2016

Journal Articles

Approaching soft X-ray wavelengths in nanomagnet-based microwave technology

H. Yu; O. D’ Allivy Kelly; V. Cros; R. Bernard; P. Bortolotti et al. 

Nature Communications. 2016. Vol. 7, p. 11255. DOI : 10.1038/ncomms11255.

Magnetization reversal in individual Py and CoFeB nanotubes locally probed via anisotropic magnetoresistance and anomalous Nernst effect

K. Baumgaertl; F. Heimbach; S. Maendl; D. Rueffer; A. Fontcuberta I Morral et al. 

Applied Physics Letters. 2016. Vol. 108, num. 13, p. 132408. DOI : 10.1063/1.4945331.

Magnetization dynamics of topological defects and the spin solid in a kagome artificial spin ice

V. S. Bhat; F. Heimbach; I. Stasinopoulos; D. Grundler 

Physical Review B. 2016. Vol. 93, num. 14, p. 140401. DOI : 10.1103/PhysRevB.93.140401.

Nanomagnonics

D. Grundler 

Journal Of Physics D-Applied Physics. 2016. Vol. 49, num. 39, p. 391002. DOI : 10.1088/0022-3727/49/39/391002.

Dynamic cantilever magnetometry of individual CoFeB nanotubes

B. Gross; D. P. Weber; D. Rueffer; A. Buchter; F. Heimbach et al. 

Physical Review B. 2016. Vol. 93, num. 6, p. 064409. DOI : 10.1103/PhysRevB.93.064409.

Skyrmion dynamics under uniaxial anisotropy

D. Ehlers; I. Stasinopoulos; V. Tsurkan; H. -A. K. Von Nidda; T. Feher et al. 

Physical Review B. 2016. Vol. 94, num. 1, p. 014406. DOI : 10.1103/PhysRevB.94.014406.

Confinement and inhomogeneous broadening effects in the quantum oscillatory magnetization of quantum dot ensembles

F. Herzog; S. Heedt; S. Goerke; A. Ibrahim; B. Rupprecht et al. 

Journal of Physics: Condensed Matter. 2016. Vol. 28, num. 4, p. 045301. DOI : 10.1088/0953-8984/28/4/045301.

Reviews

Spintronics: Nanomagnonics around the corner

D. Grundler 

Nature Nanotechnology. 2016. Vol. 11, num. 5, p. 407 – 408. DOI : 10.1038/nnano.2016.16.

2015

Journal Articles

Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets

T. Schwarze; J. Waizner; M. Garst; A. Bauer; I. Stasinopoulos et al. 

Nature Materials. 2015. Vol. 14, num. 5, p. 478 – 483. DOI : 10.1038/Nmat4223.

Reconfigurable magnonics heats up

D. Grundler 

Nature Physics. 2015. Vol. 11, num. 6, p. 438 – 441. DOI : 10.1038/nphys3349.

Micromechanical measurement of beating patterns in the quantum oscillatory chemical potential of InGaAs quantum wells due to spin-orbit coupling

F. Herzog; C. Heyn; H. Hardtdegen; T. Schäpers; M. A. Wilde et al. 

Applied Physics Letters. 2015. Vol. 107, num. 9, p. 092101. DOI : 10.1063/1.4929840.

Magnetization reversal of an individual exchange-biased permalloy nanotube

A. Buchter; R. Woelbing; M. Wyss; O. F. Kieler; T. Weimann et al. 

Physical Review B. 2015. Vol. 92, num. 21, p. 214432. DOI : 10.1103/PhysRevB.92.214432.

2014

Journal Articles

Fabrication and local laser heating of freestanding Ni80Fe20 bridges with Pt contacts displaying anisotropic magnetoresistance and anomalous Nernst effect

F. Brandl; D. Grundler 

Applied Physics Letters. 2014. Vol. 104, num. 17, p. 172401. DOI : 10.1063/1.4874302.

Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics

H. Yu; O. D. Kelly; V. Cros; R. Bernard; P. Bortolotti et al. 

Scientific Reports. 2014. Vol. 4, p. 6848. DOI : 10.1038/srep06848.

Enhanced quantum oscillatory magnetization and nonequilibrium currents in an interacting two-dimensional electron system in MgZnO/ZnO with repulsive scatterers

M. Brasse; S. M. Sauther; J. Falson; Y. Kozuka; A. Tsukazaki et al. 

Physical Review B. 2014. Vol. 89, num. 7, p. 075307. DOI : 10.1103/PhysRevB.89.075307.

Field-controlled rotation of spin-wave nanochannels in bi-component magnonic crystals

G. Duerr; S. Tacchi; G. Gubbiotti; D. Grundler 

Journal of Physics D: Applied Physics. 2014. Vol. 47, num. 32, p. 325001. DOI : 10.1088/0022-3727/47/32/325001.

Review and prospects of magnonic crystals and devices with reprogrammable band structure

M. Krawczyk; D. Grundler 

Journal of Physics: Condensed Matter. 2014. Vol. 26, num. 12, p. 123202. DOI : 10.1088/0953-8984/26/12/123202.

Spin waves in CoFeB on ferroelectric domains combining spin mechanics and magnonics

F. Brandl; K. J. A. Franke; T. H. E. Lahtinen; S. van Dijken; D. Grundler 

Solid State Communications. 2014. Vol. 198, p. 13 – 17. DOI : 10.1016/j.ssc.2013.12.019.

