Publications

An up-to-date list of publications of L. Zdeborová is available on Google Scholar.

2025

Journal Articles

Statistical Physics Analysis of Graph Neural Networks: Approaching Optimality in the Contextual Stochastic Block Model

O. Duranthon; L. Zdeborova 

Physical Review X. 2025. Vol. 15, num. 4. DOI : 10.1103/lfxj-hbsk.

Optimal Thresholds and Algorithms for a Model of Multi-modal Learning in High Dimensions

C. Keup; L. Zdeborova 

JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT. 2025. Vol. 2025, num. 9. DOI : 10.1088/1742-5468/ae0428.

Dynamical cavity method for hypergraphs and its application to quenches in the k-XOR-SAT problem

A. Maier; F. Behrens; L. Zdeborová 

Physical Review E. 2025. Vol. 112, num. 1, p. 014306. DOI : 10.1103/PhysRevE.112.014306.

A phase transition between positional and semantic learning in a solvable model of dot-product attention

H. Cui; F. Behrens; F. Krzakala; L. Zdeborová 

Journal of Statistical Mechanics: Theory and Experiment. 2025. Vol. 2025, num. 7, p. 074001. DOI : 10.1088/1742-5468/ade137.

Bilinear Sequence Regression: A Model for Learning from Long Sequences of High-Dimensional Tokens

V. Erba; E. Troiani; L. Biggio; A. Maillard; L. Zdeborová 

Physical Review X (PRX). 2025. Vol. 15, num. 2, p. 021092. DOI : 10.1103/l4p2-vrxt.

Low-rank matrix estimation with inhomogeneous noise

A. Guionnet; J. Ko; F. Krzakala; L. Zdeborová 

Information and Inference. 2025. Vol. 14, num. 2, p. iaaf010. DOI : 10.1093/imaiai/iaaf010.

Phase Diagram of Compressed Sensing with l0-norm Regularization

D. Barbier; C. Lucibello; L. Saglietti; F. Krzakala; L. Zdeborova 

JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT. 2025. Vol. 2025, num. 6. DOI : 10.1088/1742-5468/adca21.

Bayes-optimal learning of deep random networks of extensive-width*

H. Cui; F. Krzakala; L. Zdeborova 

JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT. 2025. Vol. 2025, num. 1. DOI : 10.1088/1742-5468/ada696.

Integer traffic assignment problem: Algorithms and insights on random graphs

R. Harfouche; G. Piccioli; L. Zdeborová 

Physical Review E. 2025. Vol. 111, num. 1, p. 014316. DOI : 10.1103/PhysRevE.111.014316.

Estimating Rank-One Matrices with Mismatched Prior and Noise: Universality and Large Deviations

A. Guionnet; J. Ko; F. Krzakala; L. Zdeborová 

Communications in Mathematical Physics. 2025. Vol. 406, num. 1, p. 9. DOI : 10.1007/s00220-024-05179-0.

Conference Papers

Building Conformal Prediction Intervals with Approximate Message Passing

L. A. Clarte; L. Zdeborová 

2025. 41th Conference on Uncertainty in Artificial Intelligence (UAI 2025), Rio de Janiro, Brazil, 2025-07-21-2025-07-26. DOI : https://arxiv.org/abs/2410.16493v1.

Counting in Small Transformers: The Delicate Interplay between Attention and Feed-Forward Layers

F. Behrens; L. Zdeborová; L. Biggio 

2025. 42nd International Conference on Machine Learning, ICML 2025, Vancouver, 2025-07-13 – 2025-07-19. DOI : https://arxiv.org/abs/2407.11542v3.

Fundamental limits of learning in sequence multi-index models and deep attention networks: high-dimensional asymptotics and sharp thresholds

E. Troiani; H. C. Cui; Y. Dandi; F. Krzakala; L. Zdeborová 

2025. 42nd International Conference on Machine Learning, ICML 2025, Vancouver, 2025-07-13 – 2025-07-19. DOI : https://arxiv.org/abs/2502.00901v1.

Fundamental computational limits of weak learnability in high-dimensional multi-index models

E. Troiani; Y. Dandi; L. Defilippis; L. Zdeborová; B. Loureiro et al. 

2025. 28th International Conference on Artificial Intelligence and Statistics (AISTATS 2025), Mai Khao, Thailand, 2025-05-03 – 2025-05-05. p. 2467 – 2475. DOI : https://arxiv.org/abs/2405.15480.

Theses

Structure and Computation in Disordered Systems and Neural Networks

F. Behrens / L. Zdeborová (Dir.)  

Lausanne, EPFL, 2025. 

Theoretical characterization of uncertainty in high-dimensional machine learning

L. A. Clarte / L. Zdeborová (Dir.)  

Lausanne, EPFL, 2025. 

