Publications

2024

Journal Articles

Towards improving full-length ribosome density prediction by bridging sequence and graph-based representations

M. V. Nallapareddy; F. Craighero; C. Gobet; F. Naef; P. Vandergheynst 

2024. DOI : 10.1101/2024.04.08.588507.

2023

Journal Articles

Uncovering personalized glucose responses and circadian rhythms from multiple wearable biosensors with Bayesian dynamical modeling

N. E. Phillips; T-H. Collet; F. Naef 

Cell Reports Methods. 2023-08-28. Vol. 3, num. 8, p. 100545. DOI : 10.1016/j.crmeth.2023.100545.

Sex-dimorphic and age-dependent organization of 24-hour gene expression rhythms in humans

L. Talamanca; C. Gobet; F. Naef 

Science. 2023-02-03. Vol. 379, num. 6631, p. 478-483. DOI : 10.1126/science.add0846.

Reviews

Spatiotemporal Metabolic Liver Zonation and Consequences on Pathophysiology

T. Martini; F. Naef; J. S. Tchorz 

Annual Review Of Pathology-Mechanisms Of Disease. 2023-01-01. Vol. 18, p. 439-466. DOI : 10.1146/annurev-pathmechdis-031521-024831.

Theses

Statistical physics of periodic biological processes

L. Talamanca / F. Naef; P. De Los Rios (Dir.)  

Lausanne, EPFL, 2023. 

2022

Journal Articles

V-ATPase/TORC1-mediated ATFS-1 translation directs mitochondrial UPR activation in C. elegans

T. Y. Li; A. W. Gao; X. Li; H. Li; Y. J. Liu et al. 

Journal of Cell Biology. 2022-10-31. Vol. 222, num. 1. DOI : 10.1083/jcb.202205045.

Comprehensive analysis of the circadian nuclear and cytoplasmic transcriptome in mouse liver

C. S. Hurni; B. Weger; C. S. Gobet; F. Naef 

Plos Genetics. 2022-08-01. Vol. 18, num. 8, p. e1009903. DOI : 10.1371/journal.pgen.1009903.

Ribo-DT: An automated pipeline for inferring codon dwell times from ribosome profiling data

C. Gobet; F. Naef 

Methods. 2022-07-01. Vol. 203, p. 10-16. DOI : 10.1016/j.ymeth.2021.10.004.

2021

Journal Articles

Comment on “Circadian rhythms in the absence of the clock gene Bmal1”

K. C. Abruzzi; C. Gobet; F. Naef; M. Rosbash 

Science. 2021-04-16. Vol. 372, num. 6539, p. eabf0922. DOI : 10.1126/science.abf0922.

The Effects of Time-Restricted Eating versus Standard Dietary Advice on Weight, Metabolic Health and the Consumption of Processed Food: A Pragmatic Randomised Controlled Trial in Community-Based Adults

N. E. Phillips; J. Mareschal; N. Schwab; E. N. C. Manoogian; S. Borloz et al. 

Nutrients. 2021-03-23. Vol. 13, num. 3, p. 1042. DOI : 10.3390/nu13031042.

The circadian oscillator analysed at the single-transcript level

N. E. Phillips; A. Hugues; J. Yeung; E. Durandau; D. Nicolas et al. 

Molecular Systems Biology. 2021-03-01. Vol. 17, num. 3, p. e10135. DOI : 10.15252/msb.202010135.

Oscillating and stable genome topologies underlie hepatic physiological rhythms during the circadian cycle

J. Mermet; J. Yeung; F. Naef 

PLOS Genetics. 2021-02-01. Vol. 17, num. 2, p. e1009350. DOI : 10.1371/journal.pgen.1009350.

Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms

B. D. Weger; C. Gobet; F. P. A. David; F. Atger; E. Martin et al. 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2021-01-19. Vol. 118, num. 3, p. e2015803118. DOI : 10.1073/pnas.2015803118.

Space-time logic of liver gene expression at sub-lobular scale

C. Droin; J. El Kholtei; K. B. Halpern; C. Hurni; M. Rozenberg et al. 

Nature Metabolism. 2021-01-11. Vol. 3, num. 1, p. 43-58. DOI : 10.1038/s42255-020-00323-1.

Theses

Circadian dynamics of RNA localisation in the mammalian liver

C. Y. S. Hurni / F. Naef (Dir.)  

Lausanne, EPFL, 2021. 

2020

Journal Articles

Robust landscapes of ribosome dwell times and aminoacyl-tRNAs in response to nutrient stress in liver

C. Gobet; B. D. Weger; J. Marquis; E. Martin; N. Neelagandan et al. 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2020-04-28. Vol. 117, num. 17, p. 9630-9641. DOI : 10.1073/pnas.1918145117.

Reviews

What determines eukaryotic translation elongation: recent molecular and quantitative analyses of protein synthesis

N. Neelagandan; I. Lamberti; H. J. F. Carvalho; C. Gobet; F. Naef 

Open Biology. 2020-12-09. Vol. 10, num. 12, p. 200292. DOI : 10.1098/rsob.200292.

Theses

Inference methods for the study of interacting biological oscillators in single-cells

C. N. Droin / F. Naef (Dir.)  

Lausanne, EPFL, 2020. 

2019

Journal Articles

Sleep-wake-driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex

C. N. Hor; J. Yeung; M. Jan; Y. Emmenegger; J. Hubbard et al. 

Proceedings of the National Academy of Sciences. 2019-12-17. Vol. 116, num. 51, p. 25773-25783. DOI : 10.1073/pnas.1910590116.

Low-dimensional dynamics of two coupled biological oscillators

C. Droin; E. R. Paquet; F. Naef 

Nature Physics. 2019-10-01. Vol. 15, num. 10, p. 1086-1094. DOI : 10.1038/s41567-019-0598-1.

Engineered signaling centers for the spatially controlled patterning of human pluripotent stem cells

A. Manfrin; Y. Tabata; E. R. Paquet; A. R. Vuaridel; F. R. Rivest et al. 

Nature Methods. 2019-07-01. Vol. 16, num. 7, p. 640-648. DOI : 10.1038/s41592-019-0455-2.

Quantitative relationships between SMAD dynamics and target gene activation kinetics in single live cells

O. Tidin; E. T. Friman; F. Naef; D. M. Suter 

Scientific Reports. 2019-03-29. Vol. 9, p. 5372. DOI : 10.1038/s41598-019-41870-2.

Differential regulation of RNA polymerase III genes during liver regeneration

M. Yeganeh; V. Praz; C. Carmeli; D. Villeneuve; L. Rib et al. 

Nucleic Acids Research. 2019-02-28. Vol. 47, num. 4, p. 1786-1796. DOI : 10.1093/nar/gky1282.

The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism

B. D. Weger; C. Gobet; J. Yeung; E. Martin; S. Jimenez et al. 

Cell Metabolism. 2019-02-05. Vol. 29, num. 2, p. 362-382.e8. DOI : 10.1016/j.cmet.2018.09.023.