Spin-orbit interaction in the magnetization of two-dimensional electron systems

M. A. Wilde; B. Rupprecht; F. Herzog; A. Ibrahim; D. Grundler 

physica status solidi (b). 2014. Vol. 251, num. 9, p. 1710 – 1724. DOI : 10.1002/pssb.201350203.

2013

Journal Articles

Alternative method for the quantitative determination of Rashba- and Dresselhaus spin–orbit interaction using the magnetization

M. A. Wilde; D. Grundler 

New Journal of Physics. 2013. Vol. 15, num. 11, p. 115013. DOI : 10.1088/1367-2630/15/11/115013.

Magnetodynamical response of large-area close-packed arrays of circular dots fabricated by nanosphere lithography

E. K. Semenova; F. Montoncello; S. Tacchi; G. Dürr; E. Sirotkin et al. 

Physical Review B. 2013. Vol. 87, num. 17, p. 174432. DOI : 10.1103/PhysRevB.87.174432.

Magnonic band structures in two-dimensional bi-component magnonic crystals with in-plane magnetization

M. Krawczyk; S. Mamica; M. Mruczkiewicz; J. W. Klos; S. Tacchi et al. 

Journal of Physics D : Applied Physics. 2013. Vol. 46, num. 49, p. 495003. DOI : 10.1088/0022-3727/46/49/495003.

Reversal Mechanism of an Individual Ni Nanotube Simultaneously Studied by Torque and SQUID Magnetometry

A. Buchter; J. Nagel; D. Rueffer; F. Xue; D. P. Weber et al. 

Physical Review Letters. 2013. Vol. 111, num. 6, p. 067202. DOI : 10.1103/PhysRevLett.111.067202.

Nanostripe of subwavelength width as a switchable semitransparent mirror for spin waves in a magnonic crystal

R. Huber; T. Schwarze; D. Grundler 

Physical Review B. 2013. Vol. 88, num. 10, p. 100405(R). DOI : 10.1103/PhysRevB.88.100405.

Frequency anomaly in the Rashba-effect induced magnetization oscillations of a high-mobility two-dimensional electron system

B. Rupprecht; S. Heedt; H. Hardtdegen; T. Schäpers; C. Heyn et al. 

Physical Review B. 2013. Vol. 87, num. 3, p. 035307. DOI : 10.1103/PhysRevB.87.035307.

Omnidirectional spin-wave nanograting coupler

H. Yu; G. Duerr; R. Huber; M. Bahr; T. Schwarze et al. 

Nature Communications. 2013. Vol. 4, p. 2702. DOI : 10.1038/ncomms3702.

Space- and time-resolved Seebeck and Nernst voltages in laser-heated permalloy/gold microstructures

A. von Bieren; J-P. Ansermet; D. Grundler 

Applied Physics Letters. 2013. Vol. 102, num. 5, p. 052408. DOI : 10.1063/1.4789974.

Magnonic crystal wave guide with large spin-wave propagation velocity in CoFeB

T. Schwarze; D. Grundler 

Applied Physics Letters. 2013. Vol. 102, num. 22, p. 222412. DOI : 10.1063/1.4809757.

Propagation of Spin Waves Excited in a Permalloy Film by a Finite-Ground Coplanar Waveguide: A Combined Phase-Sensitive Micro-Focused Brillouin Light Scattering and Micromagnetic Study

L. Fallarino; M. Madami; G. Duerr; D. Grundler; G. Gubbiotti et al. 

IEEE Transactions on Magnetics. 2013. Vol. 49, num. 3, p. 1033 – 1036. DOI : 10.1109/TMAG.2012.2229385.

Nanoscale multifunctional sensor formed by a Ni nanotube and a scanning Nb nanoSQUID

J. Nagel; A. Buchter; F. Xue; O. F. Kieler; T. Weimann et al. 

Physical Review B. 2013. Vol. 88, num. 6, p. 064425. DOI : 10.1103/PhysRevB.88.064425.

Reciprocal Damon-Eshbach-type spin wave excitation in a magnonic crystal due to tunable magnetic symmetry

R. Huber; M. Krawczyk; T. Schwarze; H. Yu; G. Duerr et al. 

Applied Physics Letters. 2013. Vol. 102, num. 1, p. 012403. DOI : 10.1063/1.4773522.

de Haas-van Alphen effect and Fermi surface properties of single-crystal CrB2

M. Brasse; L. Chioncel; J. Kunes; A. Bauer; A. Regnat et al. 

Physical Review B. 2013. Vol. 88, num. 15, p. 155138. DOI : 10.1103/PhysRevB.88.155138.

Book Chapters

Spin Waves in Artificial Crystals and Metamaterials Created from Nanopatterned Ni80Fe20 Antidot Lattices

S. Neusser; G. Duerr; R. Huber; D. Grundler 

Magnonics From Fundamentals to Applications; Springer Berlin Heidelberg, 2013. p. 191 – 203.

2012

Journal Articles

Bragg diffraction of spin waves from a two-dimensional antidot lattice

R. Zivieri; S. Tacchi; F. Montoncello; L. Giovannini; F. Nizzoli et al. 

Physical Review B. 2012. Vol. 85, num. 1, p. 012403. DOI : 10.1103/PhysRevB.85.012403.

Complete band gaps for magnetostatic forward volume waves in a two-dimensional magnonic crystal

T. Schwarze; R. Huber; G. Duerr; D. Grundler 

Physical Review B. 2012. Vol. 85, num. 13, p. 134448. DOI : 10.1103/PhysRevB.85.134448.