2024

Journal Articles

Counting and hardness-of-finding fixed points in cellular automata on random graphs

C. X. Koller; F. Behrens; L. Zdeborová 

Journal of Physics A: Mathematical and Theoretical. 2024. Vol. 57, num. 46. DOI : 10.1088/1751-8121/ad8797.

Les Houches 2022 Special Issue: Editorial

F. Krzakala; L. Zdeborova 

JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT. 2024. DOI : 10.1088/1742-5468/ad4e2a.

Quenches in the Sherrington-Kirkpatrick model

V. Erba; F. Behrens; F. Krzakala; L. Zdeborová 

Journal of Statistical Mechanics: Theory and Experiment. 2024. Vol. 2024, num. 8, p. 083302. DOI : 10.1088/1742-5468/ad685a.

Sampling with flows, diffusion, and autoregressive neural networks from a spin-glass perspective

D. Ghio; Y. Dandi; F. Krzakala; L. Zdeborová 

Proceedings of the National Academy of Sciences. 2024. Vol. 121, num. 27. DOI : 10.1073/pnas.2311810121.

On the atypical solutions of the symmetric binary perceptron

D. Barbier; A. El Alaoui; F. Krzakala; L. Zdeborova 

Journal Of Physics A-Mathematical And Theoretical. 2024. Vol. 57, num. 19, p. 195202. DOI : 10.1088/1751-8121/ad3a4a.

Rigorous Dynamical Mean-Field Theory for Stochastic Gradient Descent Methods

C. Gerbelot; E. Troiani; F. Mignacco; F. Krzakala; L. Zdeborová 

SIAM Journal on Mathematics of Data Science. 2024. Vol. 6, num. 2, p. 400 – 427. DOI : 10.1137/23M1594388.

Dynamical phase transitions in graph cellular automata

F. Behrens; B. Hudcová; L. Zdeborová 

Physical Review E. 2024. Vol. 109, num. 4. DOI : 10.1103/PhysRevE.109.044312.

Optimal Inference in Contextual Stochastic Block Models

O. Duranthon; L. Zdeborová 

Transactions on Machine Learning Research. 2024.  p. 1835.

Gibbs sampling the posterior of neural networks

G. Piccioli; E. Troiani; L. Zdeborova 

Journal Of Physics A-Mathematical And Theoretical. 2024. Vol. 57, num. 12, p. 125002. DOI : 10.1088/1751-8121/ad2c26.

Gaussian universality of perceptrons with random labels

F. Gerace; F. Krzakala; B. Loureiro; L. Stephan; L. Zdeborova 

Physical Review E. 2024. Vol. 109, num. 3, p. 034305. DOI : 10.1103/PhysRevE.109.034305.

Statistical mechanics of the maximum-average submatrix problem

V. Erba; F. Krzakala; R. Perez Ortiz; L. Zdeborova 

Journal Of Statistical Mechanics-Theory And Experiment. 2024. Vol. 2024, num. 1, p. 013403. DOI : 10.1088/1742-5468/ad1391.

Conference Papers

Universality laws for Gaussian mixtures in generalized linear models

Y. Dandi; L. Stephan; F. Krzakala; B. Loureiro; L. Zdeborová 

2024. Advances in Neural Information Processing Systems 36 (NeurIPS 2023), New Orleans Convention Center USA, 2023-12-11.

Asymptotic generalization error of a single-layer graph convolutional network

O. Duranthon; L. Zdeborová 

2024. The Third Learning On Graphs Conference, Online, 2024-12-02. DOI : https://arxiv.org/abs/2402.03818v3.

Analysis of Bootstrap and Subsampling in High-dimensional Regularized Regression

L. Clarte; A. Vandenbroucque; G. Dalle; B. Loureiro; F. Krzakala et al. 

2024. 40th Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain, 2024-07-15 – 2024-07-19.

ANALYSIS OF LEARNING A FLOW-BASED GENERATIVE MODEL FROM LIMITED SAMPLE COMPLEXITY

H. C. Cui; F. Krzakala; E. Vanden-Eijnden; L. Zdeborová 

2024. ICLR 2024, Vienna, Austria, 2024-05-07 – 2024-05-11.

Bayes-optimal learning of an extensive-width neural network from quadratically many samples

A. Maillard; E. Troiani; S. Martin; L. Zdeborová; F. Krzakala 

2024. 38th Conference on Neural Information Processing Systems (NeurIPS 2024), Vancouver, Canada, 2024-12-10 – 2024-12-15. p. 82085 – 82132. DOI : 10.52202/079017-2609.

Asymptotics of feature learning in two-layer networks after one gradient-step

H. C. Cui; L. Pesce; Y. Dandi; F. Krzakala; Y. Lu et al. 

2024. 41st International Conference on Machine Learning (ICML) 2024, Vienna, Austria, 2024-07-21 – 2024-07-27. p. 9662 – 9695.