Memory and relatedness of transcriptional activity in mammalian cell lineages

N. E. Phillips; A. Mandic; S. Omidi; F. Naef; D. M. Suter 

Nature Communications. 2019. Vol. 10, num. 1, p. 1-11. DOI : 10.1038/s41467-019-09189-8.

Conference Papers

Organization of temporal gene expression: from circadian clocks to promoter cycles and back

F. Naef 

2019-07-01.  p. 49-49.

Theses

Tissue-specific circadian transcriptional regulation

J. Yeung / F. Naef (Dir.)  

Lausanne, EPFL, 2019. 

2018

Journal Articles

Cross-regulatory circuits linking inflammation, high-fat diet, and the circadian clock

F. Gachon; J. Yeung; F. Naef 

Genes & Development. 2018-11-01. Vol. 32, num. 21-22, p. 1359-1360. DOI : 10.1101/gad.320911.118.

Single Live Cell Monitoring of Protein Turnover Reveals Intercellular Variability and Cell-Cycle Dependence of Degradation Rates

A. B. Alber; E. R. Paquet; M. Biserni; F. Naef; D. M. Suter 

Molecular Cell. 2018-09-20. Vol. 71, num. 6, p. 1079-1091.e9. DOI : 10.1016/j.molcel.2018.07.023.

Transcription factor activity rhythms and tissue-specific chromatin interactions explain circadian gene expression across organs

J. Yeung; J. Mermet; C. Jouffe; J. Marquis; A. Charpagne et al. 

GENOME RESEARCH. 2018. Vol. 28, num. 2, p. 182-191. DOI : 10.1101/gr.222430.117.

Modulation of transcriptional burst frequency by histone acetylation

D. Nicolas; B. Zoller; D. Suter; F. Naef 

Proceedings of the National Academy of Sciences of the United States of America. 2018. Vol. 115, num. 27, p. 7153-7158. DOI : 10.1073/pnas.1722330115.

Clock-dependent chromatin topology modulates circadian transcription and behavior

J. Mermet; J. Yeung; C. Hurni; D. Mauvoisin; K. Gustafson et al. 

GENES AND DEVELOPMENT. 2018. Vol. 32, num. 05-juin-2018, p. 347-358. DOI : 10.1101/gad.312397.118.

Circadian clock-dependent and -independent posttranscriptional regulation underlies temporal mRNA accumulation in mouse liver

J. Wang; L. Symul; J. Yeung; C. Gobet; J. Sobel et al. 

Proceedings of the National Academy of Sciences of the United States of America. 2018. Vol. 115, num. 8, p. E1916-E1925. DOI : 10.1073/pnas.1715225115.

Conference Papers

Long- and short-term molecular consequences of sleep loss in mice

C. N. Hor; J. Yeung; M. Jan; Y. Emmenegger; J. Hubbard et al. 

2018-09-01. 24th Congress of the European-Sleep-Research-Society (ESRS), Basel, SWITZERLAND, Sep 25-28, 2018.

Reviews

Rhythms of the Genome: Circadian Dynamics from Chromatin Topology, Tissue-Specific Gene Expression, to Behavior

J. Yeung; F. Naef 

Trends In Genetics. 2018-12-01. Vol. 34, num. 12, p. 915-926. DOI : 10.1016/j.tig.2018.09.005.

Theses

Circadian clock- and feeding-dependent regulation of translation initiation and elongation in the liver

C. A. Gobet / F. Naef; K. Sakamoto (Dir.)  

Lausanne, EPFL, 2018. 

Quantitative single cell dynamics of signaling and transcriptional response in mammalian cells

O. Tidin / D. M. Suter; F. Naef (Dir.)  

Lausanne, EPFL, 2018. 

2017

Journal Articles

Guidelines for Genome-Scale Analysis of Biological Rhythms

M. E. Hughes; K. C. Abruzzi; R. Allada; R. Anafi; A. B. Arpat et al. 

Journal Of Biological Rhythms. 2017. Vol. 32, num. 5, p. 380-393. DOI : 10.1177/0748730417728663.

Circadian and Feeding Rhythms Orchestrate the Diurnal Liver Acetylome

D. Mauvoisin; F. Atger; L. Dayon; A. N. Galindo; J. Wang et al. 

Cell Reports. 2017. Vol. 20, num. 7, p. 1729-1743. DOI : 10.1016/j.celrep.2017.07.065.

A new promoter element associated with daily time keeping in Drosophila

B. Sharp; E. Paquet; F. Naef; A. Bafna; H. Wijnen 

Nucleic Acids Research. 2017. Vol. 45, num. 11, p. 6459-6470. DOI : 10.1093/nar/gkx268.

Transcriptional regulatory logic of the diurnal cycle in the mouse liver

J. A. Sobel; I. Krier; T. Andersin; S. Raghav; D. Canella et al. 

PLoS Biology. 2017. Vol. 15, num. 4, p. e2001069. DOI : 10.1371/journal.pbio.2001069.

Systems Chronobiology: Global Analysis of Gene Regulation in a 24-Hour Periodic World

J. Mermet; J. Yeung; F. Naef 

Cold Spring Harbor Perspectives In Biology. 2017. Vol. 9, num. 3, p. a028720. DOI : 10.1101/cshperspect.a028720.

Nuclear Proteomics Uncovers Diurnal Regulatory Landscapes in Mouse Liver

J. Wang; D. Mauvoisin; E. Martin; F. Atger; A. N. Galindo et al. 

Cell Metabolism. 2017. Vol. 25, num. 1, p. 102-117. DOI : 10.1016/j.cmet.2016.10.003.

Reviews

What shapes eukaryotic transcriptional bursting?

D. Nicolas; N. E. Phillips; F. Naef 

Molecular Biosystems. 2017. Vol. 13, num. 7, p. 1280-1290. DOI : 10.1039/c7mb00154a.

Ribosome profiling and dynamic regulation of translation in mammals

C. Gobet; F. Naef 

Current Opinion In Genetics & Development. 2017. Vol. 43, p. 120-127. DOI : 10.1016/j.gde.2017.03.005.

Theses

Rhythmic modulation of transcriptional burst frequency in circadian gene promoters

D. L. Nicolas / F. Naef; D. M. Suter (Dir.)  

Lausanne, EPFL, 2017. 

Rhythmic and clock-dependent chromatin loops regulate circadian gene expression

J. Mermet / F. Naef (Dir.)  

Lausanne, EPFL, 2017. 

2016

Journal Articles

Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp

I. Gotic; S. Omidi; F. Fleury-Olela; N. Molina; F. Naef et al. 

Genes & Development. 2016-09-01. Vol. 30, num. 17, p. 2005-2017. DOI : 10.1101/gad.287094.116.