High propagating velocity of spin waves and temperature dependent damping in a CoFeB thin film

H. Yu; R. Huber; T. Schwarze; F. Brandl; T. Rapp et al. 

Applied Physics Letters. 2012. Vol. 100, num. 26, p. 262412. DOI : 10.1063/1.4731273.

Enhanced functionality in magnonics by domain walls and inhomogeneous spin configurations

G. Duerr; R. Huber; D. Grundler 

Journal of Physics: Condensed Matter. 2012. Vol. 24, num. 2, p. 024218. DOI : 10.1088/0953-8984/24/2/024218.

Mode conversion from quantized to propagating spin waves in a rhombic antidot lattice supporting spin wave nanochannels

S. Tacchi; B. Botters; M. Madami; J. W. Kłos; M. L. Sokolovskyy et al. 

Physical Review B. 2012. Vol. 86, num. 1, p. 014417. DOI : 10.1103/PhysRevB.86.014417.

Forbidden Band Gaps in the Spin-Wave Spectrum of a Two-Dimensional Bicomponent Magnonic Crystal

S. Tacchi; G. Duerr; J. W. Klos; M. Madami; S. Neusser et al. 

Physical Review Letters. 2012. Vol. 109, num. 13, p. 137202. DOI : 10.1103/PhysRevLett.109.137202.

Magnetic states of an individual Ni nanotube probed by anisotropic magnetoresistance

D. Rüffer; H. Rupert; B. Paul; A. Stephan; E. Russo et al. 

Nanoscale. 2012. Vol. 4, p. 4989 – 4995. DOI : 10.1039/C2NR31086D.

Enhanced Transmission through Squeezed Modes in a Self-Cladding Magnonic Waveguide

G. Duerr; K. Thurner; J. Topp; R. Huber; D. Grundler 

Physical Review Letters. 2012. Vol. 108, num. 22, p. 227202. DOI : 10.1103/PhysRevLett.108.227202.

2011

Journal Articles

Tunable metamaterial response of a Ni80Fe20 antidot lattice for spin waves

S. Neusser; H. G. Bauer; G. Duerr; R. Huber; S. Mamica et al. 

Physical Review B. 2011. Vol. 84, num. 18, p. 184411. DOI : 10.1103/PhysRevB.84.184411.

Magnonic minibands in antidot lattices with large spin-wave propagation velocities

S. Neusser; G. Duerr; S. Tacchi; M. Madami; M. L. Sokolovskyy et al. 

Physical Review B. 2011. Vol. 84, num. 9, p. 094454. DOI : 10.1103/PhysRevB.84.094454.

Reprogrammable magnonic crystals formed by interacting ferromagnetic nanowires

J. Topp; G. Duerr; K. Thurner; D. Grundler 

Pure and Applied Chemistry. 2011. Vol. 83, num. 11, p. 1989 – 2001. DOI : 10.1351/PAC-CON-11-03-06.

Printed array of thin-dielectric metal-oxide-metal (MOM) tunneling diodes

M. Bareiss; A. Hochmeister; G. Jegert; U. Zschieschang; H. Klauk et al. 

Journal of Applied Physics. 2011. Vol. 110, num. 4, p. 044316. DOI : 10.1063/1.3615952.

Spatial control of spin-wave modes in Ni80Fe20 antidot lattices by embedded Co nanodisks

G. Duerr; M. Madami; S. Neusser; S. Tacchi; G. Gubbiotti et al. 

Applied Physics Letters. 2011. Vol. 99, num. 20, p. 202502. DOI : 10.1063/1.3662841.

Field- and geometry-controlled avoided crossings of spin-wave modes in reprogrammable magnonic crystals

J. Topp; S. Mendach; D. Heitmann; M. Kostylev; D. Grundler 

Physical Review B. 2011. Vol. 84, num. 21, p. 214413. DOI : 10.1103/PhysRevB.84.214413.

Conference Papers

Ferromagnetic nanodisks for magnonic crystals and waveguides

R. Huber; D. Grundler 

2011. Spintronics IV, San Diego, California, USA, August 21, 2011. DOI : 10.1117/12.892168.

2010

Journal Articles

Magnonics

V. V. Kruglyak; S. O. Demokritov; D. Grundler 

Journal of Physics D : Applied Physics. 2010. Vol. 43, num. 26, p. 264001. DOI : 10.1088/0022-3727/43/26/264001.

Anisotropic Propagation and Damping of Spin Waves in a Nanopatterned Antidot Lattice

S. Neusser; G. Duerr; H. G. Bauer; S. Tacchi; M. Madami et al. 

Physical Review Letters. 2010. Vol. 105, num. 6, p. 067208. DOI : 10.1103/PhysRevLett.105.067208.

Advanced techniques for all-electrical spectroscopy on spin caloric phenomena

R. Huber; P. Klemm; S. Neusser; B. Botters; A. Wittmann et al. 

Solid State Communications. 2010. Vol. 150, num. 11-12, p. 492 – 495. DOI : 10.1016/j.ssc.2009.11.020.

Making a Reconfigurable Artificial Crystal by Ordering Bistable Magnetic Nanowires

J. Topp; D. Heitmann; M. P. Kostylev; D. Grundler 

Physical Review Letters. 2010. Vol. 104, num. 20, p. 207205. DOI : 10.1103/PhysRevLett.104.207205.