Theses

Advances in Algorithms for Sampling, Optimization and Inference in Disordered Systems

G. Piccioli / L. Zdeborová (Dir.)  

Lausanne, EPFL, 2024. 

Topics in statistical physics of high-dimensional machine learning

H. C. Cui / L. Zdeborová (Dir.)  

Lausanne, EPFL, 2024. 

Posters

The Benefits of Reusing Batches for Gradient Descent in Two-Layer Networks: Breaking the Curse of Information and Leap Exponents

Y. Dandi; E. Troiani; L. Arnaboldi; L. Pesce; L. Zdeborová et al. 

41st International Conference on Machine Learning (ICML) 2024, Vienna, Austria, 2024-07-21 – 2024-07-27.

2023

Journal Articles

Phase diagram of stochastic gradient descent in high-dimensional two-layer neural networks

R. Veiga; L. Stephan; B. Loureiro; F. Krzakala; L. Zdeborova 

Journal Of Statistical Mechanics-Theory And Experiment. 2023. Vol. 2023, num. 11, p. 114008. DOI : 10.1088/1742-5468/ad01b1.

Multi-layer state evolution under random convolutional design

M. Daniels; C. Gerbelot; F. Krzakala; L. Zdeborova 

Journal Of Statistical Mechanics-Theory And Experiment. 2023. Vol. 2023, num. 11, p. 114002. DOI : 10.1088/1742-5468/ad0220.

Bayes-optimal inference for spreading processes on random networks

D. Ghio; A. L. M. Aragon; I. Biazzo; L. Zdeborova 

Physical Review E. 2023. Vol. 108, num. 4, p. 044308. DOI : 10.1103/PhysRevE.108.044308.

Neural-prior stochastic block model

O. Duranthon; L. Zdeborová 

Machine Learning-Science And Technology. 2023. Vol. 4, num. 3, p. 035017. DOI : 10.1088/2632-2153/ace60f.

Backtracking Dynamical Cavity Method

F. Behrens; B. Hudcová; L. Zdeborová 

Physical Review X (PRX). 2023. Vol. 13, num. 3. DOI : 10.1103/PhysRevX.13.031021.

Theoretical characterization of uncertainty in high-dimensional linear classification

L. Clarte; B. Loureiro; F. Krzakala; L. Zdeborova 

Machine Learning-Science And Technology. 2023. Vol. 4, num. 2, p. 025029. DOI : 10.1088/2632-2153/acd749.

Learning curves for the multi-class teacher-student perceptron

E. Cornacchia; F. Mignacco; R. Veiga; C. Gerbelot; B. Loureiro et al. 

Machine Learning-Science And Technology. 2023. Vol. 4, num. 1, p. 015019. DOI : 10.1088/2632-2153/acb428.

Bayesian reconstruction of memories stored in neural networks from their connectivity

S. Goldt; F. Krzakala; L. Zdeborová; N. Brunel 

PLoS Comput Biol. 2023. Vol. 19, p. e1010813. DOI : 10.1371/journal.pcbi.1010813.

Tree-AMP: Compositional Inference with Tree Approximate Message Passing

A. Baker; B. Aubin; F. Krzakala; L. Zdeborová 

Journal of Machine Learning Research. 2023. Vol. 24, num. 57, p. 1 – .

Error scaling laws for kernel classification under source and capacity conditions

H. C. Cui; B. Loureiro; F. Krzakala; L. Zdeborová 

IOPscience. 2023. num. Mach. Learn.: Sci. Technol. 4 035033. DOI : 10.1088/2632-2153/acf041.

Conference Papers

High-dimensional Asymptotics of Denoising Autoencoders

H. C. Cui; L. Zdeborová 

2023. Advances in Neural Information Processing Systems 36 (NeurIPS 2023), New Orleans Convention Center USA, 2023-12-10.

Bayes-optimal Learning of Deep Random Networks of Extensive-width

H. C. Cui; F. Krzakala; L. Zdeborová 

2023. International Conference on Machine Learning, Honolulu, Hawaii, USA, July 23-29, 2023.

On double-descent in uncertainty quantification in overparametrized models

L. A. Clarte; B. Loureiro; F. Krzakala; L. Zdeborová 

2023. 26th International Conference on Artificial Intelligence and Statistics (AISTATS), Palau de Congressos, Valencia, Spain, April 25-27, 2023. p. 7089 – 7125.

Expectation consistency for calibration of neural networks

L. A. Clarte; B. Loureiro; F. Krzakala; L. Zdeborová 

2023. Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:443–453., Pittsburgh, PA, USA, August 31-4, 2023.