Revealing Assembly of a Pore-Forming Complex Using Single-Cell Kinetic Analysis and Modeling

M. Bischofberger; I. Iacovache; D. Boss; F. Naef; F. G. van der Goot et al. 

Biophysical journal. 2016. Vol. 110, num. 7, p. 1574-81. DOI : 10.1016/j.bpj.2016.02.035.

Theses

Phase specific transcriptional regulation of circadian clock and metabolism in mouse liver

J. A. Sobel / F. Naef (Dir.)  

Lausanne, EPFL, 2016. 

Circadian rhythm and cell cycle

R. Cannavo / F. Naef (Dir.)  

Lausanne, EPFL, 2016. 

Mechanisms of centrosome separation in C. elegans

A. De Simone / P. Gönczy; F. Naef (Dir.)  

Lausanne, EPFL, 2016. 

Student Projects

Learning from Tokyo: translation, seuils et interstices à Berlin

C. Naef 

2016.

2015

Journal Articles

Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver

F. Atger; C. Gobet; J. Marquis; E. Martin; J. Wang et al. 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2015. Vol. 112, num. 47, p. E6579-E6588. DOI : 10.1073/pnas.1515308112.

Structure of silent transcription intervals and noise characteristics of mammalian genes

B. Zoller; D. L. Nicolas; N. Molina; F. Naef 

Molecular Systems Biology. 2015. Vol. 11, num. 7, p. 823-823. DOI : 10.15252/msb.20156257.

CAST: An automated segmentation and tracking tool for the analysis of transcriptional kinetics from single-cell time-lapse recordings

S. Blanchoud; D. Nicolas; B. Zoller; O. Tidin; F. Naef 

Methods (San Diego, Calif.). 2015. Vol. 58, p. 3-11. DOI : 10.1016/j.ymeth.2015.04.023.

Quantitative Analysis and Modeling Probe Polarity Establishment in C. elegans Embryos

S. Blanchoud; C. Busso; F. Naef; P. Gönczy 

Biophysical journal. 2015. Vol. 108, num. 4, p. 799-809. DOI : 10.1016/j.bpj.2014.12.022.

Theses

Quantitative single-cell analysis of S. cerevisiae using a microfluidic live-cell imaging platform

J. Becker / F. Naef; S. Maerkl (Dir.)  

Lausanne, EPFL, 2015. 

Talks

Culture, Argent, Public et Société

L. Pattaroni; F. Benhamou; I. Naef Galuba; C. Schiaretti; S. Kanaan 

Cycle La Culture Créatrice de Valeurs, Palais Eynard, Genève, Suisse, Novembre 23, 2015.

2014

Journal Articles

Characteristic bimodal profiles of RNA polymerase II at thousands of active mammalian promoters

M. Quinodoz; C. Gobet; F. Naef; K. B. Gustafson 

Genome Biology. 2014. Vol. 15, num. 6, p. R85. DOI : 10.1186/gb-2014-15-6-r85.

Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells

J. Bieler; R. Cannavo; K. Gustafson; C. A. Gobet; G. David et al. 

Molecular Systems Biology. 2014. Vol. 10, num. 7, p. 739. DOI : 10.15252/msb.20145218.

Non-Circadian Expression Masking Clock-Driven Weak Transcription Rhythms in U2OS Cells

J. Hoffmann; L. Symul; A. Shostak; T. Fischer; F. Naef et al. 

Plos One. 2014. Vol. 9, num. 7, p. e102238. DOI : 10.1371/journal.pone.0102238.

Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription

B. Knight; S. Kubik; B. Ghosh; M. J. Bruzzone; M. Geertz et al. 

Genes & Development. 2014. Vol. 28, num. 15, p. 1695-1709. DOI : 10.1101/gad.244434.114.

Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver

D. Mauvoisin; J. Wang; C. Jouffe; E. Martin; F. Atger et al. 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2014. Vol. 111, num. 1, p. 167-172. DOI : 10.1073/pnas.1314066111.

Theses

Modeling of transcription mechanisms in mammals from kinetic measurements in single cells

B. Zoller / F. Naef (Dir.)  

Lausanne, EPFL, 2014. 

Mathematical models and computational methods for the analysis of genome-scale protein synthesis

J. Racle / V. Hatzimanikatis (Dir.)  

Lausanne, EPFL, 2014. 

Spatio-temporal synchronization of biological oscillators

J. Bieler / F. Naef (Dir.)  

Lausanne, EPFL, 2014. 

Computational studies in epigenomics using histone modification data

N. U. Nair / B. Moret; P. Bucher (Dir.)  

Lausanne, EPFL, 2014. 

Context-specific regulation of BMAL1 target genes during the circadian rhythm in mouse

J. C. Cajan / F. Naef; B. Deplancke (Dir.)  

Lausanne, EPFL, 2014. 

Antibiotic-Induced Killing and Persistence of Mycobacteria

E. Gelman / J. McKinney; N. Dhar (Dir.)  

Lausanne, EPFL, 2014. 

2013

Journal Articles

Stimulus-induced modulation of transcriptional bursting in a single mammalian gene

N. Molina; D. M. Suter; R. Cannavo; B. Zoller; I. Gotic et al. 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2013. Vol. 110, num. 51, p. 20563-20568. DOI : 10.1073/pnas.1312310110.

Analysis of precision in chemical oscillators: implications for circadian clocks

T. d’Eysmond; A. De Simone; F. Naef 

Physical biology. 2013. Vol. 10, num. 5, p. 056005. DOI : 10.1088/1478-3975/10/5/056005.

A chemostat array enables the spatio-temporal analysis of the yeast proteome

N. Dénervaud; J. Becker; R. Delgado-Gonzalo; P. Damay; A. S. Rajkumar et al. 

Proceedings of the National Academy of Sciences of the United States of America. 2013. Vol. 110, num. 39, p. 15842-15847. DOI : 10.1073/pnas.1308265110.

Absolute quantification of transcription factors during cellular differentiation using multiplexed targeted proteomics

J. Simicevic; A. W. Schmid; P. A. Gilardoni; B. Zoller; S. K. Raghav et al. 

Nature methods. 2013. Vol. 10, num. 6, p. 570-6. DOI : 10.1038/nmeth.2441.

The CORALIE survey for southern extrasolar planets XVII. New and updated long period and massive planets

M. Marmier; D. Segransan; S. Udry; M. Mayor; F. Pepe et al. 

Astronomy & Astrophysics. 2013. Vol. 551, p. A90. DOI : 10.1051/0004-6361/201219639.

The Circadian Clock Coordinates Ribosome Biogenesis

C. Jouffe; G. Cretenet; L. Symul; E. Martin; F. Atger et al. 

Plos Biology. 2013. Vol. 11, num. 1, p. e1001455. DOI : 10.1371/journal.pbio.1001455.

Theses

Systematic Analysis of Yeast Gene Expression by Synthetic Promoter Libraries

A. S. Rajkumar / S. Maerkl (Dir.)  

Lausanne, EPFL, 2013. 