Magnetic Normal Modes in Squared Antidot Array With Circular Holes: A Combined Brillouin Light Scattering and Broadband Ferromagnetic Resonance Study

S. Tacchi; M. Madami; G. Gubbiotti; G. Carlotti; A. O. Adeyeye et al. 

IEEE Transactions on Magnetics. 2010. Vol. 46, num. 2, p. 172 – 178. DOI : 10.1109/TMAG.2009.2033206.

Magnetism in a Mn modulation-doped InAs/InGaAs heterostructure with a two-dimensional hole system

B. Rupprecht; W. Krenner; U. Wurstbauer; C. Heyn; T. Windisch et al. 

Journal of Applied Physics. 2010. Vol. 107, num. 9, p. 093711. DOI : 10.1063/1.3388303.

Angular Dependence of Magnetic Normal Modes in NiFe Antidot Lattices With Different Lattice Symmetry

S. Tacchi; M. Madami; G. Gubbiotti; G. Carlotti; A. O. Adeyeye et al. 

IEEE Transactions on Magnetics. 2010. Vol. 46, num. 6, p. 1440 – 1443. DOI : 10.1109/TMAG.2009.2039775.

2009

Journal Articles

Origin and limiting mechanism of induced nonequilibrium currents in gated two-dimensional electron systems

N. Ruhe; G. Stracke; C. Heyn; D. Heitmann; H. Hardtdegen et al. 

Physical Review B. 2009. Vol. 80, num. 11, p. 115336. DOI : 10.1103/PhysRevB.80.115336.

Magnonics: Spin Waves on the Nanoscale

S. Neusser; D. Grundler 

Advanced Materials. 2009. Vol. 21, num. 28, p. 2927 – 2932. DOI : 10.1002/adma.200900809.

Formation and control of internal spin-wave channels in arrays of densely packed Permalloy nanowires

J. Topp; J. Podbielski; D. Heitmann; D. Grundler 

Journal of Applied Physics. 2009. Vol. 105, num. 7, p. 07D302. DOI : 10.1063/1.3056151.

De Haas-van Alphen effect and energy gaps of a correlated two-dimensional electron system in an AlAs two-valley pseudospin system

T. Windisch; X. Huang; S. Dasgupta; B. Rupprecht; C. Heyn et al. 

Physical Review B. 2009. Vol. 80, p. 205306. DOI : 10.1103/PhysRevB.80.205306.

Interaction effects on microwave-assisted switching of

J. Topp; D. Heitmann; D. Grundler 

Physical Review B. 2009. Vol. 80, num. 17, p. 174421. DOI : 10.1103/PhysRevB.80.174421.

Inversion-asymmetry-induced spin splitting observed in the quantum oscillatory magnetization of a two-dimensional electron system

M. A. Wilde; D. Reuter; C. Heyn; A. D. Wieck; D. Grundler 

Physical Review B. 2009. Vol. 79, num. 12, p. 125330. DOI : 10.1103/PhysRevB.79.125330.

2008

Journal Articles

In situ manipulation of magnetic anisotropy in magnetite thin films

A. Brandlmaier; S. Geprägs; M. Weiler; A. Boger; M. Opel et al. 

Physical Review B. 2008. Vol. 77, num. 10, p. 104445. DOI : 10.1103/PhysRevB.77.104445.

Metal-insulator transition in graphite: A comparison to heterostructures with high carrier mobility

E. V. Konenkova; D. Grundler; M. Morgenstern; R. Wiesendanger 

Technical Physics Letters. 2008. Vol. 34, num. 1, p. 30 – 33. DOI : 10.1134/S1063785008010094.

Localization, confinement, and field-controlled propagation of spin waves in

S. Neusser; B. Botters; D. Grundler 

Physical Review B. 2008. Vol. 78, num. 5, p. 054406. DOI : 10.1103/PhysRevB.78.054406.

Magnetometry on quantum Hall systems: Thermodynamic energy gaps and the density of states distribution

M. A. Wilde; J. I. Springborn; O. Roesler; N. Ruhe; M. P. Schwarz et al. 

Physica Status Solidi B-Basic Solid State Physics. 2008. Vol. 245, num. 2, p. 344 – 355. DOI : 10.1002/pssb.200743317.

Internal spin-wave confinement in magnetic nanowires due to zig-zag shaped magnetization

J. Topp; J. Podbielski; D. Heitmann; D. Grundler 

Physical Review B. 2008. Vol. 78, num. 2, p. 024431. DOI : 10.1103/PhysRevB.78.024431.

Spin-wave localization between nearest and next-nearest neighboring holes in an antidot lattice

S. Neusser; B. Botters; M. Becherer; D. Schmitt-Landsiedel; D. Grundler 

Applied Physics Letters. 2008. Vol. 93, num. 12, p. 122501. DOI : 10.1063/1.2988290.

2007

Journal Articles

Vortex circulation control in large arrays of asymmetric magnetic rings

F. Giesen; J. Podbielski; B. Botters; D. Grundler 

Physical Review B. 2007. Vol. 75, num. 18, p. 184428. DOI : 10.1103/PhysRevB.75.184428.

Microwave-Assisted Switching of Microscopic Rings: Correlation Between Nonlinear Spin Dynamics and Critical Microwave Fields

J. Podbielski; D. Heitmann; D. Grundler 

Physical Review Letters. 2007. Vol. 99, num. 20, p. 207202. DOI : 10.1103/PhysRevLett.99.207202.

Mode localization transition in ferromagnetic microscopic rings

F. Giesen; J. Podbielski; D. Grundler 

Physical Review B. 2007. Vol. 76, num. 1, p. 014431. DOI : 10.1103/PhysRevB.76.014431.

2006

Journal Articles

Stress dependence of ferromagnetic resonance and magnetic anisotropy in a thin NiMnSb film on InP(001)

B. Botters; F. Giesen; J. Podbielski; P. Bach; G. Schmidt et al. 

Applied Physics Letters. 2006. Vol. 89, num. 24, p. 242505. DOI : 10.1063/1.2405885.

Gate-controlled de Haas–van Alphen effect in an interacting two-dimensional electron system

J. Springborn; N. Ruhe; C. Heyn; M. Wilde; D. Heitmann et al. 

Physica E: Low-dimensional Systems and Nanostructures. 2006. Vol. 34, num. 1-2, p. 172 – 175. DOI : 10.1016/j.physe.2006.03.008.

Experimental evidence of the ideal de Haas–van Alphen effect in a two-dimensional system

M. A. Wilde; M. P. Schwarz; C. Heyn; D. Heitmann; D. Grundler et al. 

Physical Review B. 2006. Vol. 73, num. 12, p. 125325. DOI : 10.1103/PhysRevB.73.125325.

Spin-Wave Interference in Microscopic Rings

J. Podbielski; F. Giesen; D. Grundler 

Physical Review Letters. 2006. Vol. 96, num. 16, p. 167207. DOI : 10.1103/PhysRevLett.96.167207.

Simultaneous measurement of the de Haas-van Alphen and the Shubnikov-de Haas effect in a two-dimensional electron system

N. Ruhe; J. I. Springborn; C. Heyn; M. A. Wilde; D. Grundler 

Physical Review B. 2006. Vol. 74, num. 23, p. 235326. DOI : 10.1103/PhysRevB.74.235326.

Geometry-enhanced magnetoresistance of narrow Au∕InAs hybrid structures incorporating a two-dimensional electron system

M. Hoener; O. Kronenwerth; C. Heyn; D. Grundler; M. Holz 

Journal of Applied Physics. 2006. Vol. 99, num. 3, p. 036102. DOI : 10.1063/1.2168265.

2005

Journal Articles

Semiconductor-metal hybrid structures as local magnetic-field probes: Magnetoresistance and spatial sensitivity profile

M. Holz; O. Kronenwerth; D. Grundler 

Applied Physics Letters. 2005. Vol. 87, num. 17, p. 172501. DOI : 10.1063/1.2108122.

Multiple ferromagnetic resonance in mesoscopic permalloy rings

F. Giesen; J. Podbielski; T. Korn; D. Grundler 

Journal of Applied Physics. 2005. Vol. 97, num. 10, p. 10A712. DOI : 10.1063/1.1851932.

Direct measurements of the spin and valley splittings in the magnetization of a

M. A. Wilde; M. Rhode; C. Heyn; D. Heitmann; D. Grundler et al. 

Physical Review B. 2005. Vol. 72, num. 16, p. 165429. DOI : 10.1103/PhysRevB.72.165429.

Enhanced sensitivity due to current redistribution in the Hall effect of semiconductor-metal hybrid structures

M. Holz; O. Kronenwerth; D. Grundler 

Applied Physics Letters. 2005. Vol. 86, num. 7, p. 072513. DOI : 10.1063/1.1862326.

Spin configurations in nanostructured magnetic rings: From DC transport to GHz spectroscopy

J. Podbielski; F. Giesen; M. Berginski; N. Hoyer; D. Grundler 

Superlattices and Microstructures. 2005. Vol. 37, num. 5, p. 341 – 348. DOI : 10.1016/j.spmi.2004.12.006.

Hysteresis and control of ferromagnetic resonances in rings

F. Giesen; J. Podbielski; T. Korn; M. Steiner; A. v. Staa et al. 

Applied Physics Letters. 2005. Vol. 86, num. 11, p. 112510. DOI : 10.1063/1.1886247.

Time-resolved study of the increased magnetization precession frequency in Fe wires

T. Korn; F. Giesen; J. Podbielski; D. Ravlic; C. Schueller et al. 

Journal of Magnetism and Magnetic Materials. 2005. Vol. 285, num. 1-2, p. 240 – 244. DOI : 10.1016/j.jmmm.2004.07.046.

Conference Papers

Magnetization of modulation doped Si/SiGe quantum wells in high magnetic fields

M. A. Wilde; M. Rhode; C. Heyn; F. Schäffler; U. Zeitler et al. 

2005. PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors – ICPS-27, Flagstaff, Arizona (USA), August 26-30, 2005. p. 467 – 468. DOI : 10.1063/1.1994186.

Enhanced magnetoresistance of semiconductor-metal hybrid structures

M. Holz; O. Kronenwerth; D. Grundler 

2005. 27th International Conference on the Physics of Semiconductors – ICPS-27, Flagstaff, Arizona (USA), 26-30 July 2004. p. 431 – 432. DOI : 10.1063/1.1994168.

2004

Journal Articles

Hybrid ferromagnet/semiconductor nanostructures: spin-valve effect and extraordinary magnetoresistance

A. Wittmann; C-H. Möller; O. Kronenwerth; M. Holz; D. Grundler 

Journal of Physics: Condensed Matter. 2004. Vol. 16, num. 48, p. S5645 – S5652. DOI : 10.1088/0953-8984/16/48/022.