Kinetic Analysis of Transcriptional and Post-Transcriptional Processes During Circadian Cycles

L. Symul / F. Naef (Dir.)  

Lausanne, EPFL, 2013. 

Quantitative analysis and mathematical modeling of polarity establishment in C. elegans embryos

S. Blanchoud / P. Gönczy; F. Naef (Dir.)  

Lausanne, EPFL, 2013. 

Sliced Inverse Regression for Lifetimes and a Remark on High-Dimensional Graphical Models

M. Shevlyakova / S. Morgenthaler (Dir.)  

Lausanne, EPFL, 2013. 

Molecular Modeling of Membrane Embedded Proteins

T. Lemmin / M. Dal Peraro (Dir.)  

Lausanne, EPFL, 2013. 

Involvement of the THO complex subunit Thp2 in telomere stability

J. Crittin / J. Lingner (Dir.)  

Lausanne, EPFL, 2013. 

A microfluidic live-cell imaging platform to study large collections of microbial genotypes

N. Dénervaud / S. Maerkl; F. Naef (Dir.)  

Lausanne, EPFL, 2013. 

2012

Journal Articles

Genome-Wide RNA Polymerase II Profiles and RNA Accumulation Reveal Kinetics of Transcription and Associated Epigenetic Changes During Diurnal Cycles

G. Le Martelot; D. Canella; L. Symul; E. Migliavacca; F. Gilardi et al. 

Plos Biology. 2012. Vol. 10, num. 11, p. e1001442. DOI : 10.1371/journal.pbio.1001442.

Promotion of Science among Youngsters: Today’s Crucial Mission for Tomorrow’s Society

F. Moser; R. Naef 

Chimia. 2012. Vol. 66, num. 11, p. 817-817.

Cold-Inducible RNA-Binding Protein Modulates Circadian Gene Expression Posttranscriptionally

J. Morf; G. Rey; K. Schneider; M. Stratmann; J. Fujita et al. 

Science. 2012. Vol. 338, num. 6105, p. 379-383. DOI : 10.1126/science.1217726.

Circadian Dbp Transcription Relies on Highly Dynamic BMAL1-CLOCK Interaction with E Boxes and Requires the Proteasome

M. Stratmann; D. M. Suter; N. Molina; F. Naef; U. Schibler 

Molecular Cell. 2012. Vol. 48, num. 2, p. 277-287. DOI : 10.1016/j.molcel.2012.08.012.

Theses

Dissecting Gene Regulatory Networks Using Targeted Quantitative Proteomics

J. Simicevic / B. Deplancke (Dir.)  

Lausanne, EPFL, 2012. 

2011

Journal Articles

Mammalian genes are transcribed with widely different bursting kinetics

D. M. Suter; N. Molina; D. Gatfield; K. Schneider; U. Schibler et al. 

Science (New York, N.Y.). 2011. Vol. 332, num. 6028, p. 472-4. DOI : 10.1126/science.1198817.

Whole-embryo modeling of early segmentation in Drosophila identifies robust and fragile expression domains

J. Bieler; C. Pozzorini; F. Naef 

Biophysical journal. 2011. Vol. 101, num. 2, p. 287-96. DOI : 10.1016/j.bpj.2011.05.060.

Computational analysis of protein-DNA interactions from ChIP-seq data

J. Rougemont; F. Naef 

Methods in molecular biology (Clifton, N.J.). 2011. Vol. 786, p. 263-73. DOI : 10.1007/978-1-61779-292-2_16.

Origins and consequences of transcriptional discontinuity

D. M. Suter; N. Molina; F. Naef; U. Schibler 

Current opinion in cell biology. 2011. Vol. 23, num. 6, p. 657-662. DOI : 10.1016/j.ceb.2011.09.004.

Analysis of the dynamics of limb transcriptomes during mouse development

I. Gyurján; B. Sonderegger; F. Naef; D. Duboule 

BMC developmental biology. 2011. Vol. 11, p. 47. DOI : 10.1186/1471-213X-11-47.

Genome-Wide and Phase-Specific DNA-Binding Rhythms of BMAL1 Control Circadian Output Functions in Mouse Liver

G. Rey; F. Cesbron; J. Rougemont; H. Reinke; M. Brunner et al. 

PLoS biology. 2011. Vol. 9, num. 2, p. e1000595. DOI : 10.1371/journal.pbio.1000595.

Theses

On the Precision of Circadian Oscillators

T. D’Eysmond / F. Naef (Dir.)  

Lausanne, EPFL, 2011. 

On the Relationship Between Protein-DNA Interactions and Circadian Gene Expression in Mouse Liver

G. Rey / F. Naef (Dir.)  

Lausanne, EPFL, 2011. 

Assembly Mechanisms and Cellular Effects of Bacterial Pore-Forming Toxins

M. Bischofberger / F. Naef; F. G. v. d. Goot Grunberg (Dir.)  

Lausanne, EPFL, 2011. 

2010

Journal Articles

The CORALIE survey for southern extrasolar planets XVI. Discovery of a planetary system around HD 147018 and of two long period and massive planets orbiting HD 171238 and HD 204313

D. Segransan; S. Udry; M. Mayor; D. Naef; F. Pepe et al. 

Astronomy & Astrophysics. 2010. Vol. 511, p. A45. DOI : 10.1051/0004-6361/200912136.

Information processing in cells and tissues (IPCAT’2009): from small scale dynamics to understanding systems behavior

A. Egri-Nagy; B. Galliot; F. Naef; C. L. Nehaniv 

Bio Systems. 2010. Vol. 102, num. 1, p. 1-2. DOI : 10.1016/j.biosystems.2010.07.015.

ASSET: A robust algorithm for the automated segmentation and standardization of early Caenorhabditis elegans embryos

S. Blanchoud; Y. Budirahardja; F. Naef; P. Gönczy 

Developmental dynamics. 2010. Vol. 239, num. 12, p. 3285-96. DOI : 10.1002/dvdy.22486.

Publication_full_list_Naef.pdf

2023

Journal Articles

Uncovering personalized glucose responses and circadian rhythms from multiple wearable biosensors with Bayesian dynamical modeling

N. E. Phillips; T-H. Collet; F. Naef 

Cell Reports Methods. 2023-08-28. Vol. 3, num. 8, p. 100545. DOI : 10.1016/j.crmeth.2023.100545.

ASIC1a affects hypothalamic signaling and regulates the daily rhythm of body temperature in mice

Z. Peng; P. G. Ziros; T. Martini; X-H. Liao; R. Stoop et al. 

Communications Biology. 2023-08-17. Vol. 6, num. 1, p. 857. DOI : 10.1038/s42003-023-05221-2.

Mice with humanized livers reveal the role of hepatocyte clocks in rhythmic behavior

A-S. Delbes; M. Quinones; C. Gobet; J. Castel; R. G. P. Denis et al. 