Magnetic nanostructures for lateral spin-transport devices

D. Grundler; T. M. Hengstmann; H. Rolff 

Brazilian Journal of Physics. 2004. Vol. 34, num. 2b, p. 598 – 601. DOI : 10.1590/S0103-97332004000400015.

Characterization of Permalloy films on high-bandwidth striplines

T. Korn; F. Müller; D. Grundler; C. Schüller 

Journal of Magnetism and Magnetic Materials. 2004. Vol. 272-276, p. E1341 – E1342. DOI : 10.1016/j.jmmm.2003.12.200.

Optimization of the extraordinary magnetoresistance in semiconductor–metal hybrid structures for magnetic-field sensor applications

M. Holz; O. Kronenwerth; D. Grundler 

Physica E: Low-dimensional Systems and Nanostructures. 2004. Vol. 21, num. 2-4, p. 897 – 900. DOI : 10.1016/j.physe.2003.11.146.

Hall magnetometry on a ferromagnetic nanoring

H. Rolff; W. Pfützner; C. Heyn; D. Grundler 

Journal of Magnetism and Magnetic Materials. 2004. Vol. 272-276, p. 1623 – 1624. DOI : 10.1016/j.jmmm.2003.12.781.

Magnetization of GaAs quantum wires with quasi one-dimensional electron systems

M. Wilde; J. Springborn; C. Heyn; D. Heitmann; D. Grundler 

Physica E: Low-dimensional Systems and Nanostructures. 2004. Vol. 22, num. 1-3, p. 729 – 732. DOI : 10.1016/j.physe.2003.12.110.

Low-noise magnetic-flux sensors based on the extraordinary magnetoresistance effect

C. H. MöLler; O. Kronenwerth; C. Heyn; D. Grundler 

Applied Physics Letters. 2004. Vol. 84, num. 17, p. 3343. DOI : 10.1063/1.1737060.

2003

Journal Articles

Spin splitting in narrow InAs quantum wells with In[sub 0.75]Ga[sub 0.25]As barrier layers

C. H. MöLler; C. Heyn; D. Grundler 

Applied Physics Letters. 2003. Vol. 83, num. 11, p. 2181. DOI : 10.1063/1.1610790.

Magnetoresistance of semiconductor-metal hybrid structures: The effects of material parameters and contact resistance

M. Holz; O. Kronenwerth; D. Grundler 

Physical Review B. 2003. Vol. 67, num. 19, p. 195312. DOI : 10.1103/PhysRevB.67.195312.

Optimization of semiconductor–metal hybrid structures for application in magnetic-field sensors and read heads

M. Holz; O. Kronenwerth; D. Grundler 

Applied Physics Letters. 2003. Vol. 83, num. 16, p. 3344. DOI : 10.1063/1.1621077.

Induced nonequilibrium currents in the magnetization of mesoscopic dots in the quantum Hall regime

M. P. Schwarz; D. Grundler; C. Heyn; D. Heitmann; D. Reuter et al. 

Physical Review B. 2003. Vol. 68, num. 24, p. 245315. DOI : 10.1103/PhysRevB.68.245315.

Effect of the Interface Resistance on the Extraordinary Magnetoresistance of Semiconductor/Metal Hybrid Structures

C. H. Möller; D. Grundler; O. Kronenwerth; C. Heyn; D. Heitmann 

Journal of Superconductivity. 2003. Vol. 16, num. 1, p. 195 – 199. DOI : 10.1023/A:1023246431624.

Conference Papers

Extraordinary Magnetoresistance Effect On Metal Films Prepared By Cleaved Edge Overgrowth On Inas Heterostructures

O. Kronenwerth; C. H. Moeller; D. Grundler; C. Heyn; D. Heitmann 

2003. Toward the Controllable Quantum States – International Symposium on Mesoscopic Superconductivity and Spintronics (MS+S2002), Atsugi, Kanagawa, Japan, 04-06 03 2002. p. 99 – 104. DOI : 10.1142/9789812705556_0017.

Semiconductor-metal hybrid structures: novel perspective for read heads

M. Holz; O. Kronenwerth; D. Grundler 

2003.  p. 1245 – 1248. DOI : 10.1109/ICSENS.2003.1279144.

Spin Injection in Ferromagnet / Semiconductor Habrid Structures

D. Grundler; T. Matsuyam; C. H. Moeller 

2003. Spring Meeting of the Condensed Matter Physics section of the Deutsche Physikalische Gesellschaft, Dresden, March 24-28, 2003. p. 443 – 448. DOI : 10.1007/978-3-540-44838-9_31.

2002

Journal Articles

Spintronics

D. Grundler 

Physics World. 2002. Vol. 15, num. 4, p. 39 – 43. DOI : 10.1088/2058-7058/15/4/38.

Sawtoothlike de Haas–van Alphen oscillations of a two-dimensional electron system

M. P. Schwarz; M. A. Wilde; S. Groth; D. Grundler; C. Heyn et al. 

Physical Review B. 2002. Vol. 65, num. 24, p. 245315. DOI : 10.1103/PhysRevB.65.245315.

Ballistic electrons in ferromagnet/semiconductor hybrid structures: from nonomagnetometry to spin injection

D. Grundler 

Acta Physica Polonica Series a. 2002. Vol. 102, p. 529 – 540.