Science Advances. 2023-05-19. Vol. 9, num. 20, p. eadf2982. DOI : 10.1126/sciadv.adf2982.

Sex-dimorphic and age-dependent organization of 24-hour gene expression rhythms in humans

L. Talamanca; C. Gobet; F. Naef 

Science. 2023-02-03. Vol. 379, num. 6631, p. 478-483. DOI : 10.1126/science.add0846.

Reviews

Spatiotemporal Metabolic Liver Zonation and Consequences on Pathophysiology

T. Martini; F. Naef; J. S. Tchorz 

Annual Review Of Pathology-Mechanisms Of Disease. 2023-01-01. Vol. 18, p. 439-466. DOI : 10.1146/annurev-pathmechdis-031521-024831.

Theses

Statistical physics of periodic biological processes

L. Talamanca / F. Naef; P. De Los Rios (Dir.)  

Lausanne, EPFL, 2023. 

2022

Journal Articles

The Role of Molecular Clock Genes in Astrocytes of the Nucleus Accumbens in Reward- and Mood- Related Behavior in Mice

T. Martini 

Biological Psychiatry. 2022-12-23. Vol. 93, num. 3, p. E3-E4. DOI : 10.1016/j.biopsych.2022.06.039.

The effects of time-restricted eating and weight loss on bone metabolism and health: a 6-month randomized controlled trial

M. Papageorgiou; E. Biver; J. Mareschal; N. E. Phillips; A. Hemmer et al. 

Obesity. 2022-10-14. DOI : 10.1002/oby.23577.

Comprehensive analysis of the circadian nuclear and cytoplasmic transcriptome in mouse liver

C. S. Hurni; B. Weger; C. S. Gobet; F. Naef 

Plos Genetics. 2022-08-01. Vol. 18, num. 8, p. e1009903. DOI : 10.1371/journal.pgen.1009903.

Ribo-DT: An automated pipeline for inferring codon dwell times from ribosome profiling data

C. Gobet; F. Naef 

Methods. 2022-07-01. Vol. 203, p. 10-16. DOI : 10.1016/j.ymeth.2021.10.004.

Pum2 and TDP-43 refine area-specific cytoarchitecture post-mitotically and modulate translation of Sox5, Bcl11b, and Rorb mRNAs in developing mouse neocortex

K. Harb; M. Richter; N. Neelagandan; E. Magrinelli; H. Harfoush et al. 

Elife. 2022-03-09. Vol. 11, p. e55199. DOI : 10.7554/eLife.55199.

2021

Journal Articles

The integrated stress response contributes to tRNA synthetase-associated peripheral neuropathy

E. L. Spaulding; T. J. Hines; P. Bais; A. L. D. Tadenev; R. Schneider et al. 

Science. 2021-09-03. Vol. 373, num. 6559, p. 1156-1161. DOI : 10.1126/science.abb3414.

Comment on “Circadian rhythms in the absence of the clock gene Bmal1”

K. C. Abruzzi; C. Gobet; F. Naef; M. Rosbash 

Science. 2021-04-16. Vol. 372, num. 6539, p. eabf0922. DOI : 10.1126/science.abf0922.

The Effects of Time-Restricted Eating versus Standard Dietary Advice on Weight, Metabolic Health and the Consumption of Processed Food: A Pragmatic Randomised Controlled Trial in Community-Based Adults

N. E. Phillips; J. Mareschal; N. Schwab; E. N. C. Manoogian; S. Borloz et al. 

Nutrients. 2021-03-23. Vol. 13, num. 3, p. 1042. DOI : 10.3390/nu13031042.

The circadian oscillator analysed at the single-transcript level

N. E. Phillips; A. Hugues; J. Yeung; E. Durandau; D. Nicolas et al. 

Molecular Systems Biology. 2021-03-01. Vol. 17, num. 3, p. e10135. DOI : 10.15252/msb.202010135.

Oscillating and stable genome topologies underlie hepatic physiological rhythms during the circadian cycle

J. Mermet; J. Yeung; F. Naef 

PLOS Genetics. 2021-02-01. Vol. 17, num. 2, p. e1009350. DOI : 10.1371/journal.pgen.1009350.

Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms

B. D. Weger; C. Gobet; F. P. A. David; F. Atger; E. Martin et al. 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2021-01-19. Vol. 118, num. 3, p. e2015803118. DOI : 10.1073/pnas.2015803118.

Space-time logic of liver gene expression at sub-lobular scale

C. Droin; J. El Kholtei; K. B. Halpern; C. Hurni; M. Rozenberg et al. 

Nature Metabolism. 2021-01-11. Vol. 3, num. 1, p. 43-58. DOI : 10.1038/s42255-020-00323-1.

Theses

Circadian dynamics of RNA localisation in the mammalian liver

C. Y. S. Hurni / F. Naef (Dir.)  

Lausanne, EPFL, 2021. 

2020

Journal Articles

Single-Cell Tracing Dissects Regulation of Maintenance and Inheritance of Transcriptional Reinduction Memory

P. Bheda; D. Aguilar-Gomez; N. B. Becker; J. Becker; E. Stavrou et al. 

Molecular Cell. 2020-06-04. Vol. 78, num. 5, p. 915-925.e7. DOI : 10.1016/j.molcel.2020.04.016.

Robust landscapes of ribosome dwell times and aminoacyl-tRNAs in response to nutrient stress in liver

C. Gobet; B. D. Weger; J. Marquis; E. Martin; N. Neelagandan et al. 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2020-04-28. Vol. 117, num. 17, p. 9630-9641. DOI : 10.1073/pnas.1918145117.

Reviews

What determines eukaryotic translation elongation: recent molecular and quantitative analyses of protein synthesis

N. Neelagandan; I. Lamberti; H. J. F. Carvalho; C. Gobet; F. Naef 

Open Biology. 2020-12-09. Vol. 10, num. 12, p. 200292. DOI : 10.1098/rsob.200292.

Theses

Inference methods for the study of interacting biological oscillators in single-cells

C. N. Droin / F. Naef (Dir.)  

Lausanne, EPFL, 2020. 

2019

Journal Articles

Sleep-wake-driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex

C. N. Hor; J. Yeung; M. Jan; Y. Emmenegger; J. Hubbard et al. 

Proceedings of the National Academy of Sciences. 2019-12-17. Vol. 116, num. 51, p. 25773-25783. DOI : 10.1073/pnas.1910590116.

Low-dimensional dynamics of two coupled biological oscillators

C. Droin; E. R. Paquet; F. Naef 

Nature Physics. 2019-10-01. Vol. 15, num. 10, p. 1086-1094. DOI : 10.1038/s41567-019-0598-1.

Circadian rhythms and proteomics: It’s all about posttranslational modifications!

D. Mauvoisin 

Wiley Interdisciplinary Reviews-Systems Biology And Medicine. 2019-09-01. Vol. 11, num. 5, p. e1450. DOI : 10.1002/wsbm.1450.