Hall and bend-resistance magnetometry on two-micromagnet systems

T. Hengstmann; D. Grundler; N. Klockmann; H. Rolff; C. Heyn et al. 

IEEE Transactions on Magnetics. 2002. Vol. 38, num. 5, p. 2535 – 2537. DOI : 10.1109/TMAG.2002.801922.

Ballistic spin transport and spin interference in ferromagnet/InAs(2DES)/ferromagnet devices

T. Matsuyama; C-M. Hu; D. Grundler; G. Meier; U. Merkt 

Physical Review B. 2002. Vol. 65, num. 15, p. 155322. DOI : 10.1103/PhysRevB.65.155322.

De Haas–van Alphen effect in a two-dimensional electron system

M. Schwarz; D. Grundler; H. Rolff; M. Wilde; S. Groth et al. 

Physica E: Low-dimensional Systems and Nanostructures. 2002. Vol. 12, num. 1-4, p. 140 – 143. DOI : 10.1016/S1386-9477(01)00287-9.

Ballistic spin injection from Fe(001) into ZnSe and GaAs

O. Wunnicke; P. Mavropoulos; R. Zeller; P. H. Dederichs; D. Grundler 

Physical Review B. 2002. Vol. 65, num. 24, p. 241306(R). DOI : 10.1103/PhysRevB.65.241306.

Spin injection into a two-dimensional electron gas using inter-digital-ferromagnetic contacts

C. Hu; J. Nitta; A. Jensen; J. Hansen; H. Takayanagi et al. 

Physica E: Low-dimensional Systems and Nanostructures. 2002. Vol. 12, num. 1-4, p. 395 – 398. DOI : 10.1016/S1386-9477(01)00293-4.

Extraordinary magnetoresistance effect in a microstructured metal–semiconductor hybrid structure

C. H. MöLler; O. Kronenwerth; D. Grundler; W. Hansen; C. Heyn et al. 

Applied Physics Letters. 2002. Vol. 80, num. 21, p. 3988. DOI : 10.1063/1.1481982.

Spin interference and Fabry–Pérot resonances in ferromagnet–semiconductor–ferromagnet devices

T. Matsuyama; C-Hu; D. Grundler; G. Meier; D. Heitmann et al. 

Physica E: Low-dimensional Systems and Nanostructures. 2002. Vol. 13, num. 2-4, p. 577 – 581. DOI : 10.1016/S1386-9477(02)00184-4.

Magnetization of semiconductor quantum dots

M. P. Schwarz; D. Grundler; M. Wilde; C. Heyn; D. Heitmann 

Journal of Applied Physics. 2002. Vol. 91, num. 10, p. 6875. DOI : 10.1063/1.1450762.

Bend-resistance nanomagnetometry: spatially resolved magnetization studies in a ferromagnet/semiconductor hybrid structure

D. Grundler; T. Hengstmann; N. Klockmann; C. Heyn; D. Heitmann 

Physica E: Low-dimensional Systems and Nanostructures. 2002. Vol. 12, num. 1-4, p. 248 – 251. DOI : 10.1016/S1386-9477(01)00365-4.

2001

Journal Articles

Grundler Replies:

D. Grundler 

Physical Review Letters. 2001. Vol. 88, num. 2, p. 029702. DOI : 10.1103/PhysRevLett.88.029702.

Ballistic spin-filter transistor

D. Grundler 

Physical Review B. 2001. Vol. 63, num. 16, p. 161307. DOI : 10.1103/PhysRevB.63.161307.

Enhanced magnetization at integer quantum Hall states

I. Meinel; D. Grundler; D. Heitmann; A. Manolescu; V. Gudmundsson et al. 

Physical Review B. 2001. Vol. 64, num. 12, p. 121306. DOI : 10.1103/PhysRevB.64.121306.

Oscillatory Spin-Filtering due to Gate Control of Spin-Dependent Interface Conductance

D. Grundler 

Physical Review Letters. 2001. Vol. 86, num. 6, p. 1058 – 1061. DOI : 10.1103/PhysRevLett.86.1058.

Stray-field investigation on permalloy nanodisks

T. M. Hengstmann; D. Grundler; C. Heyn; D. Heitmann 

Journal of Applied Physics. 2001. Vol. 90, num. 12, p. 6542. DOI : 10.1063/1.1413238.

2000

Journal Articles

Micromechanical cantilever magnetometer with an integrated two-dimensional electron system

M. P. Schwarz; D. Grundler; I. Meinel; C. Heyn; D. Heitmann 

Applied Physics Letters. 2000. Vol. 76, num. 24, p. 3564. DOI : 10.1063/1.126708.

Large Rashba Splitting in InAs Quantum Wells due to Electron Wave Function Penetration into the Barrier Layers

D. Grundler 

Physical Review Letters. 2000. Vol. 84, num. 26, p. 6074 – 6077. DOI : 10.1103/PhysRevLett.84.6074.

Effect of tilted magnetic fields on bistable nanomagnets in hybrid semiconductor/ferromagnet devices

G. Meier; D. Grundler; K-Broocks; C. Heyn; D. Heitmann 

Journal of Magnetism and Magnetic Materials. 2000. Vol. 210, num. 1-3, p. 138 – 142. DOI : 10.1016/S0304-8853(99)00625-3.

Spin-dependent exchange and correlation effects on the orbital magnetization of two-dimensional electron systems

I. Meinel; D. Grundler; T. Hengstmann; C. Heyn; D. Heitmann et al. 

Physica E: Low-dimensional Systems and Nanostructures. 2000. Vol. 6, num. 1-4, p. 731 – 734. DOI : 10.1016/S1386-9477(99)00187-3.

1999

Journal Articles

Magnetization of small arrays of interacting single-domain particles

D. Grundler; G. Meier; K-B. Broocks; C. Heyn; D. Heitmann 

Journal of Applied Physics. 1999. Vol. 85, num. 8, p. 6175. DOI : 10.1063/1.370212.

Magnetization of the Fractional Quantum Hall States

I. Meinel; T. Hengstmann; D. Grundler; D. Heitmann; W. Wegscheider et al. 

Physical Review Letters. 1999. Vol. 82, num. 4, p. 819 – 822. DOI : 10.1103/PhysRevLett.82.819.

1998

Journal Articles

Magnetic properties of a spin-polarized two-dimensional electron system

D. Grundler; I. Meinel; S. Bargstädt-Franke; D. Heitmann 

Physica B: Condensed Matter. 1998. Vol. 249-251, p. 693 – 696. DOI : 10.1016/S0921-4526(98)00291-9.

Vertical polarization of quantum magnets in high density arrays of nickel dots with small height-to-diameter ratio

G. Meier; M. Kleiber; D. Grundler; D. Heitmann; R. Wiesendanger 

Applied Physics Letters. 1998. Vol. 72, num. 17, p. 2168. DOI : 10.1063/1.121310.

1997

Journal Articles

High-sensitive superconducting magnetometry on a two-dimensional electron gas up to 10 Tesla

I. Meinel; D. Grundler; S. BargstäDt-Franke; C. Heyn; D. Heitmann et al. 

Applied Physics Letters. 1997. Vol. 70, num. 24, p. 3305. DOI : 10.1063/1.119145.

SQUID-susceptometry up to 10Tesla: An improved method for magnetization studies on a two-dimensional electron system

I. Meinel; D. Grundler; S. Bargstädt-Franke; C. Heyn; D. Heitmann 

Applied Superconductivity. 1997. Vol. 5, num. 7-12, p. 261 – 267. DOI : 10.1016/S0964-1807(97)00055-0.

1996

Journal Articles

High- SQUID magnetometers for biomagnetic measurements

B. David; D. Grundler; S. Krey; V. Doormann; R. Eckart et al. 

Superconductor Science and Technology. 1996. Vol. 9, num. 4A, p. A96. DOI : 10.1088/0953-2048/9/4A/025.

1995

Journal Articles

Multilevel devices of YBa/sub 2/Cu/sub 3/O/sub 7/ with NdGaO/sub 3/ barrier

D. Grundler; J-P. Krumme; B. David; O. Doessel 

IEEE Transactions on Applied Superconductivity. 1995. Vol. 5, num. 2, p. 2751 – 2754. DOI : 10.1109/77.403160.

Current phase relation of Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7/(-δ) step edge junction

V. Polushkin; S. Uchaikin; S. Knappe; H. Koch; B. David et al. 

IEEE Transactions on Applied Superconductivity. 1995. Vol. 5, num. 2, p. 2790 – 2793. DOI : 10.1109/77.403170.

Experimental investigation of the kinetic inductance in YBa2Cu3O7 square washer superconducting quantum interference devices

D. Grundler; B. David; O. Doessel 

Journal of Applied Physics. 1995. Vol. 77, num. 10, p. 5273. DOI : 10.1063/1.359279.

Integrated high-T/sub c/ SQUID magnetometer

B. David; D. Grundler; J-P. Krumme; O. Doessel 

IEEE Transactions on Applied Superconductivity. 1995. Vol. 5, num. 2, p. 2935 – 2938. DOI : 10.1109/77.403207.

Conference Papers

Low-frequency noise in YBa2Cu3O7 dc SQUIDs and magnetometers

D. Grundler; B. David; O. Doessel 

1995. 2nd European Conference on Applied Superconductivity, Edinburgh, Scotland, July 3-6, 1995. p. 1625 – 1628.

1994

Journal Articles

YBa2Cu3O7 ramp-type junctions and superconducting quantum interference devices with an ultrathin barrier of NdGaO3

D. Grundler; J-P. Krumme; B. David; O. DöSsel 

Applied Physics Letters. 1994. Vol. 65, num. 14, p. 1841. DOI : 10.1063/1.112860.

A multi-layer process for the fabrication of HTSC flux transformers and SQUIDS

B. R. David; D. Grundler; R. Eckart; K. Fanghanel; J. P. Krumme et al. 

Superconductor Science and Technology. 1994. Vol. 7, num. 5, p. 287. DOI : 10.1088/0953-2048/7/5/015.

1993

Journal Articles

Origin of 1/f noise in Y1Ba2Cu3O7−x step-edge dc SQUIDs

D. Grundler; R. Eckart; B. David; O. Doessel 

Applied Physics Letters. 1993. Vol. 62, num. 17, p. 2134. DOI : 10.1063/1.109450.

Highly sensitive YBa2Cu3O7 dc SQUID magnetometer with thin-film flux transformer

D. Grundler; B. David; R. Eckart; O. Doessel 

Applied Physics Letters. 1993. Vol. 63, num. 19, p. 2700. DOI : 10.1063/1.110399.

1992

Conference Papers

Noise Properties of NbN-MgO-NbN SQUIDs

O. Doessel; B. David; D. Grundler; R. Kobs; K-M. Ludeke 

1992.  p. 317 – 320. DOI : 10.1007/978-3-642-77457-7_57.