Circadian Regulation of Cochlear Sensitivity to Noise by Circulating Glucocorticoids

C. R. Cederroth; J-s. Park; V. Basinou; B. D. Weger; E. Tserga et al. 

Current Biology. 2019-08-05. Vol. 29, num. 15, p. 2477-2487.e6. DOI : 10.1016/j.cub.2019.06.057.

Assessment of menstrual health status and evolution through mobile apps for fertility awareness

L. Symul; K. Wac; P. Hillard; M. Salathe 

npj Digital Medicine. 2019-07-16. Vol. 2, p. 64. DOI : 10.1038/s41746-019-0139-4.

Engineered signaling centers for the spatially controlled patterning of human pluripotent stem cells

A. Manfrin; Y. Tabata; E. R. Paquet; A. R. Vuaridel; F. R. Rivest et al. 

Nature Methods. 2019-07-01. Vol. 16, num. 7, p. 640-648. DOI : 10.1038/s41592-019-0455-2.

Microbiota and the clock: sexual dimorphism matters!

B. D. Weger; F. Gachon 

Aging-Us. 2019-06-30. Vol. 11, num. 12, p. 3893-3894. DOI : 10.18632/aging.102051.

Quantitative relationships between SMAD dynamics and target gene activation kinetics in single live cells

O. Tidin; E. T. Friman; F. Naef; D. M. Suter 

Scientific Reports. 2019-03-29. Vol. 9, p. 5372. DOI : 10.1038/s41598-019-41870-2.

The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism

B. D. Weger; C. Gobet; J. Yeung; E. Martin; S. Jimenez et al. 

Cell Metabolism. 2019-02-05. Vol. 29, num. 2, p. 362-382.e8. DOI : 10.1016/j.cmet.2018.09.023.

Memory and relatedness of transcriptional activity in mammalian cell lineages

N. E. Phillips; A. Mandic; S. Omidi; F. Naef; D. M. Suter 

Nature Communications. 2019. Vol. 10, num. 1, p. 1-11. DOI : 10.1038/s41467-019-09189-8.

Conference Papers

Organization of temporal gene expression: from circadian clocks to promoter cycles and back

F. Naef 

2019-07-01.  p. 49-49.

Reviews

At the Intersection of Microbiota and Circadian Clock: Are Sexual Dimorphism and Growth Hormones the Missing Link to Pathology? Circadian Clock and Microbiota: Potential Egffect on Growth Hormone and Sexual Development

B. D. Weger; O. Rawashdeh; F. Gachon 

Bioessays. 2019-08-09.  p. 1900059. DOI : 10.1002/bies.201900059.

Theses

Tissue-specific circadian transcriptional regulation

J. Yeung / F. Naef (Dir.)  

Lausanne, EPFL, 2019. 

2018

Journal Articles

Cross-regulatory circuits linking inflammation, high-fat diet, and the circadian clock

F. Gachon; J. Yeung; F. Naef 

Genes & Development. 2018-11-01. Vol. 32, num. 21-22, p. 1359-1360. DOI : 10.1101/gad.320911.118.

Glucocorticoid deficiency causes transcriptional and post-transcriptional reprogramming of glutamine metabolism

M. Weger; B. D. Weger; B. Goerling; G. Poschet; M. Yildiz et al. 

Ebiomedicine. 2018-10-01. Vol. 36, p. 376-89. DOI : 10.1016/j.ebiom.2018.09.024.

Single Live Cell Monitoring of Protein Turnover Reveals Intercellular Variability and Cell-Cycle Dependence of Degradation Rates

A. B. Alber; E. R. Paquet; M. Biserni; F. Naef; D. M. Suter 

Molecular Cell. 2018-09-20. Vol. 71, num. 6, p. 1079-1091.e9. DOI : 10.1016/j.molcel.2018.07.023.

Casein kinase 2 mediated phosphorylation of Spt6 modulates histone dynamics and regulates spurious transcription

E. Gouot; W. Bhat; A. Rufiange; E. Fournier; E. Paquet et al. 

Nucleic Acids Research. 2018-09-06. Vol. 46, num. 15, p. 7612-7630. DOI : 10.1093/nar/gky515.

Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle

L. Perrin; U. Loizides-Mangold; S. Chanon; C. Gobet; N. Hulo et al. 

Elife. 2018. Vol. 7, p. e34114. DOI : 10.7554/eLife.34114.

Transcription factor activity rhythms and tissue-specific chromatin interactions explain circadian gene expression across organs

J. Yeung; J. Mermet; C. Jouffe; J. Marquis; A. Charpagne et al. 

GENOME RESEARCH. 2018. Vol. 28, num. 2, p. 182-191. DOI : 10.1101/gr.222430.117.

Modulation of transcriptional burst frequency by histone acetylation

D. Nicolas; B. Zoller; D. Suter; F. Naef 

Proceedings of the National Academy of Sciences of the United States of America. 2018. Vol. 115, num. 27, p. 7153-7158. DOI : 10.1073/pnas.1722330115.

Impact of Powered Knee-Ankle Prosthesis on Low Back Muscle Mechanics in Transfemoral Amputees: A Case Series

C. Jayaraman; S. Hoppe-Ludwig; S. Deems-Dluhy; M. McGuire; C. Mummidisetty et al. 

Frontiers in Neuroscience. 2018. Vol. 12, p. 134. DOI : 10.3389/fnins.2018.00134.

Clock-dependent chromatin topology modulates circadian transcription and behavior

J. Mermet; J. Yeung; C. Hurni; D. Mauvoisin; K. Gustafson et al. 

GENES AND DEVELOPMENT. 2018. Vol. 32, num. 05-juin-2018, p. 347-358. DOI : 10.1101/gad.312397.118.

Circadian clock-dependent and -independent posttranscriptional regulation underlies temporal mRNA accumulation in mouse liver

J. Wang; L. Symul; J. Yeung; C. Gobet; J. Sobel et al. 

Proceedings of the National Academy of Sciences of the United States of America. 2018. Vol. 115, num. 8, p. E1916-E1925. DOI : 10.1073/pnas.1715225115.

Conference Papers

Long- and short-term molecular consequences of sleep loss in mice

C. N. Hor; J. Yeung; M. Jan; Y. Emmenegger; J. Hubbard et al. 

2018-09-01. 24th Congress of the European-Sleep-Research-Society (ESRS), Basel, SWITZERLAND, Sep 25-28, 2018.

Reviews

Rhythms of the Genome: Circadian Dynamics from Chromatin Topology, Tissue-Specific Gene Expression, to Behavior

J. Yeung; F. Naef 

Trends In Genetics. 2018-12-01. Vol. 34, num. 12, p. 915-926. DOI : 10.1016/j.tig.2018.09.005.

Theses

Circadian clock- and feeding-dependent regulation of translation initiation and elongation in the liver

C. A. Gobet / F. Naef; K. Sakamoto (Dir.)  

Lausanne, EPFL, 2018. 

2017

Journal Articles

Circadian and Feeding Rhythms Orchestrate the Diurnal Liver Acetylome

D. Mauvoisin; F. Atger; L. Dayon; A. N. Galindo; J. Wang et al. 

Cell Reports. 2017. Vol. 20, num. 7, p. 1729-1743. DOI : 10.1016/j.celrep.2017.07.065.

A new promoter element associated with daily time keeping in Drosophila

B. Sharp; E. Paquet; F. Naef; A. Bafna; H. Wijnen 

Nucleic Acids Research. 2017. Vol. 45, num. 11, p. 6459-6470. DOI : 10.1093/nar/gkx268.

Transcriptional regulatory logic of the diurnal cycle in the mouse liver

J. A. Sobel; I. Krier; T. Andersin; S. Raghav; D. Canella et al. 

PLoS Biology. 2017. Vol. 15, num. 4, p. e2001069. DOI : 10.1371/journal.pbio.2001069.

Systems Chronobiology: Global Analysis of Gene Regulation in a 24-Hour Periodic World

J. Mermet; J. Yeung; F. Naef 

Cold Spring Harbor Perspectives In Biology. 2017. Vol. 9, num. 3, p. a028720. DOI : 10.1101/cshperspect.a028720.

Nuclear Proteomics Uncovers Diurnal Regulatory Landscapes in Mouse Liver

J. Wang; D. Mauvoisin; E. Martin; F. Atger; A. N. Galindo et al. 

Cell Metabolism. 2017. Vol. 25, num. 1, p. 102-117. DOI : 10.1016/j.cmet.2016.10.003.

Reviews

What shapes eukaryotic transcriptional bursting?

D. Nicolas; N. E. Phillips; F. Naef 

Molecular Biosystems. 2017. Vol. 13, num. 7, p. 1280-1290. DOI : 10.1039/c7mb00154a.

Ribosome profiling and dynamic regulation of translation in mammals

C. Gobet; F. Naef 

Current Opinion In Genetics & Development. 2017. Vol. 43, p. 120-127. DOI : 10.1016/j.gde.2017.03.005.

Regulation of Mammalian Physiology by interconnected Circadian and Feeding Rhythms

F. Atger; D. Mauvoisin; B. Weger; C. Gobet; F. Gachon 

Frontiers In Endocrinology. 2017. Vol. 8, p. 42. DOI : 10.3389/fendo.2017.00042.

Theses

Rhythmic modulation of transcriptional burst frequency in circadian gene promoters

D. L. Nicolas / F. Naef; D. M. Suter (Dir.)  

Lausanne, EPFL, 2017. 

Rhythmic and clock-dependent chromatin loops regulate circadian gene expression

J. Mermet / F. Naef (Dir.)  

Lausanne, EPFL, 2017. 

2016

Journal Articles

Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp

I. Gotic; S. Omidi; F. Fleury-Olela; N. Molina; F. Naef et al. 

Genes & Development. 2016-09-01. Vol. 30, num. 17, p. 2005-2017. DOI : 10.1101/gad.287094.116.

Revealing Assembly of a Pore-Forming Complex Using Single-Cell Kinetic Analysis and Modeling

M. Bischofberger; I. Iacovache; D. Boss; F. Naef; F. G. van der Goot et al. 

Biophysical journal. 2016. Vol. 110, num. 7, p. 1574-81. DOI : 10.1016/j.bpj.2016.02.035.

Theses

Phase specific transcriptional regulation of circadian clock and metabolism in mouse liver

J. A. Sobel / F. Naef (Dir.)  

Lausanne, EPFL, 2016. 

Circadian rhythm and cell cycle

R. Cannavo / F. Naef (Dir.)  

Lausanne, EPFL, 2016. 

2015

Journal Articles

Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver

F. Atger; C. Gobet; J. Marquis; E. Martin; J. Wang et al. 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2015. Vol. 112, num. 47, p. E6579-E6588. DOI : 10.1073/pnas.1515308112.

Structure of silent transcription intervals and noise characteristics of mammalian genes

B. Zoller; D. L. Nicolas; N. Molina; F. Naef 

Molecular Systems Biology. 2015. Vol. 11, num. 7, p. 823-823. DOI : 10.15252/msb.20156257.

CAST: An automated segmentation and tracking tool for the analysis of transcriptional kinetics from single-cell time-lapse recordings

S. Blanchoud; D. Nicolas; B. Zoller; O. Tidin; F. Naef 

Methods (San Diego, Calif.). 2015. Vol. 58, p. 3-11. DOI : 10.1016/j.ymeth.2015.04.023.

Quantitative Analysis and Modeling Probe Polarity Establishment in C. elegans Embryos

S. Blanchoud; C. Busso; F. Naef; P. Gönczy 

Biophysical journal. 2015. Vol. 108, num. 4, p. 799-809. DOI : 10.1016/j.bpj.2014.12.022.

Theses

Quantitative single-cell analysis of S. cerevisiae using a microfluidic live-cell imaging platform

J. Becker / F. Naef; S. Maerkl (Dir.)  

Lausanne, EPFL, 2015. 

2014

Journal Articles

Characteristic bimodal profiles of RNA polymerase II at thousands of active mammalian promoters

M. Quinodoz; C. Gobet; F. Naef; K. B. Gustafson 

Genome Biology. 2014. Vol. 15, num. 6, p. R85. DOI : 10.1186/gb-2014-15-6-r85.

Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells

J. Bieler; R. Cannavo; K. Gustafson; C. A. Gobet; G. David et al. 

Molecular Systems Biology. 2014. Vol. 10, num. 7, p. 739. DOI : 10.15252/msb.20145218.

Non-Circadian Expression Masking Clock-Driven Weak Transcription Rhythms in U2OS Cells

J. Hoffmann; L. Symul; A. Shostak; T. Fischer; F. Naef et al. 

Plos One. 2014. Vol. 9, num. 7, p. e102238. DOI : 10.1371/journal.pone.0102238.

Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription

B. Knight; S. Kubik; B. Ghosh; M. J. Bruzzone; M. Geertz et al. 

Genes & Development. 2014. Vol. 28, num. 15, p. 1695-1709. DOI : 10.1101/gad.244434.114.

Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver

D. Mauvoisin; J. Wang; C. Jouffe; E. Martin; F. Atger et al. 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2014. Vol. 111, num. 1, p. 167-172. DOI : 10.1073/pnas.1314066111.

Theses

Modeling of transcription mechanisms in mammals from kinetic measurements in single cells

B. Zoller / F. Naef (Dir.)  

Lausanne, EPFL, 2014. 

Spatio-temporal synchronization of biological oscillators

J. Bieler / F. Naef (Dir.)  

Lausanne, EPFL, 2014. 

Context-specific regulation of BMAL1 target genes during the circadian rhythm in mouse

J. C. Cajan / F. Naef; B. Deplancke (Dir.)  

Lausanne, EPFL, 2014. 

2013

Journal Articles

Stimulus-induced modulation of transcriptional bursting in a single mammalian gene

N. Molina; D. M. Suter; R. Cannavo; B. Zoller; I. Gotic et al. 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2013. Vol. 110, num. 51, p. 20563-20568. DOI : 10.1073/pnas.1312310110.

Analysis of precision in chemical oscillators: implications for circadian clocks

T. d’Eysmond; A. De Simone; F. Naef 

Physical biology. 2013. Vol. 10, num. 5, p. 056005. DOI : 10.1088/1478-3975/10/5/056005.

A chemostat array enables the spatio-temporal analysis of the yeast proteome

N. Dénervaud; J. Becker; R. Delgado-Gonzalo; P. Damay; A. S. Rajkumar et al. 

Proceedings of the National Academy of Sciences of the United States of America. 2013. Vol. 110, num. 39, p. 15842-15847. DOI : 10.1073/pnas.1308265110.

Absolute quantification of transcription factors during cellular differentiation using multiplexed targeted proteomics

J. Simicevic; A. W. Schmid; P. A. Gilardoni; B. Zoller; S. K. Raghav et al. 

Nature methods. 2013. Vol. 10, num. 6, p. 570-6. DOI : 10.1038/nmeth.2441.

The Circadian Clock Coordinates Ribosome Biogenesis

C. Jouffe; G. Cretenet; L. Symul; E. Martin; F. Atger et al. 

Plos Biology. 2013. Vol. 11, num. 1, p. e1001455. DOI : 10.1371/journal.pbio.1001455.

Theses

Kinetic Analysis of Transcriptional and Post-Transcriptional Processes During Circadian Cycles

L. Symul / F. Naef (Dir.)  

Lausanne, EPFL, 2013. 

Quantitative analysis and mathematical modeling of polarity establishment in C. elegans embryos

S. Blanchoud / P. Gönczy; F. Naef (Dir.)  

Lausanne, EPFL, 2013. 

A microfluidic live-cell imaging platform to study large collections of microbial genotypes

N. Dénervaud / S. Maerkl; F. Naef (Dir.)  

Lausanne, EPFL, 2013. 

2012

Journal Articles

Genome-Wide RNA Polymerase II Profiles and RNA Accumulation Reveal Kinetics of Transcription and Associated Epigenetic Changes During Diurnal Cycles

G. Le Martelot; D. Canella; L. Symul; E. Migliavacca; F. Gilardi et al. 

Plos Biology. 2012. Vol. 10, num. 11, p. e1001442. DOI : 10.1371/journal.pbio.1001442.

Cold-Inducible RNA-Binding Protein Modulates Circadian Gene Expression Posttranscriptionally

J. Morf; G. Rey; K. Schneider; M. Stratmann; J. Fujita et al. 

Science. 2012. Vol. 338, num. 6105, p. 379-383. DOI : 10.1126/science.1217726.

Circadian Dbp Transcription Relies on Highly Dynamic BMAL1-CLOCK Interaction with E Boxes and Requires the Proteasome

M. Stratmann; D. M. Suter; N. Molina; F. Naef; U. Schibler 

Molecular Cell. 2012. Vol. 48, num. 2, p. 277-287. DOI : 10.1016/j.molcel.2012.08.012.

2011

Journal Articles

Mammalian genes are transcribed with widely different bursting kinetics

D. M. Suter; N. Molina; D. Gatfield; K. Schneider; U. Schibler et al. 

Science (New York, N.Y.). 2011. Vol. 332, num. 6028, p. 472-4. DOI : 10.1126/science.1198817.

Whole-embryo modeling of early segmentation in Drosophila identifies robust and fragile expression domains

J. Bieler; C. Pozzorini; F. Naef 

Biophysical journal. 2011. Vol. 101, num. 2, p. 287-96. DOI : 10.1016/j.bpj.2011.05.060.

Computational analysis of protein-DNA interactions from ChIP-seq data

J. Rougemont; F. Naef 

Methods in molecular biology (Clifton, N.J.). 2011. Vol. 786, p. 263-73. DOI : 10.1007/978-1-61779-292-2_16.

Origins and consequences of transcriptional discontinuity

D. M. Suter; N. Molina; F. Naef; U. Schibler 

Current opinion in cell biology. 2011. Vol. 23, num. 6, p. 657-662. DOI : 10.1016/j.ceb.2011.09.004.

Analysis of the dynamics of limb transcriptomes during mouse development

I. Gyurján; B. Sonderegger; F. Naef; D. Duboule 

BMC developmental biology. 2011. Vol. 11, p. 47. DOI : 10.1186/1471-213X-11-47.

Genome-Wide and Phase-Specific DNA-Binding Rhythms of BMAL1 Control Circadian Output Functions in Mouse Liver

G. Rey; F. Cesbron; J. Rougemont; H. Reinke; M. Brunner et al. 

PLoS biology. 2011. Vol. 9, num. 2, p. e1000595. DOI : 10.1371/journal.pbio.1000595.

Theses

On the Precision of Circadian Oscillators

T. D’Eysmond / F. Naef (Dir.)  

Lausanne, EPFL, 2011. 

On the Relationship Between Protein-DNA Interactions and Circadian Gene Expression in Mouse Liver

G. Rey / F. Naef (Dir.)  

Lausanne, EPFL, 2011. 

Assembly Mechanisms and Cellular Effects of Bacterial Pore-Forming Toxins

M. Bischofberger / F. Naef; F. G. v. d. Goot Grunberg (Dir.)  

Lausanne, EPFL, 2011. 

2010

Journal Articles

Information processing in cells and tissues (IPCAT’2009): from small scale dynamics to understanding systems behavior

A. Egri-Nagy; B. Galliot; F. Naef; C. L. Nehaniv 

Bio Systems. 2010. Vol. 102, num. 1, p. 1-2. DOI : 10.1016/j.biosystems.2010.07.015.

ASSET: A robust algorithm for the automated segmentation and standardization of early Caenorhabditis elegans embryos

S. Blanchoud; Y. Budirahardja; F. Naef; P. Gönczy 

Developmental dynamics. 2010. Vol. 239, num. 12, p. 3285-96. DOI : 10.1002/dvdy.22486.

Stabilizing patterning in the Drosophila segment polarity network by selecting models in silico

G. Stoll; M. Bischofberger; J. Rougemont; F. Naef 

Bio Systems. 2010. Vol. 102, num. 1, p. 3-10. DOI : 10.1016/j.biosystems.2010.07.014.

The telomere-binding protein Tbf1 demarcates snoRNA gene promoters in Saccharomyces cerevisiae

M. Preti; C. Ribeyre; C. Pascali; M. C. Bosio; B. Cortelazzi et al. 

Molecular cell. 2010. Vol. 38, num. 4, p. 614-20. DOI : 10.1016/j.molcel.2010.04.016.